Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(3): e0162923, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38335112

RESUMO

We used quantitative microbial risk assessment to estimate ingestion risk for intI1, erm(B), sul1, tet(A), tet(W), and tet(X) in private wells contaminated by human and/or livestock feces. Genes were quantified with five human-specific and six bovine-specific microbial source-tracking (MST) markers in 138 well-water samples from a rural Wisconsin county. Daily ingestion risk (probability of swallowing ≥1 gene) was based on daily water consumption and a Poisson exposure model. Calculations were stratified by MST source and soil depth over the aquifer where wells were drilled. Relative ingestion risk was estimated using wells with no MST detections and >6.1 m soil depth as a referent category. Daily ingestion risk varied from 0 to 8.8 × 10-1 by gene and fecal source (i.e., human or bovine). The estimated number of residents ingesting target genes from private wells varied from 910 (tet(A)) to 1,500 (intI1 and tet(X)) per day out of 12,000 total. Relative risk of tet(A) ingestion was significantly higher in wells with MST markers detected, including wells with ≤6.1 m soil depth contaminated by bovine markers (2.2 [90% CI: 1.1-4.7]), wells with >6.1 m soil depth contaminated by bovine markers (1.8 [1.002-3.9]), and wells with ≤6.1 m soil depth contaminated by bovine and human markers simultaneously (3.1 [1.7-6.5]). Antibiotic resistance genes (ARGs) were not necessarily present in viable microorganisms, and ingestion is not directly associated with infection. However, results illustrate relative contributions of human and livestock fecal sources to ARG exposure and highlight rural groundwater as a significant point of exposure.IMPORTANCEAntibiotic resistance is a global public health challenge with well-known environmental dimensions, but quantitative analyses of the roles played by various natural environments in transmission of antibiotic resistance are lacking, particularly for drinking water. This study assesses risk of ingestion for several antibiotic resistance genes (ARGs) and the class 1 integron gene (intI1) in drinking water from private wells in a rural area of northeast Wisconsin, United States. Results allow comparison of drinking water as an exposure route for antibiotic resistance relative to other routes like food and recreational water. They also enable a comparison of the importance of human versus livestock fecal sources in the study area. Our study demonstrates the previously unrecognized importance of untreated rural drinking water as an exposure route for antibiotic resistance and identifies bovine fecal material as an important exposure factor in the study setting.


Assuntos
Antibacterianos , Água Potável , Animais , Humanos , Bovinos , Antibacterianos/farmacologia , Genes Bacterianos , Gado , Fezes , Solo , Medição de Risco , Resistência Microbiana a Medicamentos/genética , Ingestão de Alimentos
2.
Environ Sci Technol ; 58(12): 5220-5228, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38478973

RESUMO

Disaster recovery poses unique challenges for residents reliant on private wells. Flooding events are drivers of microbial contamination in well water, but the relationship observed between flooding and contamination varies substantially. Here, we investigate the performance of different flood boundaries─the FEMA 100 year flood hazard boundary, height above nearest drainage-derived inundation extents, and satellite-derived extents from the Dartmouth Flood Observatory─in their ability to identify well water contamination following Hurricane Florence. Using these flood boundaries, we estimated about 2600 wells to 108,400 private wells may have been inundated─over 2 orders of magnitude difference based on boundary used. Using state-generated routine and post-Florence testing data, we observed that microbial contamination rates were 7.1-10.5 times higher within the three flood boundaries compared to routine conditions. However, the ability of the flood boundaries to identify contaminated samples varied spatially depending on the type of flooding (e.g., riverine, overbank, coastal). While participation in testing increased after Florence, rates were overall still low. With <1% of wells tested, there is a critical need for enhanced well water testing efforts. This work provides an understanding of the strengths and limitations of inundation mapping techniques, which are critical for guiding postdisaster well water response and recovery.


Assuntos
Tempestades Ciclônicas , Inundações , Poluição da Água , Água
3.
J Water Health ; 22(3): 550-564, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557570

RESUMO

Onsite wastewater treatment systems (OWTSs) and private wells are commonly used in Eastern North Carolina, USA. Water from private wells is not required to be tested after the initial startup, and thus persons using these wells may experience negative health outcomes if their water is contaminated with waste-related pollutants including bacteria, nitrate or synthetic chemicals such as hexafluoropropylne oxide dimer acid and its ammonium salt (GenX). Water samples from 18 sites with OWTSs and groundwater wells were collected for nitrate, Escherichia coli (E. coli), total coliform, and GenX concentration analyses. Results showed that none of the 18 water supplies were positive for E. coli, nitrate concentrations were all below the maximum contaminant level of 10 mg L-1, and one well had 1 MPN 100 mL-1 of total coliform. However, GenX was detected in wastewater collected from all 18 septic tanks and 22% of the water supplies tested had concentrations that exceeded the health advisory levels for GenX. Water supplies with low concentrations of traditionally tested for pollutants (nitrate, E. coli) may still pose health risks due to elevated concentrations of emerging contaminants like GenX and thus more comprehensive and routine water testing is suggested for this and similar persistent compounds.


Assuntos
Poluentes Ambientais , Água Subterrânea , Poluentes Químicos da Água , Águas Residuárias , Nitratos/análise , North Carolina , Escherichia coli , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Abastecimento de Água , Poços de Água , Água Subterrânea/microbiologia , Compostos Orgânicos
4.
Risk Anal ; 43(8): 1599-1626, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36114612

RESUMO

Complex, multihazard risks such as private groundwater contamination necessitate multiannual risk reduction actions including seasonal, weather-based hazard evaluations. In the Republic of Ireland (ROI), high rural reliance on unregulated private wells renders behavior promotion a vital instrument toward safeguarding household health from waterborne infection. However, to date, pathways between behavioral predictors remain unknown while latent constructs such as extreme weather event (EWE) risk perception and self-efficacy (perceived behavioral competency) have yet to be sufficiently explored. Accordingly, a nationwide survey of 560 Irish private well owners was conducted, with structural equation modeling (SEM) employed to identify underlying relationships determining key supply management behaviors. The pathway analysis (SEM) approach was used to model three binary outcomes: information seeking, post-EWE action, and well testing behavior. Upon development of optimal models, perceived self-efficacy emerged as a significant direct and/or indirect driver of all three behavior types-demonstrating the greatest indirect effect (ß = -0.057) on adoption of post-EWE actions and greatest direct (ß = 0.222) and total effect (ß = 0.245) on supply testing. Perceived self-efficacy inversely influenced EWE risk perception in all three models but positively influenced supply awareness (where present). Notably, the presence of a vulnerable (infant and/or elderly) household member negatively influenced adoption of post-EWE actions (ß = -0.131, p = 0.016). Results suggest that residential and age-related factors constitute key demographic variables influencing risk mitigation and are strongly mediated by cognitive variables-particularly self-efficacy. Study findings may help contextualize predictors of private water supply management, providing a basis for future risk-based water interventions.


Assuntos
Água Subterrânea , Abastecimento de Água , Humanos , Idoso , Análise de Classes Latentes , Água Subterrânea/química , Irlanda , Comportamento de Redução do Risco
5.
Risk Anal ; 42(4): 799-817, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34342023

RESUMO

Majority African-American neighborhoods on the edges of North Carolina municipalities are less likely than white peri-urban neighborhoods to be served by a community system regulated under the Safe Drinking Water Act. These households rely on unregulated private wells, which are at much higher risk of contamination than neighboring community water supplies. Yet, risk awareness of consuming well water is low, and no prior research has tested risk communication interventions for these communities. We present a randomized-controlled trial of an oversized postcard to promote water testing among this audience. The postcard design followed the mental models approach to risk communication. To our knowledge, this is the first U.S. randomized-controlled trial of a mailed communication to promote water testing in any audience and one of few trials of the mental models approach. We evaluated the postcard's effects on self-reported water testing with and without a free water test offer (vs. no-intervention control) via a survey mailed one month after the interventions. The combined communication and free test doubled the odds of self-reported water testing, compared to the control group (p = 0.046). It increased the odds of testing by 65%, compared to the free test alone. Recall of receiving a postcard about water testing increased the odds of self-reported testing twelve-fold (p < 0.001). Although these results suggest that targeted risk information delivered by mail can promote water testing when paired with a free test, the mechanism remains unclear. Additional research on beliefs influencing perceptions about well water may yield interventions that are even more effective.


Assuntos
Água Potável , Poços de Água , Negro ou Afro-Americano , Comunicação , Humanos , Modelos Psicológicos , Abastecimento de Água
6.
Environ Sci Technol ; 55(12): 8382-8392, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34032415

RESUMO

Hurricane Hurricane Harvey made landfall on the Texas Gulf Coast on August 25, 2017, as a Category 4 hurricane and caused widespread flooding. We explored spatial and temporal distributions of well testing and contamination rates; relationships between contamination and system characteristics and recovery behaviors; and efficacy of mitigation strategies. We estimated that over 500 000 well users (∼130 000 to 260 000 wells) may have been affected, but only around 15 000 well users (∼3800 to 7500 wells) had inundated systems based on inundation maps. Local health departments and our team sampled 8822 wells in 44 counties in the 10 months that followed. Total coliform occurrence was 1.5 times and Escherichia coli was 2.8 times higher after Hurricane Harvey compared to baseline levels. Microbial contamination was more likely (1.7-2.5 times higher) when wells were inundated and/or residents felt their water was unsafe. Although more wells in urban counties were affected, E. coli rates were higher in wells in rural counties. Disinfection did not always eliminate contamination, highlighting concerns about the implementation and efficacy of chlorination procedures. Despite this extensive well testing conducted after Hurricane Harvey, we estimate that only 4.1% of potentially affected wells were tested, underscoring the magnitude of recovery assistance needed to assist well users after flooding events.


Assuntos
Tempestades Ciclônicas , Água Potável , Escherichia coli , Texas , Poços de Água
7.
Environ Res ; 188: 109773, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32559686

RESUMO

Campylobacter is a leading cause of bacterial foodborne illness in the United States. Campylobacter infections have most often been associated with food-related risk factors, such as the consumption of poultry and raw milk. Socioeconomic, agricultural and environmental factors, including drinking water source, can also influence the risk of campylobacteriosis. Approximately 19% of Maryland residents rely on private wells as their sole source of water. Given that the federal Safe Drinking Water Act does not regulate the water quality of private wells, these could be important non-foodborne transmission pathways for Campylobacter. To address this issue, data on the number of culture-confirmed cases of Campylobacter infection in Maryland between 2007 and 2016 were obtained from the Foodborne Diseases Active Surveillance Network. Cases were linked by zip code with data from the Maryland well permits registry, the 2010 U.S. Census, the 2016 American Community Survey, and the USDA Agricultural Census. Campylobacteriosis incidence rates and well prevalence were calculated by zip code. Negative binomial regression models were then constructed to evaluate the association between the prevalence of private wells, presence/absence of animal feeding operations and the incidence of campylobacteriosis across the physiographic provinces in Maryland. From 2007 to 2016, a total of 5746 cases of campylobacteriosis were reported in Maryland, and annual incidence rates ranged from 6.65 to 11.59 per 100,000 people. In our statewide analysis, a significant positive association was observed between well prevalence and increased campylobacteriosis incidence at the zip code level (Incidence Rate Ratio (IRR) = 1.35, 95% Confidence Interval (CI) = 1.11, 1.63). A significant positive association was also observed between well prevalence and increased campylobacteriosis incidence in the Appalachian and Coastal provinces of Maryland (IRR = 2.94, 95% CI = 1.11, 7.76 and IRR = 1.70, 95% CI = 1.25, 2.31, respectively). The presence of broiler chicken operations, increasing median age and percentage of residents living in poverty were also significantly associated with campylobacteriosis incidence at the zip code level in some physiographic provinces in Maryland. To our knowledge, these are the first US data to demonstrate an association between prevalence of private wells and campylobacteriosis incidence at the zip code level.


Assuntos
Infecções por Campylobacter , Campylobacter , Água Potável , Doenças Transmitidas por Alimentos , Animais , Infecções por Campylobacter/epidemiologia , Galinhas , Doenças Transmitidas por Alimentos/epidemiologia , Humanos , Incidência , Maryland/epidemiologia , Estados Unidos/epidemiologia , Conduta Expectante
8.
BMC Public Health ; 20(1): 863, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503551

RESUMO

BACKGROUND: Nitrate contamination in groundwater disproportionately impacts agricultural Latino communities, creating a significant hazard for Latinos that rely on private wells. Private well users must conduct water testing and other well stewardship behaviors to ensure that their well water is safe to drink. This study sought to identify the key factors impacting private well water testing behavior in rural, agricultural Latino communities. METHODS: We conducted 4 focus groups with private well users, 2 in Spanish and 2 in English. We recruited 37 participants from the Lower Yakima Valley, Washington State, a rural, agricultural community with a large Latino population and elevated nitrate concentrations in groundwater. A semi-structured interview guide was developed to capture factors impacting testing as guided by the Risk, Attitudes, Norms, Ability, and Self-Regulation (RANAS) model. Inductive thematic analysis was conducted by two coders to identify common themes. RESULTS: Themes emerged around the factors impacting well stewardship, including well water testing, treatment, and maintenance, and were not specific to nitrate contamination. Private well users reported many of the same factors reported in other communities, with the exception of home repair experience and challenges around landlords and neighbors on shared wells, which have not been reported previously. In addition to landlords and neighbors, lack of actionable information, economic limitations, and lack of technical support emerged as factors that made well stewardship burdensome for individuals. The majority of participants reported using bottled water, including many who used point-of-use or point-of-entry water treatment systems. CONCLUSIONS: The burden of well stewardship in rural, agricultural Latino communities may suggest the need for interventions at the community, county, or state levels and not at the individual level alone. Additionally, the role of landlords, neighbors on shared wells, and home repair experience in well stewardship represent important areas of exploration for researchers and public health practitioners.


Assuntos
Fazendeiros/psicologia , Hispânico ou Latino/psicologia , Setor Privado , Purificação da Água , Poços de Água , Adulto , Agricultura , Feminino , Grupos Focais , Água Subterrânea/análise , Humanos , Masculino , Nitratos/análise , Pesquisa Qualitativa , População Rural , Washington , Poluentes Químicos da Água/análise , Abastecimento de Água
9.
Lett Appl Microbiol ; 70(4): 232-240, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31904109

RESUMO

Unregulated private wells are understudied potential sources of community-acquired Legionnaires' disease. Here we conducted a comprehensive survey of 44 homes supplied by private wells in Wake County, North Carolina, quantifying Legionella spp. DNA, Legionella pneumophila DNA, and total bacterial 16S rRNA genes via real-time polymerase chain reaction in hot and cold drinking water samples, along with culturable L. pneumophila via IDEXX Legiolert in cold drinking water samples. Legionella spp. DNA, L. pneumophila DNA and culturable L. pneumophila were detected in 100, 65·5 and 15·9% of the 44 homes, respectively, and culturable levels were comparable to some municipal surveys applying the same methods. Total coliforms and Escherichia coli were monitored as representative faecal indicators and were found in 20·4 and 0·0% of homes. Within certain sample types, Legionella spp. and L. pneumophila gene copy numbers were positively associated with total bacteria (i.e. total 16S rRNA genes) and water softener use, but were not associated with faecal indicator bacteria, inorganic water parameters or other well characteristics. These findings confirm that occurrence of Legionella and L. pneumophila is highly variable in private wells. SIGNIFICANCE AND IMPACT OF THE STUDY: Legionella is the leading identified cause of waterborne disease outbreaks associated with US municipal water systems. While Legionella is known to occur naturally in groundwater, prior efforts to characterize its occurrence in unregulated private wells are limited to sampling at the wellhead and not in the home plumbing where Legionella can thrive. This work documents much higher levels of Legionella in home plumbing versus water directly from private wells and examines factors associated with higher Legionella occurrence.


Assuntos
Água Potável/microbiologia , Legionella pneumophila/isolamento & purificação , DNA Bacteriano/genética , Humanos , Legionella pneumophila/classificação , Legionella pneumophila/genética , Doença dos Legionários/microbiologia , North Carolina , RNA Ribossômico 16S/genética , Engenharia Sanitária , Microbiologia da Água , Abastecimento de Água
10.
Environ Monit Assess ; 192(11): 724, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33095309

RESUMO

Nitrate contamination of drinking water, common in agricultural areas, increases the risk of certain cancers and impacts fetal development during pregnancy. Building on previously published methodology, this study evaluates nitrate-attributable disease cases and adverse birth outcomes as well as their economic costs for Wisconsin, USA. Nitrate is the most common contaminant in groundwater in Wisconsin. Two-thirds of the state's residents use groundwater as the primary source of drinking water. Here, we analyze nitrate exposure from drinking water in Wisconsin based on nitrate test results for community water systems for the period of 2010-2017 and a novel methodology for estimating nitrate exposure for the 28% of state's residents who use private wells. We estimate that annually, 111-298 combined cases of colorectal, ovarian, thyroid, bladder, and kidney cancer in Wisconsin may be due to nitrate contamination of drinking water. Each year, up to 137-149 cases of very low birth weight, 72-79 cases of very preterm birth, and two cases of neural tube defects could be due to nitrate exposure from drinking water. The direct medical cost estimates for all nitrate-attributable adverse health outcomes range between $23 and $80 million annually. Simulating targeted reductions in the counties with the highest current drinking water nitrate concentrations resulted in similar reductions in adverse health outcomes as statewide reduction efforts, up to nitrate reductions of 20%. Time trend analysis suggests that groundwater nitrate concentrations are overall increasing. Thus, nitrate contamination of water supplies in Wisconsin is a public health problem that needs to be addressed.


Assuntos
Água Potável , Nascimento Prematuro , Monitoramento Ambiental , Feminino , Humanos , Nitratos/análise , Gravidez , Wisconsin
11.
Epidemiol Infect ; 144(7): 1355-70, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26564479

RESUMO

Waterborne illness related to the consumption of contaminated or inadequately treated water is a global public health concern. Although the magnitude of drinking water-related illnesses in developed countries is lower than that observed in developing regions of the world, drinking water is still responsible for a proportion of all cases of acute gastrointestinal illness (AGI) in Canada. The estimated burden of endemic AGI in Canada is 20·5 million cases annually - this estimate accounts for under-reporting and under-diagnosis. About 4 million of these cases are domestically acquired and foodborne, yet the proportion of waterborne cases is unknown. There is evidence that individuals served by private systems and small community systems may be more at risk of waterborne illness than those served by municipal drinking water systems in Canada. However, little is known regarding the contribution of these systems to the overall drinking water-related AGI burden in Canada. Private water supplies serve an estimated 12% of the Canadian population, or ~4·1 million people. An estimated 1·4 million (4·1%) people in Canada are served by small groundwater (2·6%) and surface water (1·5%) supplies. The objective of this research is to estimate the number of AGI cases attributable to water consumption from these supplies in Canada using a quantitative microbial risk assessment (QMRA) approach. This provides a framework for others to develop burden of waterborne illness estimates for small water supplies. A multi-pathogen QMRA of Giardia, Cryptosporidium, Campylobacter, E. coli O157 and norovirus, chosen as index waterborne pathogens, for various source water and treatment combinations was performed. It is estimated that 103 230 AGI cases per year are due to the presence of these five pathogens in drinking water from private and small community water systems in Canada. In addition to providing a mechanism to assess the potential burden of AGI attributed to small systems and private well water in Canada, this research supports the use of QMRA as an effective source attribution tool when there is a lack of randomized controlled trial data to evaluate the public health risk of an exposure source. QMRA is also a powerful tool for identifying existing knowledge gaps on the national scale to inform future surveillance and research efforts.


Assuntos
Água Potável/microbiologia , Água Potável/parasitologia , Gastroenteropatias/epidemiologia , Água Subterrânea/microbiologia , Água Subterrânea/parasitologia , Vigilância da População/métodos , Doença Aguda , Canadá/epidemiologia , Água Potável/virologia , Gastroenteropatias/microbiologia , Gastroenteropatias/parasitologia , Água Subterrânea/virologia , Humanos , Medição de Risco , Abastecimento de Água/normas
12.
Sci Total Environ ; 919: 170922, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350573

RESUMO

Nitrate levels are increasing in water resources across the United States and nitrate ingestion from drinking water has been associated with adverse health risks in epidemiologic studies at levels below the maximum contaminant level (MCL). In contrast, dietary nitrate ingestion has generally been associated with beneficial health effects. Few studies have characterized the contribution of both drinking water and dietary sources to nitrate exposure. The Agricultural Health Study is a prospective cohort of farmers and their spouses in Iowa and North Carolina. In 2018-2019, we assessed nitrate exposure for 47 farmers who used private wells for their drinking water and lived in 8 eastern Iowa counties where groundwater is vulnerable to nitrate contamination. Drinking water and dietary intakes were estimated using the National Cancer Institute Automated Self-Administered 24-Hour Dietary Assessment tool. We measured nitrate in tap water and estimated dietary nitrate from a database of food concentrations. Urinary nitrate was measured in first morning void samples in 2018-19 and in archived samples from 2010 to 2017 (minimum time between samples: 2 years; median: 7 years). We used linear regression to evaluate urinary nitrate concentrations in relation to total nitrate, and drinking water and dietary intakes separately. Overall, dietary nitrate contributed the most to total intake (median: 97 %; interquartile range [IQR]: 57-99 %). Among 15 participants (32 %) whose drinking water nitrate concentrations were at/above the U.S. Environmental Protection Agency MCL (10 mg/L NO3-N), median intake from water was 44 % (IQR: 26-72 %). Total nitrate intake was the strongest predictor of urinary nitrate concentrations (R2 = 0.53). Drinking water explained a similar proportion of the variation in nitrate excretion (R2 = 0.52) as diet (R2 = 0.47). Our findings demonstrate the importance of both dietary and drinking water intakes as determinants of nitrate excretion.


Assuntos
Água Potável , Poluentes Químicos da Água , Humanos , Estados Unidos , Nitratos/análise , Iowa , Fazendeiros , Estudos Prospectivos , Abastecimento de Água , Dieta , Poluentes Químicos da Água/análise
13.
Sci Total Environ ; 922: 171112, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38387579

RESUMO

Consolidation of multi-domain risk management research is essential for strategies facilitating the concerted government (educational) and population-level (behavioural) actions required to reduce microbial private groundwater contamination. However, few studies to date have synthesised this literature or sought to ascertain the causal generality and extent of supply contamination and preventive responses. In light of the Republic of Ireland (ROI) and Ontario's high reliance and research focus on private wells and consequent utility for empirical comparison, a scoping review of pertinent literature (1990-2022) from both regions was undertaken. The SPICE (Setting, Perspective, Intervention, Comparison, Evaluation) method was employed to inform literature searches, with Scopus and Web of Science selected as primary databases for article identification. The review identified 65 relevant articles (Ontario = 34, ROI = 31), with those investigating well user actions (n = 22) and groundwater quality (n = 28) the most frequent. A markedly higher pooled proportion of private supplies in the ROI exhibited microbial contamination (38.3 % vs. 4.1 %), despite interregional similarities in contamination drivers (e.g., weather, physical supply characteristics). While Ontarian well users demonstrated higher rates of historical (≥ 1) and annual well testing (90.6 % vs. 71.1 %; 39.1 % vs. 8.6 %) and higher rates of historical well treatment (42.3 % vs. 24.3 %), interregional levels of general supply knowledge were analogous (70.7 % vs. 71.0 %). Financial cost, organoleptic properties and residence on property during supply construction emerged as predictors of cognition and behaviour in both regions. Review findings suggest broad interregional similarities in drivers of supply contamination and individual-level risk mitigation, indicating that divergence in contamination rates may be attributable to policy discrepancies - particularly well testing incentivisation. The paucity of identified intervention-oriented studies further highlights the importance of renewed research and policy agendas for improved, targeted well user outreach and incentivised, convenience-based services promoting routine supply maintenance.


Assuntos
Água Subterrânea , Abastecimento de Água , Medição de Risco , Gestão de Riscos , Irlanda , Poços de Água
14.
Sci Total Environ ; 912: 169188, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38081423

RESUMO

This study highlights concerns regarding the reliability of groundwater nitrate data used in official surveys, such as within the EU-mandated Water Framework Directive (WFD). The focus is on the Campo de Cartagena - Mar Menor hydrosystem in Spain, a region known for its intensively irrigated watershed and eutrophicated lagoon, where monitoring the evolution of nitrate contamination in surface and groundwater is crucial but challenging due to the risk of inconsistent characterization leading to erratic remediation measures. The study employed an experimental approach in private wells that belong to a longstanding official nitrate survey network marked by irregular sampling practices. Importantly, these wells lacked comprehensive design documentation and were frequently used by farmers. The study aimed to evaluate the representativity of dissolved nitrate measurements in such an emblematic case, while investigating the source of the water using geochemical and isotope tracers. This assessment considered the effects of different sampling techniques (bailer or pumping) and sampling parameters (depth and time), acknowledging actual practices. The research highlights several key findings. Firstly, the bailer sampling method proved to account for a substantial portion of the observed variation in nitrate content. Secondly, in some cases, pumping introduced contributions from different water horizons, complicating the interpretation of nitrate data. Thirdly, alterations in the sampling protocol had a notable impact on the resulting nitrate measurements. Furthermore, the study emphasized a critical issue: the lack of analytical uncertainty estimation in official surveys introduces significant bias in result interpretation, with discrepancies exceeding 100 mg/L in four of the six wells analyzed. This underscores the pressing need for improved sampling protocols, dedicated borehole infrastructure and precise data interpretation. Given the potential unreliability of some official groundwater nitrate data shared under EU or other regulations, with corresponding economic and environmental impacts, the study recommends meticulous verification before transmitting data.

15.
Environ Sci Pollut Res Int ; 31(11): 16164-16176, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38321277

RESUMO

Antimicrobial resistance (AMR) is a critical global health concern. Animal husbandry operations are AMR hotspots due to heavy antibiotic use and dissemination of animal waste into the environment. In this systematic review, we examined the impact of swine, poultry, and cattle operations on AMR in groundwater. We searched PubMed, Web of Science, CAB Direct, and the North Carolina State University Agricultural and Environmental Science databases in June 2022. The search returned 2487 studies. Of the 23 eligible studies, 17 were conducted in high-income countries (primarily the USA, also Canada, Saudi Arabia, Cyprus), and 6 were conducted in a single upper-middle-income country (China). Studies investigated facilities for swine (13), poultry (4), cattle (3), and multiple types of animals (3). The sampling distance ranged from onsite to > 20 km from facilities; the majority of studies (19) sampled onsite. Most studies collected samples from monitoring wells; only 5 studies investigated private drinking water wells. AMR in groundwater was associated with animal husbandry operations in 74% (17/23) of all studies, 65% (11/17) of studies in high-income countries, and 100% (6/6) of studies in China. Contamination was mostly found in onsite wells, especially downgradient of waste lagoons, but also in offsite private wells up to 2-3 km away. Few studies reported weather data, but AMR contamination appeared to increase with rainy conditions. Future studies should sample private wells at varying distances from animal husbandry operations under different weather conditions and include low- and middle-income countries where food animal production is intensifying.

16.
J Environ Radioact ; 259-260: 107124, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36724575

RESUMO

Gross alpha, a measurement of radioactivity in drinking water, is the most frequent laboratory test to exceed primary drinking water standards among wells tested under the New Jersey Private Well Testing Act (NJ PWTA). Certain geological factors prevalent in New Jersey (NJ) are primarily responsible for the presence of radioactivity in private well drinking water and thus, many of the estimated one million private well users in NJ may be at-risk of water contamination from naturally occurring radionuclides. Neighbor-based private well outreach methodology was utilized to identify high risk wells in both northern and southern NJ regions and offer free private well testing for radionuclides. Previously tested wells with gross alpha exceeding or equal to 3.7 becquerels per liter (Bq L-1; 100 pCi/L) were selected (n = 49) to identify neighbors (n = 406) within 152.4 m (500 feet). Invitation letters were mailed to selected neighbors and some of the previously tested high wells (n = 12) offering free water sampling for the following parameters: gross alpha (48-hour rapid test), combined radium-226 and radium-228 (Ra-226 + Ra-228), uranium-238 (U-238), radon-222 (Rn-222) and iron. Overall, 70 neighbors and 5 high PWTA wells participated in this free water testing opportunity. For neighboring wells, gross alpha results revealed 47 (67.1%) wells exceeding the gross alpha MCL of 0.555 Bq L-1 (15 pCi/L) mainly due to radium activity in the raw/untreated water. Of those with water treatment (n = 62), 12 (19.4%) treated water samples exceeded the gross alpha MCL. Targeting neighbors of known highly radioactive wells for private well testing is an effective public health outreach method and can also provide useful insight of regional contaminant variations.


Assuntos
Água Potável , Monitoramento de Radiação , Radioatividade , Rádio (Elemento) , Radônio , Urânio , Poluentes Radioativos da Água , Abastecimento de Água , Urânio/análise , Monitoramento de Radiação/métodos , Poços de Água , Radioisótopos/análise , Poluentes Radioativos da Água/análise , Rádio (Elemento)/análise
17.
Sci Total Environ ; 866: 161302, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36592918

RESUMO

Over recent years, Ireland has reported the highest crude incidence rates of Shiga toxin-producing Escherichia coli (STEC) enteritis in Europe. Unregulated private groundwater sources have emerged as an important potential transmission route for STEC, with up to 750,000 Irish residents reliant on these sources for domestic waters. This study aimed to investigate the prevalence and serogroup profile of STEC contamination from domestic private wells in western Ireland. Fifty-two groundwater sources were analysed during two sampling campaigns in the autumn (September/October) of 2019 (n = 21) and 2021 (n = 31). Untreated groundwater samples (30 L) were collected and analysed using the "CapE" (capture, amplify, extract) method. Extracted DNA was tested using multiplex real-time PCR for Shiga toxin stx1 and/or stx2 and eae genes. STEC positive DNA samples were tested for clinically relevant serogroups by real-time PCR. Data relating to 27 potential groundwater contamination risk factors were geospatially linked to each well and assessed for association with E. coli, stx1 and/or stx2 and eae presence/absence. Overall, 20/52 wells (38.4 %) were positive for E. coli (median concentration 8.5 MPN/100 mL as assessed by Colilert-18 method). Stx1 and/or stx2 was detected in 10/52 (19.2 %) wells overall and 8/20 E. coli positive wells, equating to a STEC to "generic" E. coli detection ratio of 40 %. Six of these wells (30 %) were also positive for eae. One or more serogroup-specific gene targets were identified in all but one stx1 and/or stx2 positive sample, with O145 (n = 6), O157 (n = 5) and O103 (n = 4) most prevalent. STEC presence was significantly associated with decreasing well depth (U = -2.243; p = 0.024) and increasing 30-day mean antecedent rainfall (U = 2.126; p = 0.034). Serogroup O104 was associated with increased sheep density (U = 2.089; p = 0.044) and detection of stx1 and/or stx2 + eae with increased septic tank density (U = 2.246 p = 0.023). Findings indicate high detection rates of clinically relevant STEC in E. coli contaminated groundwater sources in Ireland.


Assuntos
Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Animais , Ovinos , Sorogrupo , Irlanda/epidemiologia , Proteínas de Escherichia coli/genética , Fatores de Risco , Fezes
18.
Sci Total Environ ; 862: 160409, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436630

RESUMO

Due to structural racism and income inequality, exposure to environmental chemicals is tightly linked to socioeconomic factors. In addition, exposure to psychosocial stressors, such as racial discrimination, as well as having limited resources, can increase susceptibility to environmentally induced disease. Yet, studies are often conducted separately in fields of social science and environmental science, reducing the potential for holistic risk estimates. To tackle this gap, we developed the Chemical and Social Stressors Integration Technique (CASS-IT) to integrate environmental chemical and social stressor datasets. The CASS-IT provides a framework to identify distinct geographic areas based on combinations of environmental chemical exposure, social vulnerability, and access to resources. It incorporates two data dimension reduction tools: k-means clustering and latent profile analysis. Here, the CASS-IT was applied to North Carolina (NC) as a case study. Environmental chemical data included toxic metals - arsenic, manganese, and lead - in private drinking well water. Social stressor data were captured by the CDC's social vulnerability index's four domains: socioeconomic status, household composition and disability, minority status and language, and housing type and transportation. Data on resources were derived from Federal Emergency Management Agency (FEMA's) Resilience and Analysis Planning Tool, which generated measures of health resources, social resources, and information resources. The results highlighted 31 NC counties where exposure to both toxic metals and social stressors are elevated, and health resources are minimal; these are counties in which environmental justice is of utmost concern. A census-tract level analysis was also conducted to demonstrate the utility of CASS-IT at different geographical scales. The tract-level analysis highlighted specific tracts within counties of concern that are particularly high priority. In future research, the CASS-IT can be used to analyze United States-wide environmental datasets providing guidance for targeted public health interventions and reducing environmental disparities.


Assuntos
Intoxicação por Arsênico , Água Potável , Estados Unidos , Humanos , North Carolina , Saúde Pública , Exposição Ambiental , Intoxicação por Metais Pesados
19.
Environ Pollut ; 317: 120817, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36481470

RESUMO

The role of the natural environment in the dissemination of antimicrobial resistant bacteria has been increasingly recognised in the literature. However, knowledge surrounding the critical factors and mechanisms mediating their occurrence is still limited, particularly in relatively 'pristine' groundwater environments. In the Republic of Ireland (RoI), a country characterised by high groundwater reliance, household-based (unregulated) wells provide drinking water to 11% of the population. These private wells are generally located in rural areas, where the risk of microbiological contamination is high due to intensive agricultural practices and high reliance on domestic wastewater treatment systems; both of which are also potential sources of antimicrobials and antimicrobial resistant bacteria. Accordingly, the current research sought to elucidate current rates of antimicrobial resistant bacteria and the principal factors associated with their presence in private wells in the RoI. A total of 250 samples (from 132 wells nationwide) were assessed for the presence of faecal (Escherichia coli) and environmental (Pseudomonas aeruginosa) bacteria, with single isolates from each contaminated sample tested phenotypically against 18 and 9 antimicrobials, respectively. Findings show that while 16.7% of E. coli (n = 8/48) were categorically resistant to ≥1 antimicrobial, with a further 79.2% classified as intermediately resistant, no categorical resistance was found among P. aeruginosa isolates (n = 0/6), with just one intermediately resistant isolate detected. Multivariate regression modelling indicates significantly higher odds of resistant E. coli detection in concurrence with elevated cattle density (OR = 1.028, p = 0.032), aligning with findings of highest resistance rates to veterinary antimicrobials (e.g., streptomycin = 14.6%, tetracycline = 12.5%, and ampicillin = 12.5%). Multivariate model results also suggest overland flow culminating in direct wellhead ingress as a primary ingress mechanism for resistant E. coli. Study findings may inform groundwater source protection initiatives and antimicrobial resistance surveillance moving forward.


Assuntos
Anti-Infecciosos , Água Subterrânea , Animais , Bovinos , Escherichia coli , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Irlanda , Farmacorresistência Bacteriana , Água Subterrânea/microbiologia , Anti-Infecciosos/farmacologia , Bactérias , Testes de Sensibilidade Microbiana
20.
Sci Total Environ ; 862: 160217, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410482

RESUMO

Many rural populations, including American Indian communities, that use private wells from groundwater for their source of drinking and cooking water are disproportionately exposed to elevated levels of arsenic. However, programs aimed at reducing arsenic in American Indian communities are limited. The Strong Heart Water Study (SHWS) is a randomized controlled trial aimed at reducing arsenic exposure among private well users in American Indian Northern Great Plains communities. The community-led SHWS program installed point-of-use (POU) arsenic filters in the kitchen sink of households, and health promoters delivered arsenic health communication programs. In this study we evaluated the efficacy of these POU arsenic filters in removing arsenic during the two-year installation period. Participants were randomized into two arms. In the first arm households received a POU arsenic filter, and 3 calls promoting filter use (SHWS mobile health (mHealth) & filter arm). The second arm received the same filter and phone calls, and 3 in-person home visits and 3 Facebook messages (SHWS intensive arm) for program delivery. Temporal variability in water arsenic concentrations from the main kitchen faucet was also evaluated. A total of 283 water samples were collected from 50 households with private wells from groundwater (139 filter and 144 kitchen faucet samples). Ninety-three percent of households followed after baseline had filter faucet water arsenic concentrations below the arsenic maximum contaminant level of 10 µg/L at the final visit during our 2 year study period with no difference between study arms (98 % in the intensive arm vs. 94 % in the mHealth & filter arm). No significant temporal variation in kitchen arsenic concentration was observed over the study period (intraclass correlation coefficient = 0.99). This study demonstrates that POU arsenic filters installed for the community participatory SHWS program were effective in reducing water arsenic concentration in study households in both arms, even with delivery of the POU arsenic filter and mHealth program only. Furthermore, we observed limited temporal variability of water arsenic concentrations from kitchen faucet samples collected over time from private wells in our study setting.


Assuntos
Arsênio , Água Potável , Poluentes Químicos da Água , Humanos , Arsênio/análise , Monitoramento Ambiental , Água , Indígena Americano ou Nativo do Alasca , Poços de Água , Poluentes Químicos da Água/análise , Abastecimento de Água , Água Potável/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA