RESUMO
PURPOSE: To evaluate the impact of various preparation designs and the material type on fracture resistance of minimally invasive posterior indirect adhesive restorations after aging using a digital standardization method. MATERIALS AND METHODS: One-hundred sixty human maxillary premolars free from caries were assigned into 16 groups (n = 10): bevel design on enamel substrate with mesial box only (VEM), butt joint design on enamel substrate with mesial box only (BEM), bevel design on enamel substrate with mesial and distal box (VED), butt joint design on enamel substrate with mesial and distal box (BED), bevel design on dentin substrate with mesial box only (VDM), butt joint design on dentin substrate with mesial box only (BDM), bevel design on dentin substrate with mesial and distal box (VDD), and butt joint design on dentin substrate with mesial and distal box (BDD). Each group was restored with pressable lithium disilicate (LS2) or disperse-filled polymer composite (DPC) materials. Adhesive resin cement was used to bond the restorations. The specimens were aged for 10,000 thermal cycles (5°C and 55°C), then 240,000 chewing cycles. Each specimen was subjected to compressive axial load until failure. A two-way analysis of variance (ANOVA) test followed by a post hoc Tukey test was used to analyze the data (α = 0.05). RESULTS: The two-way ANOVA test revealed a significant difference among designs (p < 0.001) and materials (p < 0.001) with no interaction effect (p = 0.07) between the variables. The Post hoc Tukey test revealed that the VEM group exhibited the highest mean fracture resistance value, while the BDM group had the lowest. The LS2 groups showed the highest mean fracture resistance values. The DPC groups showed a restorable fracture pattern compared to the LS2 groups. CONCLUSIONS: Bevel and butt joint designs with mesial or distal boxes are recommended for conservative posterior indirect adhesive restorations in premolar areas. Enamel substrate improved load distribution and fracture resistance. DPCs have restorable failure patterns, while pressed LS2 may harm underlying structures.
RESUMO
The rising use of radioactive elements is increasing radioactive pollution and calling for advanced materials to protect individuals. For instance, polymers are promising due to their mechanical, electrical, thermal, and multifunctional properties. Moreover, composites made of polymers and high atomic number fillers should allow to obtain material with low-weight, good flexibility, and good processability. Here we review the synthesis of polymer materials for radiation protection, with focus on the role of the nanofillers. We discuss the effectivness of polymeric materials for the absorption of fast neutrons. We also present the recycling of polymers into composites.
RESUMO
The emission of ultrafine carbonaceous particles during the laser cutting of fiber-reinforced polymer (CFRP) composite materials was investigated. The study was based on characterization of air contaminants emitted during laser cutting of an epoxy-based CFRP material with respect to particle size distribution, particle morphology, and chemical composition. Results indicate that about 90% of the total particulate mass is present as fine particulate matter with an aerodynamic cut-off diameter of 0.25 µm, and considerable amounts of ultrafine carbonaceous particulate matter dominated by organic carbon are emitted during high-power laser cutting of CFRP.
RESUMO
The creation of polymer composite materials by compositing fillers into polymer materials is an effective method of improving the properties of polymer materials, and the development of new fillers and their novel composite methods is expected to lead to the creation of new polymer composite materials. In this study, we develop a new filler material made of low-molecular-weight gelators by applying a gelation process that simultaneously performs the swelling (gelation) of crosslinked polymer materials and the self-assembly of low-molecular-weight gelators into low-dimensional crystals in organic solvents within polymer materials. The gelation process of crosslinking rubber-based polymers using alkylhydrazides/toluene as the low-molecular-weight gelator allowed us to composite self-assembled sheet-like crystals of alkylhydrazides as fillers in polymeric materials, as suggested by various microscopic observations, including infrared absorption measurements, small-angle X-ray diffraction measurements and thermal analysis, microscopy, and infrared absorption measurements. Furthermore, tensile tests of the composite materials demonstrated that the presence of fillers improved both the Young's modulus and the tensile strength, as well as the elongation at yield. Additionally, heat treatment was shown to facilitate filler dispersion and enhance the mechanical properties. The findings demonstrate the potential of self-assembled sheet-like crystals of low-molecular-weight gelators as novel filler materials for polymers. The study's composite method utilizing gelators via gelation proved effective.
RESUMO
Amidst the growing challenge of meeting global energy demands with conventional sources, self-powered devices offer promising solution. Flexible and stretchable electronics are pivotal in wearable technology, enhancing the scope and functionality of these devices. This study employs potassium sodium niobite-lithium antimonate (K0.5Na0.5NbO3-LiSbO3) nanoparticles as fillers in polyvinylidene fluoride (PVDF) to fabricate piezoelectric thin films. These films are integrated with fabric-based electrodes to develop high-performance, flexible self-powered sensors. The sensor comprises a fabric-based electrode with polypyrrole (PPy) coated on plain nylon fabric, a 0.93KNN-0.07LS/PVDF composite piezoelectric thin film, and a protective PET layer. Results demonstrate that the 0.93KNN-0.07LS/PVDF-PPy/nylon composite sensors exhibit a stable piezoelectric output. Under 6 Hz and 10 N excitation, the piezoelectric output reaches approximately 6.1 V upon pressing. Additionally, the device shows good linear sensitivity in the 2-20 N pressure range and produces clear, regular output waveforms under cyclic pressures of varying frequencies and amplitudes, indicating excellent response repeatability. Even after extensive bending, twisting, and 5000 pressing cycles, the sensors maintain considerable cyclic stability, demonstrating high durability. These tests collectively indicate that the developed sensors possess high sensitivity, flexibility, durability, stability, and significant self-powered potential. This research provides a reference for the next generation of textile-based electrodes and offers potential strategies for flexible, wearable applications.
RESUMO
Regarding a wide variety of PCMs, the materials' strength properties which decrease no more than 20% after 30 years of operation are of special interest. One of the important regularities of the climatic aging of PCMs is the formation of gradients of mechanical parameters across the thickness of the plates. The occurrence of gradients must be taken into account when modeling the strength of PCMs for long periods of operation. At present, there is no scientific basis for the reliable prediction of the physical-mechanical characteristics of PCMs for a long period of operation in the world of science. Nevertheless, "climatic qualification" has been a universally recognized practice of substantiating the safe operation of PCMs for various branches of mechanical engineering. In this review, the influence of solar radiation, temperature, and moisture according to gradients of mechanical parameters across the thickness of the PCMs are analyzed according to the data of dynamic mechanical analysis, linear dilatometry, profilometry, acoustic emission, and other methods. In addition, the mechanisms of uneven climatic PCM aging are revealed. Finally, the problems of theoretical modeling of uneven climatic aging of composites are identified.
RESUMO
The increased demand for cladding in high-rise buildings has prompted engineers to explore alternative products utilizing recycled materials. However, ensuring fire compliance in these alternative claddings, which are predominantly composed of low-volume polymer-based composites, poses a critical challenge. Traditional experimental methods for fire evaluation are costly, time consuming, and environmentally impactful. Considering this, a numerical approach was proposed for evaluating the fire performance of glass-polymer composite materials, which contain a high proportion of recycled glass and a lower percentage of rigid polyurethane. A cone calorimeter test was simulated using Computational Fluid Dynamics (CFD) software to investigate the flammability of the novel glass-polymer composite material. This validated numerical model was employed to assess the combustibility of the glass-polyurethane composite materials and identify influential parameters using the Design of Experiments (DoE) method. Statistical analysis revealed that three material properties, namely, the heat of combustion, the absorption coefficient, and the heat of reaction, significantly influenced the peak heat release rate (pHRR) of the glass-polyurethane composite materials compared to other properties. Based on these findings, an empirical equation was proposed that demonstrates a reasonable correlation with the pHRR of low-polymer recycled glass composite materials. The outcomes of this study hold considerable importance for understanding and predicting the combustibility behaviour of low-polymer-glass composites. By providing a validated numerical model and identifying critical material properties, this research contributes to the development of sustainable fire safety solutions for buildings, enabling the use of recycled materials and reducing reliance on conventional claddings.
RESUMO
The present study deals with the harmful torsional resonance vibrations of textile rotor bearings, the amplitudes of which are reduced mainly by the use of high-capacity damping materials, characterized by an internal hierarchical structure and macroshape, added into the machine mechanical system. The additional materials are polymer matrix composites reinforced either by carbon nanofibers or carbon chopped microfibers and either aramid or carbon continuous fibers. The macroshape is based on a honeycomb with internal cavities. Torsional vibrations arise in mechanical systems as a result of fluctuations in the low-level pressing load of the flat belt driving the rotor-bearing pin and the changing of kinematic conditions within it, which, in the resonance area, leads to cage slip and unwanted impulsive torsional vibrations. Moreover, this occurs during high-frequency performance at around 2100 Hz, i.e., 126,000 min-1. The condition, before the redesign, was characterized by significantly reduced textile rotor-bearing life due to significant impulse torsional vibrations in the resonance area. The study showed a significant reduction in average and maximum torsional amplitudes in the resonance area by 33% and 43%, respectively. Furthermore, the paper provides visualization of the propagation of a stress wave at the microscale obtained by the explicit finite element method to show the dispersion of the wave and the fibers as one of the sources of high damping.
RESUMO
Currently, many studies are devoted to the use of polymer composite materials to increase the strength and stability of concrete elements. In compressed reinforced concrete elements, the bearing capacity depends on the eccentricity of the external application of the external force and the corresponding stress-strain state, as well as the location and number of composite materials glued to the surface of the structure. The choice of a scheme for placing composite materials depending on the stress state of the structure is an urgent scientific problem. At the same time, the issue of central compression and the compression of columns with large eccentricities has been well studied. However, studies conducted in the range of average eccentricities often have conflicting results, which is the problem area of this study. The primary aim of this study was to increase the strength and stiffness of compressed reinforced concrete elements reinforced with composite materials, as well as a comparative analysis of the bearing capacity of ten different combinations of external longitudinal, transverse, and combined reinforcement. The results of testing 16 compressed columns under the action of various eccentricities of external load application (e0/h = 0; 0.16; 0.32) are presented. It is shown that the use of composite materials in strengthening structures increases the bearing capacity up to 41%, and the stiffness of the sections increases up to 30%. Based on the results of the study, recommendations are proposed for improving the calculation method for inflexible columns reinforced in the transverse direction, which take the work of concrete under the conditions of a three-dimensional stress state into consideration.
RESUMO
For the first time, the possibility of penetration of mold fungi mycelium and spore-forming bacteria into the structure of basalt fiber reinforced plastic rebars has been shown in laboratory and field experiments. Biological contamination at the "fiber-binding" border reveals areas of swelling and penetration of mold fungi mycelium and bacterial spore cells into the binder component. After the exposure of samples at extremely low temperatures, strains of mold fungi of the genus Aspergillus were also isolated from the surface of the rebars. Additionally, spore-forming bacteria of the genus Bacillus immobilized for samples from two years ago. This indicates the high viability of immobilized strains in cold climates. Aboriginal microflora isolated by the enrichment culture technique from the samples was represented by: actinobacteria of the genera Nocardia and Streptomyces; yeast of the genus Rhodotorula; and mold fungi of the genus Penicillium. It was shown that the enrichment culture technique is a highly informative method of diagnosing the bio-infection of polymer composite materials during their operation in extremely low temperatures. The metabolic activity of the cells of cryophilic microorganisms isolated from experimental samples of basalt fiber reinforced plastic rebars was associated with the features of the enzymes and fatty acid composition of the lipid bilayer of cell membranes. In the case of temperature conditions when conventional (mesophilic) microorganisms stop developing vegetative cells, the process of transition of the lipid bilayer of cell membranes into a gel-like state was activated. This transition of the lipid bilayer to a gel-like state allowed the prevention of crystallization and death of the microbial cell when the ambient temperature dropped to negative values and as a result, after thawing, growth resumed and the metabolic activity of the microorganisms was restored. Studies have been carried out on the effect of biodepletion on the elastic strength characteristics, porosity and monolithicity of these materials, while at the same time, after a two year exposure, the strength preservation coefficient was k = 0.82 and the porosity increased by more than two times. The results show that the selected strains affect the properties of polymeric materials in cold climates in relation to the organic components in the structure of polymer composites.
RESUMO
A new three-dimensional (3D) boundary element method (BEM) strategy was developed to solve fractional-order thermo-elastoplastic ultrasonic wave propagation problems based on the meshless moving least squares (MLS) method. The temperature problem domain was divided into a number of circular sub-domains. Each node was the center of the circular sub-domain surrounding it. The Laplace transform method was used to solve the temperature problem. A unit test function was used in the local weak-form formulation to generate the local boundary integral equations, and the inverse Laplace transformation method was used to find the transient temperature solutions. Then, the three-dimensional elastoplastic problems could be solved using the boundary element method (BEM). Initial stress and strain formulations are adopted, and their distributions are interpolated using boundary integral equations. The effects of the fractional-order parameter and anisotropy are investigated. The proposed method's validity and performance are demonstrated for a two-dimensional problem with excellent agreement with other experimental and numerical results.
RESUMO
This study presents the analysis of wire-cut electro-discharge machining (WIRE-EDM) of polymer composite material (PCM). The conductivity of the workpiece is improved by using 1 mm thick titanium plates (layers) sandwiched on the PCM. Input process parameters selected are variable voltage (50-100 V), pulse duration (5-15 µs), and pause time (10-50 µs), while the cut-width (kerf) is recognized as an output parameter. Experimentation was carried out by following the central composition design (CCD) design matrix. Analysis of variance was applied to investigate the effect of process parameters on the cut-width of the PCM parts and develop the theoretical model. The results demonstrated that voltage and pulse duration significantly affect the cut-width accuracy of PCM. Furthermore, the theoretical model of machining is developed and illustrates the efficacy within the acceptable range. Finally, it is concluded that the model is an excellent way to successfully estimate the correction factors to machine complex-shaped PCM parts.
RESUMO
The paper presents the results of studying the effect of borpolymer (BP) on the mechanical properties, structure, and thermodynamic parameters of ultra-high molecular weight polyethylene (UHMWPE). Changes in the mechanical characteristics of polymer composites material (PCM) are confirmed and complemented by structural studies. X-ray crystallography (XRC), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and infrared spectroscopy (IR) were used to study the melting point, morphology and composition of the filler, which corresponds to the composition and data of the certificate of the synthesized BP. Tensile and compressive mechanical tests were carried out in accordance with generally accepted standards (ASTM). It is shown that BP is an effective modifier for UHMWPE, contributing to a significant increase in the deformation and strength characteristics of the composite: tensile strength of PCM by 56%, elongation at break by 28% and compressive strength at 10% strain by 65% compared to the initial UHMWPE, due to intensive changes in the supramolecular structure of the matrix. Structural studies revealed that BP does not chemically interact with UHMWPE, but due to its high adhesion to the polymer, it acts as a reinforcing filler. SEM was used to establish the formation of a spherulite supramolecular structure of polymer composites.