Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Transfusion ; 64(5): 881-892, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591151

RESUMO

BACKGROUND: A life-threatening anaphylactic shock can occur if a patient with undiagnosed immunoglobulin A (IgA) deficiency (i.e., IgA levels <500 ng/mL) receives IgA-containing blood, hence the need for a rapid, point-of-care (POC) method for IgA deficiency screening. Enzyme-linked immunosorbent assay (ELISA) is routinely used to detect IgA, but this method requires trained specialists and ≥24 h to obtain a result. We developed a surface plasmon resonance (SPR)-based protocol to identify IgA-deficient patients or donors within 1 h. MATERIALS AND METHODS: The SPR sensor relies on the detection of IgAs captured by primary antibodies adsorbed on the SPR chip and quantified with secondary antibodies. The sensor was calibrated from 0 to 2000 ng/mL in buffer, IgA-depleted human serum, and plasma samples from IgA-deficient individuals. A critical concentration of 500 ng/mL was set for IgA deficiency. The optimized sensor was then tested on eight plasma samples with known IgA status (determined by ELISA), including five with IgA deficiency and three with normal IgA levels. RESULTS: The limit of detection was estimated at 30 ng/mL in buffer and 400 ng/mL in diluted plasma. The results obtained fully agreed with ELISA among the eight plasma samples tested. The protocol distinguished IgA-deficient from normal samples, even for samples with an IgA concentration closer to critical concentration. DISCUSSION: In conclusion, we developed a reliable POC assay for the quantification of IgA in plasma. This test may permit POC testing at blood drives and centralized centers to maintain reserves of IgA-deficient blood and in-hospital testing of blood recipients.


Assuntos
Deficiência de IgA , Imunoglobulina A , Ressonância de Plasmônio de Superfície , Humanos , Ressonância de Plasmônio de Superfície/métodos , Ressonância de Plasmônio de Superfície/instrumentação , Imunoglobulina A/sangue , Deficiência de IgA/sangue , Deficiência de IgA/diagnóstico , Ensaio de Imunoadsorção Enzimática/métodos
2.
Appl Microbiol Biotechnol ; 108(1): 414, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985204

RESUMO

Airborne animal viral pathogens can rapidly spread and become a global threat, resulting in substantial socioeconomic and health consequences. To prevent and control potential epidemic outbreaks, accurate, fast, and affordable point-of-care (POC) tests are essential. As a proof-of-concept, we have developed a molecular system based on the loop-mediated isothermal amplification (LAMP) technique for avian metapneumovirus (aMPV) detection, an airborne communicable agent mainly infecting turkeys and chickens. For this purpose, a colorimetric system was obtained by coupling the LAMP technique with specific DNA-functionalized AuNPs (gold nanoparticles). The system was validated using 50 different samples (pharyngeal swabs and tracheal tissue) collected from aMPV-infected and non-infected chickens and turkeys. Viral detection can be achieved in about 60 min with the naked eye, with 100% specificity and 87.88% sensitivity for aMPV. In summary, this novel molecular detection system allows suitable virus testing in the field, with accuracy and limit of detection (LOD) values highly close to qRT-PCR-based diagnosis. Furthermore, this system can be easily scalable to a platform for the detection of other viruses, addressing the current gap in the availability of POC tests for viral detection in poultry farming. KEY POINTS: •aMPV diagnosis using RT-LAMP is achieved with high sensitivity and specificity. •Fifty field samples have been visualized using DNA-nanoprobe validation. •The developed system is a reliable, fast, and cost-effective option for POCT.


Assuntos
Galinhas , Ouro , Metapneumovirus , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Infecções por Paramyxoviridae , Doenças das Aves Domésticas , Sensibilidade e Especificidade , Metapneumovirus/genética , Metapneumovirus/isolamento & purificação , Animais , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico/economia , Galinhas/virologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/economia , Infecções por Paramyxoviridae/diagnóstico , Infecções por Paramyxoviridae/veterinária , Infecções por Paramyxoviridae/virologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/diagnóstico , Ouro/química , Perus , Nanopartículas Metálicas/química , Limite de Detecção , Colorimetria/métodos , DNA Viral/genética
3.
Entropy (Basel) ; 26(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38667838

RESUMO

Recently, with more portable diagnostic devices being moved to people anywhere, point-of-care (PoC) imaging has become more convenient and more popular than the traditional "bed imaging". Instant image segmentation, as an important technology of computer vision, is receiving more and more attention in PoC diagnosis. However, the image distortion caused by image preprocessing and the low resolution of medical images extracted by PoC devices are urgent problems that need to be solved. Moreover, more efficient feature representation is necessary in the design of instant image segmentation. In this paper, a new feature representation considering the relationships among local features with minimal parameters and a lower computational complexity is proposed. Since a feature window sliding along a diagonal can capture more pluralistic features, a Diagonal-Axial Multi-Layer Perceptron is designed to obtain the global correlation among local features for a more comprehensive feature representation. Additionally, a new multi-scale feature fusion is proposed to integrate nonlinear features with linear ones to obtain a more precise feature representation. Richer features are figured out. In order to improve the generalization of the models, a dynamic residual spatial pyramid pooling based on various receptive fields is constructed according to different sizes of images, which alleviates the influence of image distortion. The experimental results show that the proposed strategy has better performance on instant image segmentation. Notably, it yields an average improvement of 1.31% in Dice than existing strategies on the BUSI, ISIC2018 and MoNuSeg datasets.

4.
Methods ; 203: 431-446, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33839288

RESUMO

Infectious diseases are a global health problem affecting billions of people. Developing rapid and sensitive diagnostic tools is key for successful patient management and curbing disease spread. Currently available diagnostics are very specific and sensitive but time-consuming and require expensive laboratory settings and well-trained personnel; thus, they are not available in resource-limited areas, for the purposes of large-scale screenings and in case of outbreaks and epidemics. Developing new, rapid, and affordable point-of-care diagnostic assays is urgently needed. This review focuses on CRISPR-based technologies and their perspectives to become platforms for point-of-care nucleic acid detection methods and as deployable diagnostic platforms that could help to identify and curb outbreaks and emerging epidemics. We describe the mechanisms and function of different classes and types of CRISPR-Cas systems, including pros and cons for developing molecular diagnostic tests and applications of each type to detect a wide range of infectious agents. Many Cas proteins (Cas3, Cas9, Cas12, Cas13, Cas14 etc.) have been leveraged to create highly accurate and sensitive diagnostic tools combined with technologies of signal amplification and fluorescent, potentiometric, colorimetric, lateral flow assay detection and other. In particular, the most advanced platforms -- SHERLOCK/v2, DETECTR, CARMEN or CRISPR-Chip -- enable detection of attomolar amounts of pathogenic nucleic acids with specificity comparable to that of PCR but with minimal technical settings. Further developing CRISPR-based diagnostic tools promises to dramatically transform molecular diagnostics, making them easily affordable and accessible virtually anywhere in the world. The burden of socially significant diseases, frequent outbreaks, recent epidemics (MERS, SARS and the ongoing COVID-19) and outbreaks of zoonotic viruses (African Swine Fever Virus etc.) urgently need the developing and distribution of express-diagnostic tools. Recently devised CRISPR-technologies represent the unprecedented opportunity to reshape epidemiological surveillance and molecular diagnostics.


Assuntos
Vírus da Febre Suína Africana , COVID-19 , Doenças Transmissíveis , Animais , COVID-19/diagnóstico , COVID-19/epidemiologia , Sistemas CRISPR-Cas/genética , Doenças Transmissíveis/diagnóstico , Doenças Transmissíveis/genética , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Suínos
5.
Sens Actuators B Chem ; 383: 133531, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36811084

RESUMO

A fully-enclosed prototype 'pen' for rapid detection of SARS-CoV-2 based on reverse transcriptase isothermal recombinase polymerase amplification (RT-RPA) with dipstick assay was developed. The integrated handheld device, consisting of amplification, detection and sealing modules, was developed to perform rapid nucleic acid amplification and detection under a fully enclosed condition. After RT-RPA amplification with a metal bath or a normal PCR instrument, the amplicons were mixed with dilution buffer prior to being detected on a lateral flow strip. To avoid aerosol contamination causing false-positive, from amplification to final detection, the detection 'pen' had been enclosed to isolate from the environment. With colloidal gold strip-based detection, the detection results could be directly observed by eyes. By cooperating with other inexpensive and rapid methods for POC nucleic acid extraction, the developed 'pen' could detect COVID-19 or other infectious diseases in a convenient, simple and reliable way.

6.
Sens Actuators B Chem ; 392: 134085, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37304211

RESUMO

Sensitive and rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a vital goal in the ongoing COVID-19 pandemic. We present in this comprehensive work, for the first time, detailed fabrication and clinical validation of a point of care (PoC) device for rapid, onsite detection of SARS-CoV-2 using a real-time reverse-transcription loop-mediated isothermal amplification (RT-LAMP) reaction on a polymer cartridge. The PoC system, namely PATHPOD, consisting of a standalone device (weight less than 1.2 kg) and a cartridge, can perform the detection of 10 different samples and two controls in less than 50 min, which is much more rapid than the golden standard real-time reverse-transcription Polymerase Chain Reaction (RT-PCR), typically taking 16-48 h. The novel total internal reflection (TIR) scheme and the reactions inside the cartridge in the PoC device allow monitoring of the diagnostic results in real-time and onsite. The analytical sensitivity and specificity of the PoC test are comparable with the current RT-PCR, with a limit of detection (LOD) down to 30-50 viral genome copies. The robustness of the PATHPOD PoC system has been confirmed by analyzing 398 clinical samples initially examined in two hospitals in Denmark. The clinical sensitivity and specificity of these tests are discussed.

7.
Sensors (Basel) ; 23(19)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37837121

RESUMO

Exosomes have gained recognition in cancer diagnostics and therapeutics. However, most exosome isolation methods are time-consuming, costly, and require bulky equipment, rendering them unsuitable for point-of-care (POC) settings. Microfluidics can be the key to solving these challenges. Here, we present a double filtration microfluidic device that can rapidly isolate exosomes via size-exclusion principles in POC settings. The device can efficiently isolate exosomes from 50-100 µL of plasma within 50 min. The device was compared against an already established exosome isolation method, polyethylene glycol (PEG)-based precipitation. The findings showed that both methods yield comparable exosome sizes and purity; however, exosomes isolated from the device exhibited an earlier miRNA detection compared to exosomes obtained from the PEG-based isolation. A comparative analysis of exosomes collected from membrane filters with 15 nm and 30 nm pore sizes showed a similarity in exosome size and miRNA detection, with significantly increased sample purity. Finally, TEM images were taken to analyze how the developed devices and PEG-based isolation alter exosome morphology and to analyze exosome sizes. This developed microfluidic device is cost-efficient and time-efficient. Thus, it is ideal for use in low-resourced and POC settings to aid in cancer and disease diagnostics and therapeutics.


Assuntos
Exossomos , MicroRNAs , Neoplasias , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Microfluídica
8.
Clin Chem Lab Med ; 60(6): 867-876, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35427449

RESUMO

OBJECTIVES: Estimated glomerular filtration rate (eGFR) can be calculated using serum/plasma creatinine measured with automated chemistry analyzers. It is unclear whether eGFR can be calculated using creatinine values measured in whole blood (WB creatinine). The aim of this study is to determine the comparability between the eGFR calculated using WB creatinine and plasma creatinine. METHODS: Blood samples from 1,073 patients presented to the emergency department (ED), perioperative areas, intensive care unit (ICU) or nuclear medicine were used to determine the accuracy of WB creatinine. For each sample, WB creatinine was first measured with Radiometer ABL827 FLEX blood gas analyzer, then plasma creatinine was measured with Roche Cobas702 chemistry analyzer after samples were centrifuged. In a subset of 247 samples with the information of age and sex, whole blood eGFR (WB eGFR) and plasma eGFR were calculated using WB creatinine and plasma creatinine and the 2021 chronic kidney disease epidemiology collaboration (CKD-EPI) creatinine equation, respectively. RESULTS: WB creatinine correlated with plasma creatinine linearly with a slope of 1.06 and an intercept of -0.01. The coefficient of determination (R2) was 0.99. WB eGFR correlated with plasma eGFR linearly with a slope of 0.95, intercept of -1.63, and R2 of 0.97. Comparing to plasma eGFR, the sensitivity and specificity for WB eGFR to identify those with high risk (eGFR<30 mL/min/1.73 m2) and low risk (eGFR>45 mL/min/1.73 m2) for kidney injuries was 100 and 92.2%, respectively. The overall concordance in classifying the four stages of kidney damage between WB eGFR and plasma eGFR was 87.9%. CONCLUSIONS: WB creatinine measured with Radiometer ABL827 Flex can be used to calculate eGFR using the 2021 CKD-EPI creatinine equation. The sensitivity and specificity for WB eGFR to identify those with high and low risks for potential kidney injuries are acceptable in patients needing rapid assessment of their kidney functions.


Assuntos
Insuficiência Renal Crônica , Creatinina , Feminino , Taxa de Filtração Glomerular , Humanos , Rim , Testes de Função Renal , Masculino , Insuficiência Renal Crônica/diagnóstico
9.
Anal Bioanal Chem ; 414(1): 103-113, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33616686

RESUMO

Point-of-care (POC) technologies and testing programs hold great potential to significantly improve diagnosis and disease surveillance. POC tests have the intrinsic advantage of being able to be performed near the patient or treatment facility, owing to their portable character. With rapid results often in minutes, these diagnostic platforms have a high positive impact on disease management. POC tests are, in addition, advantageous in situations of a shortage of skilled personnel and restricted availability of laboratory-based analytics. While POC testing programs are widely considered in addressing health care challenges in low-income health systems, the ongoing pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections could largely benefit from fast, efficient, accurate, and cost-effective point-of-care testing (POCT) devices for limiting COVID-19 spreading. The unrestrained availability of SARS-CoV-2 POC tests is indeed one of the adequate means of better managing the COVID-19 outbreak. A large number of novel and innovative solutions to address this medical need have emerged over the last months. Here, we critically elaborate the role of the surface ligands in the design of biosensors to cope with the current viral outbreak situation. Their notable effect on electrical and electrochemical sensors' design will be discussed in some given examples. Graphical abstract.


Assuntos
Antígenos Virais/análise , Técnicas Biossensoriais/métodos , Teste para COVID-19/métodos , COVID-19/diagnóstico , Testes Imediatos/tendências , SARS-CoV-2/imunologia , Antígenos Virais/imunologia , COVID-19/virologia , Técnicas Eletroquímicas , Humanos , Ligantes , Sistemas Automatizados de Assistência Junto ao Leito
10.
Anim Biotechnol ; 33(6): 1025-1034, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33427030

RESUMO

A microcapillary-based loop-mediated isothermal amplification (µcLAMP) has been described for specific detection of infectious reproductive pathogens in semen samples of cattle without sophisticated instrumentation. Brucella abortus, Leptospira interrogans serovar Pomona and bovine herpesvirus 1 (BoHV-1) cultures were mixed in bovine semen samples. The µcLAMP assay is portable, user-friendly, cost-effective, and suitable to be performed as a POC diagnostic test. We have demonstrated high sensitivity and specificity of µcLAMP for detection of Brucella, Leptospira, and BoHV-1 in bovine semen samples comparable to PCR and qPCR assays. Thus, µcLAMP would be a promising field-based test for monitoring various infectious pathogens in biological samples.HighlightsDetect infectious organism in bovines semenReduction in carryover contamination is an important attribute, which may reduce the false-positive reaction.µcLAMP is a miniaturized form, which could be performed with a minimum volume of reagents.The µcLAMP assay is portable, user-friendly, and suitable to be performed as a POC diagnostic test.


Assuntos
Herpesvirus Bovino 1 , Sêmen , Bovinos , Animais , Técnicas de Amplificação de Ácido Nucleico , Herpesvirus Bovino 1/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Sensibilidade e Especificidade
11.
Sensors (Basel) ; 22(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35161565

RESUMO

Surface acoustic waves (SAWs) are the guided waves that propagate along the top surface of a material with wave vectors orthogonal to the normal direction to the surface. Based on these waves, SAW sensors are conceptualized by employing piezoelectric crystals where the guided elastodynamic waves are generated through an electromechanical coupling. Electromechanical coupling in both active and passive modes is achieved by integrating interdigitated electrode transducers (IDT) with the piezoelectric crystals. Innovative meta-designs of the periodic IDTs define the functionality and application of SAW sensors. This review article presents the physics of guided surface acoustic waves and the piezoelectric materials used for designing SAW sensors. Then, how the piezoelectric materials and cuts could alter the functionality of the sensors is explained. The article summarizes a few key configurations of the electrodes and respective guidelines for generating different guided wave patterns such that new applications can be foreseen. Finally, the article explores the applications of SAW sensors and their progress in the fields of biomedical, microfluidics, chemical, and mechano-biological applications along with their crucial roles and potential plans for improvements in the long-term future in the field of science and technology.

12.
J Vector Borne Dis ; 59(1): 29-36, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35708401

RESUMO

Diagnosis of malaria is a prominent challenge due to the endemic nature of infection. Malaria poses a great threat to global public health. The disease can be diagnosed by several techniques out of which microscopy is a known gold standard. High sensitivity of molecular techniques is making them more reliable and popular as tools for diagnosis of malaria. However, new methods are required which can fulfill the criteria of being Point of Care Test (POCT) as defined by WHO. Loop-mediated isothermal amplification (LAMP) technique amplifies DNA in an isothermal condition, and surpasses the disadvantages of conventional molecular techniques such as polymerase chain reaction. Multiplex LAMP, a modification of LAMP may emerge as a new POC for malaria diagnosis. This review deals with the use of LAMP and multiplex LAMP in diagnosis of malaria and its prospective use as point of care techniques.


Assuntos
Malária , Sistemas Automatizados de Assistência Junto ao Leito , Humanos , Malária/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Estudos Prospectivos , Sensibilidade e Especificidade
13.
J Clin Microbiol ; 59(2)2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33239382

RESUMO

Highly accurate testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the point of care (POC) is an unmet diagnostic need in emergency care and time-sensitive outpatient care settings. Reverse transcription-PCR (RT-PCR) technology is the gold standard for SARS-CoV-2 diagnostics. We performed a multisite U.S. study comparing the clinical performance of the first U.S. Food and Drug Administration (FDA)-authorized POC RT-PCR for detection of SARS-CoV-2 in 20 min, the cobas Liat SARS-CoV-2 and influenza A/B nucleic acid test, to the most widely used RT-PCR laboratory test, the cobas 68/8800 SARS-CoV-2 test. Clinical nasopharyngeal swab specimens from 444 patients with 357 evaluable specimens at five U.S. clinical laboratories were enrolled from 21 September 2020 to 23 October 2020. The overall agreement between the Liat and 68/8800 systems for SARS-CoV-2 diagnostics was 98.6% (352/357). Using Liat, positive percent agreement for SARS-CoV-2 was 100% (162/162) and the negative percent agreement was 97.4% (190/195). The Liat is an RT-PCR POC test that provides highly accurate SARS-CoV-2 results in 20 min with performance equivalent to that of high-throughput laboratory molecular testing. Rapid RT-PCR testing at the POC can enable more timely infection control and individual care decisions for coronavirus disease 2019.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito , SARS-CoV-2/isolamento & purificação , Teste de Ácido Nucleico para COVID-19/instrumentação , Humanos , Nasofaringe/virologia , SARS-CoV-2/genética , Fatores de Tempo , Estados Unidos
14.
Biomed Microdevices ; 23(2): 20, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782743

RESUMO

This paper presents a framework for automated optimization of double-heater convective PCR (DH-cPCR) devices by developing a computational fluid dynamics (CFD) simulation database and artificial neural network (ANN) model. The optimization parameter space that includes the capillary tube geometries and the heater sizes of DH-cPCR is established, and a database consisting of nearly 10,000 CFD simulations is constructed. The database is then used to train a two-stage ANN models that select practically relevant data for modeling and predict PCR device performance. The trained ANN model is then combined with the gradient-based and the heuristics optimization approaches to search for optimal device configuration that possesses the shortest DNA doubling time. The entire design process including model meshing and configuration, parallel CFD computation, database organization, and ANN training and utilization is fully automated. Case studies confirm that the proposed framework can successfully find the optimal device configuration with an error of less than 0.3 s, and hence, representing a cost-effective and rapid solution of DH-cPCR device design.


Assuntos
Hidrodinâmica , Redes Neurais de Computação , Simulação por Computador , Reação em Cadeia da Polimerase
15.
Anal Bioanal Chem ; 413(3): 763-777, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32989512

RESUMO

Multi-analyte sensing using exclusively laser-induced graphene (LIG)-based planar electrode systems was developed for sweat analysis. LIG provides 3D structures of graphene, can be manufactured easier than any other carbon electrode also on large scale, and in form of electrodes: hence, it is predestinated for affordable, wearable point-of-care sensors. Here, it is demonstrated that LIG facilitates all three electrochemical sensing strategies (voltammetry, potentiometry, impedance) in a multi-analyte system for sweat analysis. A potentiometric potassium-ion-selective electrode in combination with an electrodeposited Ag/AgCl reference electrode (RE) enabled the detection of potassium ions in the entire physiologically relevant range (1 to 500 mM) with a fast response time, unaffected by the presence of main interfering ions and sweat-collecting materials. A kidney-shaped interdigitated LIG electrode enabled the determination of the overall electrolyte concentration by electrochemical impedance spectroscopy at a fixed frequency. Enzyme-based strategies with amperometric detection share a common RE and were realized with Prussian blue as electron mediator and biocompatible chitosan for enzyme immobilization and protection of the electrode. Using glucose and lactate oxidases, lower limits of detection of 13.7 ± 0.5 µM for glucose and 28 ± 3 µM for lactate were obtained, respectively. The sensor showed a good performance at different pH, with sweat-collecting tissues, on a model skin system and furthermore in synthetic sweat as well as in artificial tear fluid. Response time for each analytical cycle totals 75 s, and hence allows a quasi-continuous and simultaneous monitoring of all analytes. This multi-analyte all-LIG system is therefore a practical, versatile, and most simple strategy for point-of-care applications and has the potential to outcompete standard screen-printed electrodes. Graphical abstract.


Assuntos
Técnicas Eletroquímicas/instrumentação , Grafite/química , Eletrodos Seletivos de Íons , Sistemas Automatizados de Assistência Junto ao Leito , Suor/química , Técnicas Biossensoriais/instrumentação , Humanos , Lasers
16.
Anal Bioanal Chem ; 413(18): 4625-4634, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33661349

RESUMO

Herein we report a quantitative, multiplex assay for disease markers in plasma based on an integrated setup of a portable scanner and a disposable paper-based analytical device (PAD). The quantitative analysis relies on the digital colorimetric reading of the three-layer PAD with 30 assay sites for performing respective chromogenic reactions for plasma uric acid, glucose, and triglyceride, which are considered as important risk factors for cardiovascular diseases. A portable scanner with WiFi transmission capability was used to produce high-quality color images of the PADs and wirelessly transfer them to a smartphone or other mobile devices for data processing. The concentrations of biomarkers in both standard solutions and plasma samples can be directly obtained using a custom-designed smartphone app that is also capable of constructing calibration curves. The detection limits of uric acid, glucose, and triglyceride were determined to be 0.50 mg/dL, 0.84 mmol/L, and 14 mg/dL, respectively, which are below the normal limits and adequate for clinical validation. Owing to the distinct advantages-simple, portable, and cost-effective-this mobile assay protocol can be used for point-of-care (POC) settings or resource-limited situations, and potentially for the diagnosis and prevention of infectious diseases.


Assuntos
Glicemia/análise , Internet , Papel , Triglicerídeos/sangue , Ácido Úrico/sangue , Biomarcadores/sangue , Colorimetria/instrumentação , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Reprodutibilidade dos Testes , Fatores de Risco , Smartphone , Tecnologia sem Fio
17.
Sens Actuators B Chem ; 329: 129214, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36568647

RESUMO

This review reports the recent advances in surface-enhanced Raman scattering (SERS)-based lateral flow assay (LFA) platforms for the diagnosis of infectious diseases. As observed through the recent infection outbreaks of COVID-19 worldwide, a timely diagnosis of the disease is critical for preventing the spread of a disease and to ensure epidemic preparedness. In this regard, an innovative point-of-care diagnostic method is essential. Recently, SERS-based assay platforms have received increasing attention in medical communities owing to their high sensitivity and multiplex detection capability. In contrast, LFAs provide a user-friendly and easily accessible sensing platform. Thus, the combination of LFAs with a SERS detection system provides a new diagnostic modality for accurate and rapid diagnoses of infectious diseases. In this context, we briefly discuss the recent application of LFA platforms for the POC diagnosis of SARS-CoV-2. Thereafter, we focus on the recent advances in SERS-based LFA platforms for the early diagnosis of infectious diseases and their applicability for the rapid diagnosis of SARS-CoV-2. Finally, the key issues that need to be addressed to accelerate the clinical translation of SERS-based LFA platforms from the research laboratory to the bedside are discussed.

18.
Sensors (Basel) ; 21(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918646

RESUMO

Prothrombin time (PT) is a significant coagulation (hemostasis) biomarker used to diagnose several thromboembolic and hemorrhagic complications based on its direct correlation with the physiological blood clotting time. Among the entire set of PT dependents, candidates with cardiovascular ailments are the major set of the population requiring lifelong anticoagulation therapy and supervised PT administration. Additionally, the increasing incidence of COVID affected by complications in coagulation dynamics has been strikingly evident. Prolonged PT along with sepsis-induced coagulopathy (SIC score > 3) has been found to be very common in critical COVID or CAC-affected cases. Considering the growing significance of an efficient point-of-care PT assaying platform to counter the increasing fatalities associated with cardio-compromised and coagulation aberrations propping up from CAC cases, the following review discusses the evolution of lab-based PT to point of care (PoC) PT assays. Recent advances in the field of PoC PT devices utilizing optics, acoustics, and mechanical and electrochemical methods in microsensors to detect blood coagulation are further elaborated. Thus, the following review holistically aims to motivate the future PT assay designers/researchers by detailing the relevance of PT and associated protocols for cardio compromised and COVID affected along with the intricacies of previously engineered PoC PT diagnostics.


Assuntos
COVID-19 , Testes de Coagulação Sanguínea , Humanos , Coeficiente Internacional Normatizado , Tempo de Protrombina , SARS-CoV-2
19.
Molecules ; 26(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34577137

RESUMO

Sample preparation is an essential step for nearly every type of biochemical analysis in use today. Among the most important of these analyses is the diagnosis of diseases, since their treatment may rely greatly on time and, in the case of infectious diseases, containing their spread within a population to prevent outbreaks. To address this, many different methods have been developed for use in the wide variety of settings for which they are needed. In this work, we have reviewed the literature and report on a broad range of methods that have been developed in recent years and their applications to point-of-care (POC), high-throughput screening, and low-resource and traditional clinical settings for diagnosis, including some of those that were developed in response to the coronavirus disease 2019 (COVID-19) pandemic. In addition to covering alternative approaches and improvements to traditional sample preparation techniques such as extractions and separations, techniques that have been developed with focuses on integration with smart devices, laboratory automation, and biosensors are also discussed.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Manejo de Espécimes/métodos , Técnicas Biossensoriais/métodos , COVID-19 , Doenças Transmissíveis/diagnóstico , Ensaios de Triagem em Larga Escala/tendências , Humanos , Pandemias/prevenção & controle , Sistemas Automatizados de Assistência Junto ao Leito/tendências , Testes Imediatos/tendências , SARS-CoV-2
20.
Biomed Microdevices ; 22(2): 39, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32436002

RESUMO

Currently, most HIV tests are performed with blood samples, or alternatively saliva samples are used for HIV testing. Simple HIV tests need to be performed in hospitals or other medical agencies instead of more invasive HIV blood tests. To enable point-of-care (POC) HIV diagnostics, based on a recently developed lateral flow strip for HIV urine testing, a microfluidic immunoassay cassette with a handheld optical reader is developed. Based on lateral flow strip with gold colloid reporter, the integrated immunoassay cassette can perform sample introduction, metering, discharging, applying and detection which simplifies HIV testing. An indicator is incorporated into the cassette to guide sample introduction based on color change, and further, the excess test sample is stored inside the sealed cassette to avoid any contamination. The low-cost handheld optical reader can provide a test result within a few seconds, which is useful for simple, sensitive and affordable HIV onsite detection. Instead of using normal white LEDs, a customized back light module embedded with green LEDs is adopted to illuminate the lateral flow strip with an appropriate working current to achieve optimal performance. Compared to the standard lateral flow strips using a benchtop reader, with the disposable immunoassay cassette assisted by the handheld optical reader, more convenient, easier-to-operate, and more affordable HIV urine testing can be achieved in POC diagnostics.


Assuntos
Infecções por HIV/urina , Imunoensaio/instrumentação , Testes Imediatos , Urinálise/instrumentação , Custos e Análise de Custo , Infecções por HIV/diagnóstico , Humanos , Imunoensaio/economia , Urinálise/classificação , Urinálise/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA