Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 512
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(47): e2307587120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37976260

RESUMO

Marine phytoplankton are primary producers in ocean ecosystems and emit dimethyl sulfide (DMS) into the atmosphere. DMS emissions are the largest biological source of atmospheric sulfur and are one of the largest uncertainties in global climate modeling. DMS is oxidized to methanesulfonic acid (MSA), sulfur dioxide, and hydroperoxymethyl thioformate, all of which can be oxidized to sulfate. Ice core records of MSA are used to investigate past DMS emissions but rely on the implicit assumption that the relative yield of oxidation products from DMS remains constant. However, this assumption is uncertain because there are no long-term records that compare MSA to other DMS oxidation products. Here, we share the first long-term record of both MSA and DMS-derived biogenic sulfate concentration in Greenland ice core samples from 1200 to 2006 CE. While MSA declines on average by 0.2 µg S kg-1 over the industrial era, biogenic sulfate from DMS increases by 0.8 µg S kg-1. This increasing biogenic sulfate contradicts previous assertions of declining North Atlantic primary productivity inferred from decreasing MSA concentrations in Greenland ice cores over the industrial era. The changing ratio of MSA to biogenic sulfate suggests that trends in MSA could be caused by time-varying atmospheric chemistry and that MSA concentrations alone should not be used to infer past primary productivity.

2.
Ecol Lett ; 27(1): e14342, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38098152

RESUMO

Experiments often find that net primary productivity (NPP) increases with species richness when native species are considered. However, relationships may be altered by exotic (non-native) species, which are hypothesized to reduce richness but increase productivity (i.e., 'invasion-diversity-productivity paradox'). We compared richness-NPP relationships using a comparison of exotic versus native-dominated sites across the central USA, and two experiments under common environments. Aboveground NPP was measured using peak biomass clipping in all three studies, and belowground NPP was measured in one study with root ingrowth cores using root-free soil. In all studies, there was a significantly positive relationship between NPP and richness across native species-dominated sites and plots, but no relationship across exotic-dominated ones. These results indicate that relationships between NPP and richness depend on whether native or exotic species are dominant, and that exotic species are 'breaking the rules', altering richness-productivity and richness-C stock relationships after invasion.


Assuntos
Biodiversidade , Espécies Introduzidas , Biomassa , Solo , Ecossistema
3.
Proc Biol Sci ; 291(2031): 20240642, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39288804

RESUMO

Nutrient addition, particularly nitrogen, often increases plant aboveground biomass but causes species loss. Asymmetric competition for light is frequently assumed to explain the biomass-driven species loss. However, it remains unclear whether other factors such as water can also play a role. Increased aboveground leaf area following nitrogen addition and warming may increase transpiration and cause water limitation, leading to a decline in diversity. To test this, we conducted field measurements in a grassland community exposed to nitrogen and water addition, and warming. We found that warming and/or nitrogen addition significantly increased aboveground biomass but reduced species richness. Water addition prevented species loss in either nitrogen-enriched or warmed treatments, while it partially mitigated species loss in the treatment exposed to increases in both temperature and nitrogen. These findings thus strongly suggest that water limitation can be an important driver of species loss as biomass increases after nitrogen addition and warming when soil moisture is limiting. This result is further supported by a meta-analysis of published studies across grasslands worldwide. Our study indicates that loss of grassland species richness in the future may be greatest under a scenario of increasing temperature and nitrogen deposition, but decreasing precipitation.


Assuntos
Biodiversidade , Biomassa , Pradaria , Nitrogênio , Água , Nitrogênio/metabolismo , Temperatura , Aquecimento Global , Poaceae/fisiologia
4.
New Phytol ; 241(1): 142-153, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37932883

RESUMO

Plant litter is known to affect soil, community, and ecosystem properties. However, we know little about the capacity of litter to modulate grassland responses to climate change. Using a 7-yr litter removal experiment in a semiarid grassland, here we examined how litter removal interacts with a 2-yr drought to affect soil environments, plant community composition, and ecosystem function. Litter loss exacerbates the negative impacts of drought on grasslands. Litter removal increased soil temperature but reduced soil moisture and nitrogen mineralization, which substantially increased the negative impacts of drought on primary productivity and the abundance of perennial rhizomatous graminoids. Moreover, complete litter removal shifted plant community composition from grass-dominated to forb-dominated and reduced species and functional group asynchrony, resulting in lower ecosystem temporal stability. Our results suggest that ecological processes that lead to reduction in litter, such as burning, grazing, and haying, may render ecosystems more vulnerable and impair the capacity of grasslands to withstand drought events.


Assuntos
Ecossistema , Pradaria , Secas , Plantas , Solo
5.
Glob Chang Biol ; 30(7): e17404, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38967125

RESUMO

The fraction of net primary productivity (NPP) allocated to belowground organs (fBNPP) in grasslands is a critical parameter in global carbon cycle models; moreover, understanding the effect of precipitation changes on this parameter is vital to accurately estimating carbon sequestration in grassland ecosystems. However, how fBNPP responds to temporal precipitation changes along a gradient from extreme drought to extreme wetness, remains unclear, mainly due to the lack of long-term data of belowground net primary productivity (BNPP) and the fact that most precipitation experiments did not have a gradient from extreme drought to extreme wetness. Here, by conducting both a precipitation gradient experiment (100-500 mm) and a long-term observational study (34 years) in the Inner Mongolia grassland, we showed that fBNPP decreased linearly along the precipitation gradient from extreme drought to extreme wetness due to stronger responses in aboveground NPP to drought and wet conditions than those of BNPP. Our further meta-analysis in grasslands worldwide also indicated that fBNPP increased when precipitation decreased, and the vice versa. Such a consistent pattern of fBNPP response suggests that plants increase the belowground allocation with decreasing precipitation, while increase the aboveground allocation with increasing precipitation. Thus, the linearly decreasing response pattern in fBNPP should be incorporated into models that forecast carbon sequestration in grassland ecosystems; failure to do so will lead to underestimation of the carbon stock in drought years and overestimation of the carbon stock in wet years in grasslands.


Assuntos
Carbono , Secas , Pradaria , Chuva , Carbono/análise , Carbono/metabolismo , China , Ciclo do Carbono , Sequestro de Carbono
6.
Glob Chang Biol ; 30(1): e17021, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37962105

RESUMO

Climate change will impact gross primary productivity (GPP), net primary productivity (NPP), and carbon storage in wooded ecosystems. The extent of change will be influenced by thermal acclimation of photosynthesis-the ability of plants to adjust net photosynthetic rates in response to growth temperatures-yet regional differences in acclimation effects among wooded ecosystems is currently unknown. We examined the effects of changing climate on 17 Australian wooded ecosystems with and without the effects of thermal acclimation of C3 photosynthesis. Ecosystems were drawn from five ecoregions (tropical savanna, tropical forest, Mediterranean woodlands, temperate woodlands, and temperate forests) that span Australia's climatic range. We used the CABLE-POP land surface model adapted with thermal acclimation functions and forced with HadGEM2-ES climate projections from RCP8.5. For each site and ecoregion we examined (a) effects of climate change on GPP, NPP, and live tree carbon storage; and (b) impacts of thermal acclimation of photosynthesis on simulated changes. Between the end of the historical (1976-2005) and projected (2070-2099) periods simulated annual carbon uptake increased in the majority of ecosystems by 26.1%-63.3% for GPP and 15%-61.5% for NPP. Thermal acclimation of photosynthesis further increased GPP and NPP in tropical savannas by 27.2% and 22.4% and by 11% and 10.1% in tropical forests with positive effects concentrated in the wet season (tropical savannas) and the warmer months (tropical forests). We predicted minimal effects of thermal acclimation of photosynthesis on GPP, NPP, and carbon storage in Mediterranean woodlands, temperate woodlands, and temperate forests. Overall, positive effects were strongly enhanced by increasing CO2 concentrations under RCP8.5. We conclude that the direct effects of climate change will enhance carbon uptake and storage in Australian wooded ecosystems (likely due to CO2 enrichment) and that benefits of thermal acclimation of photosynthesis will be restricted to tropical ecoregions.


Assuntos
Mudança Climática , Ecossistema , Carbono , Dióxido de Carbono , Austrália , Florestas , Árvores/fisiologia , Fotossíntese , Aclimatação/fisiologia
7.
Glob Chang Biol ; 30(8): e17436, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39162201

RESUMO

Measurements of net primary productivity (NPP) and litter decomposition from tropical peatlands are severely lacking, limiting our ability to parameterise and validate models of tropical peatland development and thereby make robust predictions of how these systems will respond to future environmental and climatic change. Here, we present total NPP (i.e., above- and below-ground) and decomposition data from two floristically and structurally distinct forested peatland sites within the Pastaza Marañón Foreland Basin, northern Peru, the largest tropical peatland area in Amazonia: (1) a palm (largely Mauritia flexuosa) dominated swamp forest and (2) a hardwood dominated swamp forest (known as 'pole forest', due to the abundance of thin-stemmed trees). Total NPP in the palm forest and hardwood-dominated forest (9.83 ± 1.43 and 7.34 ± 0.84 Mg C ha-1 year-1, respectively) was low compared with values reported for terra firme forest in the region (14.21-15.01 Mg C ha-1 year-1) and for tropical peatlands elsewhere (11.06 and 13.20 Mg C ha-1 year-1). Despite the similar total NPP of the two forest types, there were considerable differences in the distribution of NPP. Fine root NPP was seven times higher in the palm forest (4.56 ± 1.05 Mg C ha-1 year-1) than in the hardwood forest (0.61 ± 0.22 Mg C ha-1 year-1). Above-ground palm NPP, a frequently overlooked component, made large contributions to total NPP in the palm-dominated forest, accounting for 41% (14% in the hardwood-dominated forest). Conversely, Mauritia flexuosa litter decomposition rates were the same in both plots: highest for leaf material, followed by root and then stem material (21%, 77% and 86% of mass remaining after 1 year respectively for both plots). Our results suggest potential differences in these two peatland types' responses to climate and other environmental changes and will assist in future modelling studies of these systems.


Mediciones de la productividad primaria neta (PPN) y la descomposición de materia orgánica de las turberas tropicales son escasas, lo que limita nuestra capacidad para parametrizar y validar modelos de desarrollo de las turberas tropicales y, en consecuencia, realizar predicciones sólidas sobre la respuesta de estos sistemas ante futuros cambios ambientales y climáticos. En este estudio, presentamos datos de PPN total (es decir, biomasa aérea y subterránea) y descomposición de la materia orgánica colectada en dos turberas boscosas con características florísticas y estructurales contrastantes dentro de la cuenca Pastaza Marañón al norte del Perú, el área de turberas tropicales más grande de la Amazonia: (1) un bosque pantanoso dominado por palmeras (principalmente Mauritia flexuosa) y (2) un bosque pantanosos dominado por árboles leñosos de tallo delgado (conocido como 'varillal hidromórfico'). La PPN total en el bosque de palmeras y el varillal hidromórfico (9,83 ± 1,43 y 7,34 ± 0,84 Mg C ha­1 año­1 respectivamente) fue baja en comparación con los valores reportados para los bosques de tierra firme en la región (14,21­15,01 Mg C ha­1 año­1) y para turberas tropicales en otros lugares (11,06 y 13,20 Mg C ha­1 año­1). A pesar de que la PPN total fue similar en ambos tipos de bosque, hubo diferencias considerables en la distribución de la PPN. La PPN de las raíces finas fue siete veces mayor en el bosque de palmeras (4,56 ± 1,05 Mg C ha­1 año­1) que en el varillal hidromórfico (0,61 ± 0,22 Mg C ha­1 año­1). La PPN de la biomasa aérea de las palmeras, un componente ignorado frecuentemente, contribuyó en gran medida a la PPN total del bosque de palmeras, representando el 41% (14% en el varillal hidromórfico). Por el contrario, la tasa de descomposición de materia orgánica de Mauritia flexuosa fue la misma en ambos sitios: la más alta corresponde a la hojarasca, seguida por las raíces y luego el tallo (21%, 77% y 86% de la masa restante después de un año, respectivamente para ambos sitios). Nuestros resultados sugieren diferencias potenciales en la respuesta de estos dos tipos de turberas al clima y otros cambios ambientales, y ayudarán en futuros estudios de modelamiento de estos sistemas.


Assuntos
Florestas , Peru , Áreas Alagadas , Solo/química , Folhas de Planta/metabolismo , Clima Tropical
8.
Glob Chang Biol ; 30(8): e17479, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39188225

RESUMO

Terrestrial gross primary productivity (GPP) is the largest carbon flux in the global carbon cycle and plays a crucial role in terrestrial carbon sequestration. However, historical and future global GPP estimates still vary markedly. In this study, we reduced uncertainties in global GPP estimates by employing an innovative emergent constraint method on remote sensing-based GPP datasets (RS-GPP), using ground-based estimates of GPP from flux towers as the observational constraint. Using this approach, the global GPP in 2001-2014 was estimated to be 126.8 ± 6.4 PgC year-1, compared to the original RS-GPP ensemble mean of 120.9 ± 10.6 PgC year-1, which reduced the uncertainty range by 39.6%. Independent space- and time-based (different latitudinal zones, different vegetation types, and individual year) constraints further confirmed the robustness of the global GPP estimate. Building on these insights, we extended our constraints to project global GPP estimates in 2081-2100 under various Shared Socioeconomic Pathway (SSP) scenarios: SSP126 (140.6 ± 9.3 PgC year-1), SSP245 (153.5 ± 13.4 PgC year-1), SSP370 (170.7 ± 16.9 PgC year-1), and SSP585 (194.1 ± 23.2 PgC year-1). These findings have important implications for understanding and projecting climate change, helping to develop more effective climate policies and carbon reduction strategies.


Assuntos
Ciclo do Carbono , Mudança Climática , Tecnologia de Sensoriamento Remoto , Incerteza , Sequestro de Carbono , Modelos Teóricos
9.
Glob Chang Biol ; 30(1): e17080, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273571

RESUMO

Identifying controls on soil organic carbon (SOC) storage, and where SOC is most vulnerable to loss, are essential to managing soils for both climate change mitigation and global food security. However, we currently lack a comprehensive understanding of the global drivers of SOC storage, especially with regards to particulate (POC) and mineral-associated organic carbon (MAOC). To better understand hierarchical controls on POC and MAOC, we applied path analyses to SOC fractions, climate (i.e., mean annual temperature [MAT] and mean annual precipitation minus potential evapotranspiration [MAP-PET]), carbon (C) input (i.e., net primary production [NPP]), and soil property data synthesized from 72 published studies, along with data we generated from the National Ecological Observatory Network soil pits (n = 901 total observations). To assess the utility of investigating POC and MAOC separately in understanding SOC storage controls, we then compared these results with another path analysis predicting bulk SOC storage. We found that POC storage is negatively related to MAT and soil pH, while MAOC storage is positively related to NPP and MAP-PET, but negatively related to soil % sand. Our path analysis predicting bulk SOC revealed similar trends but explained less variation in C storage than our POC and MAOC analyses. Given that temperature and pH impose constraints on microbial decomposition, this indicates that POC is primarily controlled by SOC loss processes. In contrast, strong relationships with variables related to plant productivity constraints, moisture, and mineral surface availability for sorption indicate that MAOC is primarily controlled by climate-driven variations in C inputs to the soil, as well as C stabilization mechanisms. Altogether, these results demonstrate that global POC and MAOC storage are controlled by separate environmental variables, further justifying the need to quantify and model these C fractions separately to assess and forecast the responses of SOC storage to global change.


Assuntos
Carbono , Solo , Solo/química , Plantas , Mudança Climática , Minerais
10.
Glob Chang Biol ; 30(8): e17463, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39120552

RESUMO

To bridge the knowledge gap between (a) our (instantaneous-to-seasonal-scale) process understanding of plants and water and (b) our projections of long-term coupled feedbacks between the terrestrial water and carbon cycles, we must uncover what the dominant dynamics are linking fluxes of water and carbon. This study uses the simplest empirical dynamical systems models-two-dimensional linear models-and observation-based data from satellites, eddy covariance towers, weather stations, and machine-learning-derived products to determine the dominant sub-annual timescales coupling carbon uptake and (normalized) evaporation fluxes. We find two dominant modes across the Contiguous United States: (1) a negative correlation timescale on the order of a few days during which landscapes dry after precipitation and plants increase their carbon uptake through photosynthetic upregulation. (2) A slow, seasonal-scale positive covariation through which landscape drying leads to decreased growth and carbon uptake. The slow (positively correlated) process dominates the joint distribution of local water and carbon variables, leading to similar behaviors across space, biomes, and climate regions. We propose that vegetation cover/leaf area variables link this behavior across space, leading to strong emergent spatial patterns of water/carbon coupling in the mean. The spatial pattern of local temporal dynamics-positively sloped tangent lines to a convex long-term mean-state curve-is surprisingly strong, and can serve as a benchmark for coupled Earth System Models. We show that many such models do not represent this emergent mean-state pattern, and hypothesize that this may be due to lack of water-carbon feedbacks at daily scales.


Assuntos
Ciclo do Carbono , Estações do Ano , Estados Unidos , Água/metabolismo , Modelos Teóricos , Ecossistema , Fotossíntese , Ciclo Hidrológico , Plantas/metabolismo , Carbono/análise , Carbono/metabolismo
11.
Glob Chang Biol ; 30(8): e17454, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39132898

RESUMO

Tropical and subtropical evergreen broadleaved forests (TEFs) contribute more than one-third of terrestrial gross primary productivity (GPP). However, the continental-scale leaf phenology-photosynthesis nexus over TEFs is still poorly understood to date. This knowledge gap hinders most light use efficiency (LUE) models from accurately simulating the GPP seasonality in TEFs. Leaf age is the crucial plant trait to link the dynamics of leaf phenology with GPP seasonality. Thus, here we incorporated the seasonal leaf area index of different leaf age cohorts into a widely used LUE model (i.e., EC-LUE) and proposed a novel leaf age-dependent LUE model (denoted as LA-LUE model). At the site level, the LA-LUE model (average R2 = .59, average root-mean-square error [RMSE] = 1.23 gC m-2 day-1) performs better than the EC-LUE model in simulating the GPP seasonality across the nine TEFs sites (average R2 = .18; average RMSE = 1.87 gC m-2 day-1). At the continental scale, the monthly GPP estimates from the LA-LUE model are consistent with FLUXCOM GPP data (R2 = .80; average RMSE = 1.74 gC m-2 day-1), and satellite-based GPP data retrieved from the global Orbiting Carbon Observatory-2 (OCO-2) based solar-induced chlorophyll fluorescence (SIF) product (GOSIF) (R2 = .64; average RMSE = 1.90 gC m-2 day-1) and the reconstructed TROPOspheric Monitoring Instrument SIF dataset using machine learning algorithms (RTSIF) (R2 = .78; average RMSE = 1.88 gC m-2 day-1). Typically, the estimated monthly GPP not only successfully represents the unimodal GPP seasonality near the Tropics of Cancer and Capricorn, but also captures well the bimodal GPP seasonality near the Equator. Overall, this study for the first time integrates the leaf age information into the satellite-based LUE model and provides a feasible implementation for mapping the continental-scale GPP seasonality over the entire TEFs.


Assuntos
Florestas , Folhas de Planta , Tecnologia de Sensoriamento Remoto , Estações do Ano , Folhas de Planta/crescimento & desenvolvimento , Fotossíntese , Modelos Teóricos , Luz , Árvores/crescimento & desenvolvimento , Modelos Biológicos , Clima Tropical
12.
Glob Chang Biol ; 30(1): e17138, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273499

RESUMO

Water availability (WA) is a key factor influencing the carbon cycle of terrestrial ecosystems under climate warming, but its effects on gross primary production (EWA-GPP ) at multiple time scales are poorly understood. We used ensemble empirical mode decomposition (EEMD) and partial correlation analysis to assess the WA-GPP relationship (RWA-GPP ) at different time scales, and geographically weighted regression (GWR) to analyze their temporal dynamics from 1982 to 2018 with multiple GPP datasets, including near-infrared radiance of vegetation GPP, FLUXCOM GPP, and eddy covariance-light-use efficiency GPP. We found that the 3- and 7-year time scales dominated global WA variability (61.18% and 11.95%), followed by the 17- and 40-year time scales (7.28% and 8.23%). The long-term trend also influenced 10.83% of the regions, mainly in humid areas. We found consistent spatiotemporal patterns of the EWA-GPP and RWA-GPP with different source products: In high-latitude regions, RWA-GPP changed from negative to positive as the time scale increased, while the opposite occurred in mid-low latitudes. Forests had weak RWA-GPP at all time scales, shrublands showed negative RWA-GPP at long time scales, and grassland (GL) showed a positive RWA-GPP at short time scales. Globally, the EWA-GPP , whether positive or negative, enhanced significantly at 3-, 7-, and 17-year time scales. For arid and humid zones, the semi-arid and sub-humid zones experienced a faster increase in the positive EWA-GPP , whereas the humid zones experienced a faster increase in the negative EWA-GPP . At the ecosystem types, the positive EWA-GPP at a 3-year time scale increased faster in GL, deciduous broadleaf forest, and savanna (SA), whereas the negative EWA-GPP at other time scales increased faster in evergreen needleleaf forest, woody savannas, and SA. Our study reveals the complex and dynamic EWA-GPP at multiple time scales, which provides a new perspective for understanding the responses of terrestrial ecosystems to climate change.


Assuntos
Ecossistema , Água , Florestas , Ciclo do Carbono , Mudança Climática
13.
Environ Sci Technol ; 58(31): 13904-13917, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39049184

RESUMO

Freshwater ecosystems are under threat from rising pharmaceutical pollution. While such pollutants are known to elicit biological effects on organisms, we have limited knowledge on how these effects might cascade through food-webs, disrupt ecological processes, and shape freshwater communities. In this study, we used a mesocosm experiment to explore how the community impacts of a top-order predator, the eastern mosquitofish (Gambusia holbrooki), are mediated by exposure to environmentally relevant low (measured concentration: ∼10 ng/L) and high concentrations (∼110 ng/L) of the pervasive pharmaceutical pollutant fluoxetine. We found no evidence that exposure to fluoxetine altered the consumptive effects of mosquitofish on zooplankton. However, once mosquitofish were removed from the mesocosms, zooplankton abundance recovered to a greater extent in control mesocosms compared to both low and high fluoxetine-exposed mesocosms. By the end of the experiment, this resulted in fundamental differences in community structure between the control and fluoxetine-treated mesocosms. Specifically, the control mesocosms were characterized by higher zooplankton abundances and lower algal biomass, whereas mesocosms exposed to either low or high concentrations of fluoxetine had lower zooplankton abundances and higher algal biomass. Our results suggest that fluoxetine, even at very low concentrations, can alter aquatic communities and hinder their recovery from disturbances.


Assuntos
Água Doce , Poluentes Químicos da Água , Zooplâncton , Animais , Água Doce/química , Zooplâncton/efeitos dos fármacos , Cadeia Alimentar , Ecossistema , Fluoxetina , Peixes , Ciprinodontiformes
14.
Oecologia ; 205(2): 365-381, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38836933

RESUMO

Surface temperature of the oceans has increased globally over the past decades. In coastal areas influenced by eastern boundary upwelling systems (EBUS), winds push seawater offshore and deep, cold and nutrient-rich seawater rise towards the surface, partially buffering global warming. On the North coast of Portugal, the NW Iberian upwelling system allows extensive kelp forests to thrive in these "boreal-like" conditions, fostering highly diverse and productive communities. However, the warming of the upper layer of the ocean may weaken this upwelling, leading to higher sea surface temperature and lower nutrient input in the coastal areas. The effects of these changes on the structure and function of coastal ecosystems remain unexplored. The present study aimed to examine the combined effects of elevated temperature and nutrient depletion on semi-naturally structured assemblages. The eco-physiological responses investigated included growth, chlorophyll fluorescence and metabolic rates at the levels of individual species and whole assemblages. Our findings showed interactive effects of the combination of elevated temperature with nutrient depletion on the large canopy-forming species (i.e., kelp). As main contributor to community response, those effects drove the whole assemblage responses to significant losses in productivity levels. We also found an additive effect of elevated temperature and reduced nutrients on sub-canopy species (i.e., Chondrus crispus), while turfs were only affected by temperature. Our results suggest that under weakening upwelling scenarios, the ability of the macroalgal assemblages to maintain high productivity rates could be seriously affected and predict a shift in community composition with the loss of marine forests.


Assuntos
Ecossistema , Nutrientes , Temperatura , Portugal , Água do Mar , Clorofila , Kelp , Aquecimento Global
15.
Environ Res ; 252(Pt 4): 119145, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754610

RESUMO

The impact of CO2 fertilization on enhancing global forest gross primary productivity (GPP) is acknowledged, but its interaction with climate factors-air temperature (Tem), precipitation (Pre), vapor pressure deficit (VPD), and radiation (Rad)-remains unclear. In this study, global forest GPP trends from 1982 to 2018 were examined using BEPS, NIRv, FLUXCOM, and revised EC-LUE datasets, with interannual trends of 5.618 (p < 0.01), 5.831 (p < 0.01), 0.227, and 6.566 g C m-2 yr-1 (p < 0.01), respectively. Elevated CO2 was identified as the primary driver of GPP trends, with the dominant area ranging from 51.11% to 90.37% across different GPP datasets. In the NIRv and revised EC-LUE datasets, the positive impact of CO2 on GPP showed a decrease of 0.222 g C m-2 yr-1, while the negative impact of Rad increased by 0.007 g C m-2 yr-1. An inhibitory relationship was found between the actual effects of elevated CO2 and climate change on GPP in most forest types. At lower latitudes, Tem primarily constrained CO2 fertilization, while at higher latitudes, VPD emerged as the key limiting factor. This was mainly attributed to the potential trade-off or competition between elevated CO2 and climate change in influencing GPP, with strategic resource allocation varying across different forest ecosystems. This study highlights the significant inhibitory effects of elevated CO2 and climate change on global forest GPP, providing insights into the dynamic responses of forest ecosystems to changing environments.


Assuntos
Dióxido de Carbono , Mudança Climática , Florestas , Dióxido de Carbono/análise , Árvores
16.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34911756

RESUMO

Reconstructing the history of biological productivity and atmospheric oxygen partial pressure (pO2) is a fundamental goal of geobiology. Recently, the mass-independent fractionation of oxygen isotopes (O-MIF) has been used as a tool for estimating pO2 and productivity during the Proterozoic. O-MIF, reported as Δ'17O, is produced during the formation of ozone and destroyed by isotopic exchange with water by biological and chemical processes. Atmospheric O-MIF can be preserved in the geologic record when pyrite (FeS2) is oxidized during weathering, and the sulfur is redeposited as sulfate. Here, sedimentary sulfates from the ∼1.4-Ga Sibley Formation are reanalyzed using a detailed one-dimensional photochemical model that includes physical constraints on air-sea gas exchange. Previous analyses of these data concluded that pO2 at that time was <1% PAL (times the present atmospheric level). Our model shows that the upper limit on pO2 is essentially unconstrained by these data. Indeed, pO2 levels below 0.8% PAL are possible only if atmospheric methane was more abundant than today (so that pCO2 could have been lower) or if the Sibley O-MIF data were diluted by reprocessing before the sulfates were deposited. Our model also shows that, contrary to previous assertions, marine productivity cannot be reliably constrained by the O-MIF data because the exchange of molecular oxygen (O2) between the atmosphere and surface ocean is controlled more by air-sea gas transfer rates than by biological productivity. Improved estimates of pCO2 and/or improved proxies for Δ'17O of atmospheric O2 would allow tighter constraints to be placed on mid-Proterozoic pO2.


Assuntos
Atmosfera/química , Ecossistema , Sedimentos Geológicos/química , Isótopos de Oxigênio/análise , Planeta Terra , Fenômenos Ecológicos e Ambientais , Ozônio/química
17.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33380457

RESUMO

Marine primary productivity (PP) is the driving factor in the global marine carbon cycle. Its reconstruction in past climates relies on biogeochemical proxies that are not considered to provide an unequivocal signal. These are often based on the water column flux of biogenic components to sediments (organic carbon, biogenic opal, biomarkers), although other factors than productivity are posited to control the sedimentary contents of the components, and their flux is related to the fraction of export production buried in sediments. Moreover, most flux proxies have not been globally appraised. Here, we assess a proxy to quantify past phytoplankton biomass by correlating the concentration of C37 alkenones in a global suite of core-top sediments with sea surface chlorophyll-a (SSchla) estimates over the last 20 y. SSchla is the central metric to calculate phytoplankton biomass and is directly related to PP. We show that the global spatial distribution of sedimentary alkenones is primarily correlated to SSchla rather than diagenetic factors such as the oxygen concentration in bottom waters, which challenges previous assumptions on the role of preservation on driving concentrations of sedimentary organic compounds. Moreover, our results suggest that the rate of global carbon export to sediments is not regionally constrained, and that alkenones producers play a dominant role in the global export of carbon buried in the seafloor. This study shows the potential of using sedimentary alkenones to estimate past phytoplankton biomass, which in turn can be used to infer past PP in the global ocean.


Assuntos
Clorofila A/análise , Cetonas/análise , Cetonas/química , Biomassa , Carbono , Ciclo do Carbono , Clorofila A/química , Ecossistema , Sedimentos Geológicos/química , Fitoplâncton/química , Fitoplâncton/metabolismo
18.
Int J Biometeorol ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235598

RESUMO

Understanding the influence of climatic factors on vegetation dynamics and cumulative effects is critical for global sustainable development. However, the response of vegetation to climate and the underlying mechanisms in different climatic zones remains unclear. In this study, we analyzed the response of vegetation gross primary productivity (GPP) to climatic factors and the cumulative effects across various vegetation types and climatic zones, utilizing data on precipitation (Pr), temperature (Ta), and the standardized precipitation evapotranspiration index (SPEI). The results showed that: (1) GPP showed significant differences among the seven climatic zones, with the highest value observed in zone VII, reaching 1860.07 gC·m- 2, and the lowest in zone I, at 126.03 gC·m- 2. (2) GPP was significantly and positively correlated with temperature in climatic zones I, IV, V, and VI and with precipitation in climatic zones I, II, and IV. Additionally, a significant positive correlated was found between SPEI and GPP in climatic zones I, II, and IV. (3) Drought exerted a cumulative effect on GPP in 45.10% of the regions within China, with an average cumulative duration of 5 months. These effects persisted for 6-8 months in zones I, II, and VII, and for 2-4 months in zones III, IV and VI. Among different vegetation types, forests experienced longest cumulative effect time of 6 months, followed by grasslands (5 months), croplands (4 months), and shrublands (4 months). The cumulative time scale decreased with increasing annual SPEI. The varying responses and accumulation of GPP to drought among different vegetation types in various climatic zones underscore the complexity of vegetation-climate interactions the response and accumulation of GPP to drought.

19.
Int J Biometeorol ; 68(2): 333-349, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052751

RESUMO

Over the past three decades, there has been a significant global climate change characterized by an increase in the intensity and frequency of extreme climate events. The vegetation status in Qinghai Province has undergone substantial changes, which are more pronounced than other regions in the Qinghai-Tibet Plateau. However, a clear understanding of the response characteristics of plateau vegetation to extreme climate events is currently lacking. In this study, we investigated the response of net primary productivity (NPP) to different forms of extreme climate events across regions characterized by varying levels of aridity and elevation gradients. Specifically, we observed a significant increase in NPP in relatively arid regions. Our findings indicate that, in relatively arid regions, single episodes of high-intensity precipitation have a pronounced positive effect (higher correlation) on NPP. Furthermore, in high-elevation regions (4000-6000 m), both the intensity and frequency of precipitation events are crucial factors for the increase in regional NPP. However, continuous precipitation can have significant negative impacts on certain areas within relatively wet regions. Regarding temperature, a reduction in the number of frost days within a year has been shown to lead to a significant increase in NPP in arid regions. This reduction allows vegetation growth rate to increase in regions where it was limited by low temperatures. Vegetation conditions in drought-poor regions are expected to continue to improve as extreme precipitation intensifies and extreme low-temperature events decrease.


Assuntos
Ecossistema , Modelos Teóricos , China , Tibet , Temperatura , Mudança Climática
20.
J Environ Manage ; 360: 121112, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38733847

RESUMO

Assessing net primary productivity (NPP) dynamics and the contribution of land-use change (LUC) to NPP can help guide scientific policy to better restore and control the ecological environment. Since 1999, the "Green for Grain" Program (GGP) has strongly affected the spatial and temporal pattern of NPP on the Loess Plateau (LP); however, the multifaceted impact of phased vegetation engineering measures on NPP dynamics remains unclear. In this study, the Carnegie-Ames-Stanford Approach (CASA) model was used to simulate NPP dynamics and quantify the relative contributions of LUC and climate change (CC) to NPP under two different scenarios. The results showed that the average NPP on the LP increased from 240.7 gC·m-2 to 422.5 gC·m-2 from 2001 to 2020, with 67.43% of the areas showing a significant increasing trend. LUC was the main contributor to NPP increases during the study period, and precipitation was the most important climatic factor affecting NPP dynamics. The cumulative amount of NPP change caused by LUC (ΔNPPLUC) showed a fluctuating growth trend (from 46.23 gC·m-2 to 127.25 gC·m-2), with a higher growth rate in period ΙΙ (2010-2020) than in period Ι (2001-2010), which may be related to the accumulation of vegetation biomass and the delayed effect of the GGP on NPP. The contribution rate of LUC to increased NPP in periods Ι and ΙΙ was 101.2% and 51.2%, respectively. Regarding the transformation mode, the transformation of grassland to forest had the greatest influence on ΔNPPLUC. Regarding land-use type, the increased efficiency of NPP was improved in cropland, grassland, and forest. This study provides a scientific basis for the scientific management and development of vegetation engineering measures and regional sustainable development.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA