Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 529, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811885

RESUMO

BACKGROUND: The colonization of land and the diversification of terrestrial plants is intimately linked to the evolutionary history of their symbiotic fungal partners. Extant representatives of these fungal lineages include mutualistic plant symbionts, the arbuscular mycorrhizal (AM) fungi in Glomeromycota and fine root endophytes in Endogonales (Mucoromycota), as well as fungi with saprotrophic, pathogenic and endophytic lifestyles. These fungal groups separate into three monophyletic lineages but their evolutionary relationships remain enigmatic confounding ancestral reconstructions. Their taxonomic ranks are currently fluid. RESULTS: In this study, we recognize these three monophyletic linages as phyla, and use a balanced taxon sampling and broad taxonomic representation for phylogenomic analysis that rejects a hard polytomy and resolves Glomeromycota as sister to a clade composed of Mucoromycota and Mortierellomycota. Low copy numbers of genes associated with plant cell wall degradation could not be assigned to the transition to a plant symbiotic lifestyle but appears to be an ancestral phylogenetic signal. Both plant symbiotic lineages, Glomeromycota and Endogonales, lack numerous thiamine metabolism genes but the lack of fatty acid synthesis genes is specific to AM fungi. Many genes previously thought to be missing specifically in Glomeromycota are either missing in all analyzed phyla, or in some cases, are actually present in some of the analyzed AM fungal lineages, e.g. the high affinity phosphorus transporter Pho89. CONCLUSION: Based on a broad taxon sampling of fungal genomes we present a well-supported phylogeny for AM fungi and their sister lineages. We show that among these lineages, two independent evolutionary transitions to mutualistic plant symbiosis happened in a genomic background profoundly different from that known from the emergence of ectomycorrhizal fungi in Dikarya. These results call for further reevaluation of genomic signatures associated with plant symbiosis.


Assuntos
Genômica , Micorrizas , Filogenia , Simbiose , Micorrizas/genética , Micorrizas/fisiologia , Simbiose/genética , Genômica/métodos , Evolução Molecular , Genoma Fúngico , Glomeromycota/genética , Glomeromycota/fisiologia , Plantas/microbiologia
2.
J Fungi (Basel) ; 8(8)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-36012811

RESUMO

Periglandula is a fungal genus that is associated with plants in the family Convolvulaceae. They produce medicinally important constituents called ergot alkaloids, which are stored in their host plants. Previously, the fungi were reported to mainly interact with young leaves and seeds of Convolvulaceae species. However, knowledge about how ergot alkaloid-producing fungi interact with their host plants is still lacking. Therefore, we investigated the interaction of Periglandula fungus with different plant parts of Ipomoea asarifolia, using molecular, histochemical, anatomical and micromorphological techniques. Our findings confirm the presence of Periglandula ipomoeae on six out of the eight plant parts examined (young folded leaves, mature leaves, flower buds, mature flowers, young seeds and mature seeds). The fungus was mostly distributed along external plant surfaces, and particularly on areas that were relatively unexposed. Our results suggest that the density of fungal mycelium varies depending on glandular trichome density and the growth stage of the host plant. Detection of the fungus in the flowers of its host plant, for the first time, fills a missing link in understanding how vertical transmission of Periglandula species occurs.

3.
FEMS Microbiol Ecol ; 95(10)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504453

RESUMO

The endophytic, insect pathogenic fungus, Metarhizium, exchanges insect-derived nitrogen for photosynthate as part of a symbiotic association similar to well-known mycorrhizal relationships. However, little is known about this nitrogen transfer in soils where there is an abundance of nitrogen and/or carbon. Here, we applied D-glucose and ammonium nitrate to soil to examine the effect on root colonization and transfer of labelled nitrogen (15N) from an insect (injected with 15N-ammonium sulfate) to Metarhizium robertsii, into leaves of the common bean, Phaseolus vulgaris, over the course of 28 days. Application of exogenous carbon and/or nitrogen to soils significantly reduced detectable 15N in plant leaves. Metarhizium root colonization, quantified with real-time PCR, revealed colonization persisted under all conditions but was significantly greater on roots in soil supplemented with glucose and significantly lower in soil supplemented with ammonium nitrate. Fungal gene expression analysis revealed differential expression of sugar and nitrogen transporters (mrt, st3, nrr1, nit1, mep2) when Metarhizium was grown in pure broth culture or in co-culture with plant roots under various carbon and nitrogen conditions. The observation that Metarhizium maintained root colonization in the absence of nitrogen transfer, and without evidence of plant harm, is intriguing and indicates additional benefits with ecological importance.


Assuntos
Carbono/metabolismo , Insetos/microbiologia , Metarhizium/metabolismo , Isótopos de Nitrogênio/metabolismo , Phaseolus/metabolismo , Raízes de Plantas/microbiologia , Animais , Carbono/análise , Insetos/metabolismo , Metarhizium/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Micorrizas/metabolismo , Isótopos de Nitrogênio/análise , Phaseolus/química , Phaseolus/microbiologia , Folhas de Planta/química , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Solo/química
5.
Fungal Biol ; 119(10): 917-928, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26399186

RESUMO

Fungal endophytes represent one of the most ubiquitous plant symbionts on Earth and are phylogenetically diverse. The structure and diversity of endophyte communities have been shown to depend on host taxa and climate, but there have been relatively few studies exploring endophyte communities throughout host maturity. We compared foliar fungal endophyte communities between seedlings and adult trees of loblolly pines (Pinus taeda) at the same seasons and locations by culturing and culture-independent methods. We sequenced the internal transcribed spacer region and adjacent partial large subunit nuclear ribosomal RNA gene (ITS-LSU amplicon) to delimit operational taxonomic units and phylogenetically characterize the communities. Despite the lower infection frequency in seedlings compared to adult trees, seedling needles were receptive to a more diverse community of fungal endophytes. Culture-free method confirmed the presence of commonly cultured OTUs from adult needles but revealed several new OTUs from seedling needles that were not found with culturing methods. The two most commonly cultured OTUs in adults were rarely cultured from seedlings, suggesting that host age is correlated with a selective enrichment for specific endophytes. This shift in endophyte species dominance may be indicative of a functional change between these fungi and their loblolly pine hosts.


Assuntos
Biota , Endófitos/classificação , Endófitos/isolamento & purificação , Fungos/classificação , Fungos/isolamento & purificação , Pinus taeda/microbiologia , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Endófitos/genética , Fungos/genética , Fungos não Classificados , Dados de Sequência Molecular , Filogenia , Folhas de Planta/microbiologia , RNA Ribossômico/genética , Plântula/microbiologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA