RESUMO
Because genetic alterations including mutations, overexpression, translocations, and dysregulation of protein kinases are involved in the pathogenesis of many illnesses, this enzyme family is the target of many drug discovery programs in the pharmaceutical industry. Overall, the US FDA has approved 74 small molecule protein kinase inhibitors, nearly all of which are orally effective. Of the 74 approved drugs, thirty-nine block receptor protein-tyrosine kinases, nineteen target nonreceptor protein-tyrosine kinases, twelve are directed against protein-serine/threonine protein kinases, and four target dual specificity protein kinases. The data indicate that 65 of these medicinals are approved for the management of neoplasms (51 against solid tumors such as breast, colon, and lung cancers, eight against nonsolid tumors such as leukemia, and six against both types of tumors). Nine of the FDA-approved kinase inhibitors form covalent bonds with their target enzymes and they are accordingly classified as TCIs (targeted covalent inhibitors). Medicinal chemists have examined the physicochemical properties of drugs that are orally effective. Lipinski's rule of five (Ro5) is a computational procedure that is used to estimate solubility, membrane permeability, and pharmacological effectiveness in the drug-discovery setting. It relies on four parameters including molecular weight, number of hydrogen bond donors and acceptors, and the Log of the partition coefficient. Other important descriptors include the lipophilic efficiency, the polar surface area, and the number of rotatable bonds and aromatic rings. We tabulated these and other properties of the FDA-approved kinase inhibitors. Of the 74 approved drugs, 30 fail to comply with the rule of five.
Assuntos
Leucemia , Neoplasias Pulmonares , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas QuinasesRESUMO
The field of cell-penetrating peptides is dominated by the use of oligomers of arginine residues. Octanol-water partitioning in the presence of an anionic lipid is a validated proxy for cell-penetrative efficacy. Here, we add one, two, or three N-methyl groups to Ac-Arg-NH2 and examine the effects on octanol-water partitioning. In the absence of an anionic lipid, none of these arginine derivatives can be detected in the octanol layer. In the presence of sodium dodecanoate, however, increasing N-methylation correlates with increasing partitioning into octanol, which is predictive of higher cell-penetrative ability. We then evaluated fully Nα -methylated oligoarginine peptides and observed an increase in their cellular penetration compared with canonical oligoarginine peptides in some contexts. These findings indicate that a simple modification, Nα -methylation, can enhance the performance of cell-penetrating peptides.
Assuntos
Peptídeos Penetradores de Células , Peptídeos Penetradores de Células/química , Arginina/química , Metilação , Octanóis/química , Água/química , LipídeosRESUMO
In continuation of our research programs for the discovery, production, and development of the pharmacological activities of molecules for various disease treatments, Schiff bases and pyrazole scaffold have a broad spectrum of activities in biological applications. In this context, this manuscript aims to evaluate and study Schiff base-pyrazole molecules as a new class of antioxidant (total antioxidant capacity, iron-reducing power, scavenging activity against DPPH, and ABTS radicals), anti-diabetic (α-amylase% inhibition), anti-Alzheimer's (acetylcholinesterase% inhibition), and anti-arthritic (protein denaturation% and proteinase enzyme% inhibitions) therapeutics. Therefore, the Schiff bases bearing pyrazole scaffold (22a, b and 23a, b) were designed and synthesized for evaluation of their antioxidant, anti-diabetic, anti-Alzheimer's, and anti-arthritic properties. The results for compound 22b demonstrated significant antioxidant, anti-diabetic (α-amylase% inhibition), and anti-Alzheimer's (ACE%) activities, while compound 23a demonstrated significant anti-arthritic activity. Prediction of in silico bioinformatics analysis (physicochemical properties, bioavailability radar, drug-likeness, and medicinal chemistry) of the target derivatives (22a, b and 23a, b) was performed. The molecular lipophilicity potential (MLP) of the derivatives 22a, b and 23a, b was measured to determine which parts of the surface are hydrophobic and which are hydrophilic. In addition, the molecular polar surface area (PSA) was measured to determine the polar surface area and the non-polar surface area of the derivatives 22a, b and 23a, b. This study could be useful to help pharmaceutical researchers discover a new series of potent agents that may act as an antioxidant, anti-diabetic, anti-Alzheimer, and anti-arthritic.
Assuntos
Antioxidantes , Bases de Schiff , Antioxidantes/farmacologia , Antioxidantes/química , Bases de Schiff/química , Acetilcolinesterase/metabolismo , Pirazóis , alfa-Amilases , Estrutura Molecular , Simulação de Acoplamento MolecularRESUMO
A small library of FAAH and dual FAAH/MAGL inhibitors designed for peripheral selectivity were targeted. Of these compounds, three were identified to have desirable FAAH inhibition and reduced permeability in a PAMPA assay. Those three compounds were advanced into a MAGL inhibitor assay and one was found to be a relative selective FAAH inhibitor, FAAH to MAGL IC50 ratio of 1:27, and one was found to be more characteristic of a true dual enzyme inhibitor, FAAH to MAGL IC50 ratio of 1:4. Both compounds showed activity in an ABPP assay, blockage of TAMRA-FP labeling of FAAH and MAGL in rat eye homogenate.
Assuntos
Endocanabinoides , Monoacilglicerol Lipases , Amidoidrolases , Animais , Inibidores Enzimáticos/farmacologia , RatosRESUMO
We describe our efforts to introduce structural diversity to a previously described triazole-containing N1-carboline series of bromodomain and extra-terminal (BET) inhibitors. N9 carbolines were designed to retain favorable binding interactions that the N1-carbolines possess. A convergent synthetic route enabled modifications to reduce clearance, enhance physicochemical properties, and improve the overall in vitro profile. This work led to the identification of a potent BET inhibitor, (S)-2-{8-fluoro-5-[(3-fluoropyridin-2-yl)(oxan-4-yl)methyl]-7-[4-(2H3)methyl-1-methyl-1H-1,2,3-triazol-5-yl]-5H-pyrido[3,2-b]indol-3-yl}propan-2-ol (10), a compound with enhanced oral exposure in mice. Subsequent evaluation in a mouse triple-negative breast cancer tumor model revealed efficacy at 4 mg/kg of N9-carboline 10.
Assuntos
Antineoplásicos/farmacologia , Carbolinas/farmacologia , Desenvolvimento de Medicamentos , Proteínas/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Carbolinas/administração & dosagem , Carbolinas/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Camundongos , Estrutura Molecular , Proteínas/metabolismo , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/patologiaRESUMO
Searching for improved indolesulfonamides with higher polarities, 45 new analogues with modifications on the sulfonamide nitrogen, the methoxyaniline, and/or the indole 3-position were synthesised. They show submicromolar to nanomolar antiproliferative IC50 values against four human tumour cell lines and they are not P-glycoprotein substrates as their potencies against HeLa cells did not improve upon cotreatment with multidrug resistance (MDR) inhibitors. The compounds inhibit tubulin polymerisation in vitro and in cells, thus causing a mitotic arrest followed by apoptosis as shown by cell cycle distribution studies. Molecular modelling studies indicate binding at the colchicine site. Methylated sulfonamides were more potent than those with large and polar substitutions. Amide, formyl, or nitrile groups at the indole 3-position provided drug-like properties for reduced toxicity, with Polar Surface Areas (PSA) above a desirable 75 Å2. Nitriles 15 and 16 are potent polar analogues and represent an interesting class of new antimitotics.
Assuntos
Antineoplásicos/farmacologia , Colchicina/antagonistas & inibidores , Sulfonamidas/farmacologia , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Colchicina/química , Colchicina/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Modelos Moleculares , Estrutura Molecular , Polimerização/efeitos dos fármacos , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Tubulina (Proteína)/química , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química , Células Tumorais CultivadasRESUMO
The success rate from first time in man to regulatory approval of central nervous system (CNS) drugs is lower than the overall success rate across all therapeutic indications (eg, cardiovascular, infectious diseases). To understand the reasons for drug-candidate failure and to capture trends in antiseizure drug (ASD) design, we have analyzed the physicochemical and biopharmaceutical properties of marketed ASDs in comparison with new ASDs in development. Our comparative analysis included molecular weight (MW), logP, polar surface area (PSA), the "Lipinski rule of five," and the CNS Multiparameter Optimization (MPO) score. LogP is the logarithm of a drug-partition coefficient (P) between n-octanol and water. PSA is the molecule's surface sum of its polar atoms. ASDs' biopharmaceutical properties were classified according to their water solubility, permeability, and route of elimination as outlined by the Biopharmaceutics Classification System (BCS) and Biopharmaceutics Drug Disposition Classification System (BDDCS). For old ASDs (1912-1990), logP, PSA, and CNS MPO values ranged between 0.4 and 2.8, 37 and 87 Å2 , and 4.4 and 6.0, respectively. For second-generation ASDs (1990-2008), PSA values ranged between 39 and 116 Å2 . However, logP values showed a difference between the lipophilic (logP = 0.3-3.21) and hydrophilic (logP = -0.6 to -2.16) ASDs. For third-generation ASDs (2008-2020), logP and PSA ranged between 0.3 and 3.5 and between 57 and 76 Å2 , respectively. The mean CNS MPO scores of all marketed ASDs were similar, ranging between 4.9 and 5.4, and were similar to those of the ASDs in development (3.5-5.8). Most ASDs belong to BCS and BDDCS classes 1 and 2. MW, logP, CNS MPO score, and PSA assess lipophilicity and correlate with antiseizure activity. To succeed, a new small-molecule ASD must have MW < 375 and PSA < 140Å2 , belong to BCS and/or BDDCS class 1 or 2, and obey the Lipinski rule of five: logP < 5, MW < 500, and <5 and <10 of hydrogen-bond donors and acceptors, respectively. The similarity in the MW, logP, and PSA values of marketed and new drugs in development indicates a conservative trend in ASD design.
Assuntos
Anticonvulsivantes/química , Desenho de Fármacos , Desenvolvimento de Medicamentos , Anticonvulsivantes/farmacologia , Fenômenos Químicos , Aprovação de Drogas , Humanos , Peso MolecularRESUMO
The rapid absorptive clearance of drugs delivered to the airways of the lungs means that many inhaled medicines have a short duration of action. The aim of this study was to investigate whether forming polar ion-pairs can modify drug absorption to slow down clearance from the airways. Salbutamol was used as a model drug and was formulated as ion-pairs in an aqueous solution with three negatively charged hydrophilic counterions: sulfate (molecular weight (MW) 142), gluconate (MW 218), and phytate (MW 736) (association constants of 1.57, 2.27, and 4.15, respectively) and one negatively charged hydrophobic counterion, octanoate (MW 166) (association constant, 2.56). All of the counterions were well tolerated by Calu-3 human bronchial epithelial cells when screened for toxicity in vitro using conditions that in silico simulations suggested maintain >80% drug-counterion association. The transport of salbutamol ion-pairs with higher polar surface area (PSA), i.e., the sulfate (PSA 52%), gluconate (PSA 50%), and phytate (PSA 79%) ion-pairs, was significantly lower compared to that of the drug alone (PSA 30%, p < 0.05). In contrast, the octanoate ion-pair (PSA 23%) did not significantly alter the salbutamol transport. The transport data for the gluconate ion-pair suggested that the pulmonary absorption half-life of the ion-paired drug would be double that of salbutamol base, and this illustrates the promise of increasing drug polarity using noncovalent complexation as an approach to control drug delivery to the airways of the lungs.
Assuntos
Albuterol/farmacocinética , Sistemas de Liberação de Medicamentos , Pulmão/metabolismo , Albuterol/química , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Recently, non-enzymatic stereoinversions of aspartic acid (Asp) residues in proteins and peptides have been reported. Here, we performed replica exchange molecular dynamics (REMD) simulations of model peptides (exon 6, 26A-1, and 26A-2) extracted from elastin to investigate their structural features, thereby revealing the factor that influences stereoinversions. For REMD trajectories, we calculated distances between carboxyl carbon in Asp and amide nitrogen in the (nâ¯+â¯1) residue (CN distances). Because bond formation between carbon and nitrogen is indispensable to the formation of a succinimide intermediate the distance between them seems to play an important role in stereoinversion. Moreover, we calculated polar surface areas (PSAs) for the trajectories, finding that CN distances and PSA were different for each peptide, with the longest CN distance and smallest PSA observed for exon 6 peptide, where stereoinversion of Asp is the slowest. Although the average CN distance was shorter for exon 26A-1 peptide than for exon 26A-2 peptide, the number of conformations with CN distances <3.0â¯Å was greater for exon 26A-2 peptide than for exon 26A-1 peptide. Furthermore, PSA for amide nitrogen of the (nâ¯+â¯1) residue was larger for exon 26A-2 peptide than for exon 26A-1 peptide. These results indicated that the flexibility of Asp and (nâ¯+â¯1) residues and hydrophilicity of peptides, especially in the (nâ¯+â¯1) residue, play important roles in the stereoinversion of Asp. This article is part of a Special Issue entitled: D-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca.
Assuntos
Ácido Aspártico/química , Peptídeos/química , Isomerismo , Conformação ProteicaRESUMO
We previously identified 2-tert-butyl-4-[(3-methoxypropyl)amino]-N-(2-methylpropyl)-N-[(3S,5R)-5-(morpholin-4-ylcarbonyl)piperidin-3-yl]pyrimidine-5-carboxamide 3 as a potent renin inhibitor. Since 3 showed unacceptably low bioavailability (BA) in rats, structural modification, using SBDD and focused on physicochemical properties was conducted to improve its PK profile while maintaining renin inhibitory activity. Conversion of the amino group attached at the 4-position of pyrimidine to methylene group improved PK profile and decreased renin inhibitory activity. New central cores with carbon side chains were explored to improve potency. We had designed a series of 5-membered azoles and fused heterocycles that interacted with the lipophilic S3 pocket. In the course of modification, renin inhibitory activity was enhanced by the formation of an additional hydrogen bonding with the hydroxyl group of Thr77. Consequently, a series of novel benzimidazole derivatives were discovered as potent and orally bioavailable renin inhibitors. Among those, compound 13 exhibited more than five-fold of plasma renin inhibition than aliskiren in cynomolgus monkeys at dose ratio.
Assuntos
Benzimidazóis/química , Piperidinas/química , Inibidores de Proteases/síntese química , Renina/antagonistas & inibidores , Administração Oral , Animais , Benzimidazóis/metabolismo , Benzimidazóis/farmacocinética , Sítios de Ligação , Disponibilidade Biológica , Cristalografia por Raios X , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Piperidinas/metabolismo , Piperidinas/farmacocinética , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacocinética , Estrutura Terciária de Proteína , Ratos , Renina/metabolismo , Relação Estrutura-AtividadeRESUMO
Dexamethasone phosphate is widely used for intratympanic therapy in humans. We assessed the pharmacokinetics of dexamethasone entry into perilymph when administered as a dexamethasone phosphate solution or as a micronized dexamethasone suspension, with and without inclusion of poloxamer gel in the medium. After a 1-h application to guinea pigs, 10 independent samples of perilymph were collected from the lateral semicircular canal of each animal, allowing entry at the round window and stapes to be independently assessed. Both forms of dexamethasone entered the perilymph predominantly at the round window (73%), with a lower proportion entering at the stapes (22%). When normalized by applied concentration, dexamethasone phosphate was found to enter perilymph far more slowly than dexamethasone, in accordance with its calculated lipid solubility and polar surface area properties. Dexamethasone phosphate therefore has a problematic combination of kinetic properties when used for local therapy of the ear. It is relatively impermeable and enters perilymph only slowly from the middle ear. It is then metabolized in the ear to dexamethasone, which is more permeable through tissue boundaries and is rapidly lost from perilymph. Understanding the influence of molecular properties on the distribution of drugs in perilymph provides a new level of understanding which may help optimize drug therapies of the ear.
Assuntos
Dexametasona/análogos & derivados , Dexametasona/farmacocinética , Glucocorticoides/farmacocinética , Perilinfa/química , Animais , Orelha Média , Cobaias , Injeção Intratimpânica , Perilinfa/metabolismo , Permeabilidade , Janela da Cóclea , Canais Semicirculares , EstriboRESUMO
The free fatty acid receptor 1 (FFA1) enhances the glucose-stimulated insulin secretion without the risk of hypoglycemia. However, most of FFA1 agonists have a common biphenyl moiety, leading to a relative deprivation in structure types. Herein, we describe the exploration of non-biphenyl scaffold based on the co-crystal structure of FFA1 to increase additional interactions with the lateral residues, which led to the identification of lead compounds 3 and 9. In induced-fit docking study, compound 3 forms an edge-on interaction with Trp150 by slightly rotating the indole ring of Trp150, and compound 9 has additional hydrogen bond and δ-π interactions with Leu135, which demonstrated the feasibility of our design strategy. Moreover, lead compounds 3 and 9 revealed improved polar surface area compared to GW9508, and have considerable hypoglycemic effects in mice. This structure-based study might inspire us to design more promising FFA1 agonists by increasing additional interactions with the residues outside of binding pocket.
Assuntos
Desenho de Fármacos , Hipoglicemiantes/química , Receptores Acoplados a Proteínas G/agonistas , Animais , Sítios de Ligação , Compostos de Bifenilo/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/veterinária , Teste de Tolerância a Glucose , Humanos , Ligação de Hidrogênio , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Masculino , Metilaminas/farmacologia , Metilaminas/uso terapêutico , Camundongos , Camundongos Endogâmicos ICR , Simulação de Acoplamento Molecular , Propionatos/farmacologia , Propionatos/uso terapêutico , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-AtividadeRESUMO
A series of nine compounds based on 3-[4-(benzyloxy)phenyl]propanoic acid core containing a 1-oxa-9-azaspiro[5.5]undecane periphery was designed, synthesized and evaluated as free fatty acid 1 (FFA1 or GPR40) agonists. The spirocyclic appendages included in these compounds were inspired by LY2881835, Eli Lilly's advanced drug candidate for type II diabetes mellitus that was in phase I clinical trials. These polar spirocyclic, fully saturated appendages (that are themselves uncharacteristic of the known FFA1 ligand space) were further decorated with diverse polar groups (such as basic heterocycles or secondary amides). To our surprise, while seven of nine compounds were found to be inactive (likely due to the decrease in lipophilicity, which is known to be detrimental to FFA1 ligand affinity), two compounds containing 2-pyridyloxy and 2-pyrimidinyloxy groups were found to have EC50 of 1.621 and 0.904 µM, respectively. This result is significant in the context of the worldwide quest for more polar FFA1 agonists, which would be devoid of liver toxicity effects earlier observed for a FFA1 agonist fasiglifam (TAk-875) in clinical studies.
Assuntos
Receptores Acoplados a Proteínas G/agonistas , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Análise EspectralRESUMO
The use of nanodiamonds as anticancer drug delivery vehicles has received much attention in recent years. In this theoretical paper, we propose using different esterification methods for nanodiamonds. The monomers proposed are 2-hydroxypropanal, polyethylene glycol, and polyglicolic acid. Specifically, the hydrogen bonds, infrared (IR) spectra, molecular polar surface area, and reactivity parameters are analyzed. The monomers proposed for use in esterification follow Lipinski's rule of five, meaning permeability is good, they have good permeation, and their bioactivity is high. The results show that the complex formed between tamoxifen and nanodiamond esterified with polyglicolic acid presents the greatest number of hydrogen bonds and a good amount of molecular polar surface area. Calculations concerning the esterified nanodiamond and reactivity parameters were performed using Density Functional Theory with the M06 functional and the basis set 6-31G (d); for the esterified nanodiamond-Tamoxifen complexes, the semi-empirical method PM6 was used. The solvent effect has been taken into account by using implicit modelling and the conductor-like polarizable continuum model.
Assuntos
Aldeídos/química , Biologia Computacional/métodos , Nanodiamantes/química , Polietilenoglicóis/química , Neoplasias da Mama/tratamento farmacológico , Esterificação , Feminino , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Propriedades de SuperfícieRESUMO
Free fatty acid receptor 1 (FFA1), previously known as GPR40 is a G protein-coupled receptor and a new target for treatment of type 2 diabetes. Two series of FFA1 agonists utilizing a 1,3,4-thiadiazole-2-caboxamide scaffold were synthetized. Both series offered significant improvement of the potency compared to the previously described 1,3,4-thiadiazole-based FFA1 agonists and high selectivity for FFA1. Molecular docking predicts new aromatic interactions with the receptor that improve agonist potency. The most potent compounds from both series were profiled for in vitro ADME properties (plasma and metabolic stability, LogD, plasma protein binding, hERG binding and CYP inhibition). One series suffered very rapid degradation in plasma and in presence of mouse liver microsomes. However, the other series delivered a lead compound that displayed a reasonable ADME profile together with the improved FFA1 potency.
Assuntos
Amidas/farmacologia , Sistemas de Liberação de Medicamentos , Microssomos Hepáticos/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Amidas/química , Animais , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Camundongos , Microssomos Hepáticos/química , Simulação de Acoplamento Molecular , Ligação Proteica/efeitos dos fármacos , Tiadiazóis/químicaRESUMO
1,3,4-Thiadiazole was explored as a more polar, heterocyclic replacement for the phenyl ring in the 3-arylpropionic acid pharmacophore present in the majority of GPR40 agonists. Out of 13 compounds synthesized using a flexible, three-step protocol (involving no chromatographic purification), four compounds were confirmed to activate the target in micromolar concentration range. While the potency of the series should be subject of further optimization, the remarkable aqueous solubility and microsomal stability observed for the lead compound (8g) apparently attests to this new scaffold's high promise in the GPR40 agonist field.
Assuntos
Propionatos/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Tiadiazóis/química , Humanos , Propionatos/química , Análise Espectral/métodosRESUMO
Theoretical chemistry methods have been used to study the molecular properties of antiplatelet agents (ticlopidine, clopidogrel, prasugrel, elinogrel, ticagrelor and cangrelor) and several thiol-containing active metabolites. The geometries and energies of most stable conformers of these drugs have been computed at the Becke3LYP/6-311++G(d,p) level of density functional theory. Computed dissociation constants show that the active metabolites of prodrugs (ticlopidine, clopidogrel and prasugrel) and drugs elinogrel and cangrelor are completely ionized at pH 7.4. Both ticagrelor and its active metabolite are present at pH = 7.4 in neutral undissociated form. The thienopyridine prodrugs ticlopidine, clopidogrel and prasugrel are lipophilic and insoluble in water. Their lipophilicity is very high (about 2.5-3.5 logP values). The polar surface area, with regard to the structurally-heterogeneous character of these antiplatelet drugs, is from very large interval of values of 3-255 Ų. Thienopyridine prodrugs, like ticlopidine, clopidogrel and prasugrel, with the lowest polar surface area (PSA) values, exhibit the largest absorption. A high value of polar surface area (PSA) of cangrelor (255 Ų) results in substantial worsening of the absorption in comparison with thienopyridine drugs.
Assuntos
Inibidores da Agregação Plaquetária/química , Absorção Fisico-Química , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Solubilidade , Propriedades de SuperfícieRESUMO
In the present study, we analyzed the intracellular accumulation of 6-(methylsulfinyl)hexyl isothiocyanate (6MITC) and its analogs in proinflammatory stimuli-activated J774.1 cells to predict the biological potencies of the ITCs. Our present analyses exhibited that the intracellular accumulation was in the order of 6MITC>2b>2e≈2c>2g>2d>2f>2h. Investigation of reactivity of the ITCs with glutathione (GSH) in the tumor cells revealed partial inhibition of GSH by the ITCs. Furthermore, the inhibition of nitric oxide (NO) production in the tumor cells was ascribed to the intracellularly accumulated ITCs. The NO suppression was correlated with the inhibition of tumor cell growth. Our present results suggest that the intracellular accumulation of the ITCs can be used to predict their biological potencies, such as inhibition of NO production that was correlated with suppression of tumor cell growth. To the best of our knowledge, this is the first report to predict the biological potency of 6MITC and its analogs with their intracellular accumulation.
Assuntos
Isotiocianatos/química , Óxido Nítrico/antagonistas & inibidores , Humanos , Macrófagos/efeitos dos fármacos , Óxido Nítrico/biossínteseRESUMO
Background: Allicin, a bioactive compound derived from garlic (Allium sativum), demonstrates antibacterial activity against a broad spectrum of bacteria including the most common meningitis pathogens. In order to advocate for allicin as a potential therapeutic candidate for bacterial meningitis, the present study aimed to assess the ability of allicin to cross the blood-brain barrier (BBB) using an in vitro model. Methods: The cell viability of the human brain endothelial cell line hCMEC/D3 after incubation with various concentrations of allicin was investigated using an MTT assay at 3 and 24 h. Additionally, reactive oxygen species (ROS) production of allicin-treated hCMEC/D3 cells was examined at 3 h. The concentrations of allicin that were not toxic to the cells, as determined by the MTT assay, and did not significantly increase ROS generation, were then used to investigate allicin's ability to traverse the in vitro BBB model for 3 h. High-performance liquid chromatography (HPLC) analysis was utilized to examine the allicin concentration capable of passing the in vitro BBB model. The cellular uptake experiments were subsequently performed to observe the uptake of allicin into hCMEC/D3 cells. The pkCSM online tool was used to predict the absorption, distribution, metabolism, excretion, and pharmacokinetic properties of allicin and S-allylmercaptoglutathione (GSSA). Results: The results from MTT assay indicated that the highest non-toxicity concentration of allicin on hCMEC/D3 cells was 5 µg/ml at 3 h and 2 µg/ml at 24 h. Allicin significantly enhanced ROS production of hCMEC/D3 cells at 10 µg/ml at 3 h. After applying the non-toxicity concentrations of allicin (0.5-5 µg/ml) to the in vitro BBB model for 3 h, allicin was not detectable in both apical and basolateral chambers in the presence of hCMEC/D3 cells. On the contrary, allicin was detected in both chambers in the absence of the cells. The results from cellular uptake experiments at 3 h revealed that hCMEC/D3 cells at 1 × 104 cells could uptake allicin at concentrations of 0.5, 1, and 2 µg/ml. Moreover, allicin uptake of hCMEC/D3 cells was proportional to the cell number, and the cells at 5 × 104 could completely uptake allicin at a concentration of 5 µg/ml within 0.5 h. The topological polar surface area (TPSA) predicting for allicin was determined to be 62.082 Å2, indicating its potential ability to cross the BBB. Additionally, the calculated logBB value surpassing 0.3 suggests that the compound may exhibit ease of penetration through the BBB. Conclusion: The present results suggested that allicin was rapidly taken up by hCMEC/D3 cells in vitro BBB model. The prediction results of allicin's distribution patterns suggested that the compound possesses the capability to enter the brain.