Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 560
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 244: 117907, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109965

RESUMO

The world, a famished planet with an overgrowing population, requires enormous food crops. This scenario compelled the farmers to use a high quantity of synthetic fertilizers for high food crop productivity. However, prolonged usage of chemical fertilizers results in severe adverse effects on soil and water quality. On the other hand, the growing population significantly consumes large quantities of poultry meats. Eventually, this produces a mammoth amount of poultry waste, chicken feathers. Owing to the protein value of the chicken feathers, these wastes are converted into protein hydrolysate and further extend their application as biostimulants for sustained agriculture. The protein profile of chicken feather protein hydrolysate (CFPH) produced through Bacillus spp. was the maximum compared to physical and chemical protein extraction methods. Several studies proved that the application of CFPH and active Bacillus spp. culture to soil and plants results in enhanced plant growth, phytochemical constituents, crop yield, soil nutrients, fertility, microbiome and resistance against diverse abiotic and biotic stresses. Overall, "CFPH - Jack of all trades" and "Bacillus spp. - an active camouflage to the surroundings where they applied showed profound and significant benefits to the plant growth under the most adverse conditions. In addition, Bacillus spp. coheres the biofortification process in plants through the breakdown of metals into metal ions that eventually increase the nutrient value of the food crops. However, detailed information on them is missing. This can be overcome by further real-world studies on rhizoengineering through a multi-omics approach and their interaction with plants. This review has explored the best possible and efficient strategy for managing chicken feather wastes into protein-rich CFPH through Bacillus spp. bioconversion and utilizing the CFPH and Bacillus spp. as biostimulants, biofertilizers, biopesticides and biofortificants. This paper is an excellent report on organic waste management, circular economy and sustainable agriculture research frontier.


Assuntos
Bacillus , Galinhas , Animais , Fertilizantes , Biofortificação , Hidrolisados de Proteína , Agricultura , Solo , Plantas
2.
Mar Drugs ; 22(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38667768

RESUMO

Metabolic disorders are increasingly prevalent conditions that manifest pathophysiologically along a continuum. Among reported metabolic risk factors, elevated fasting serum glucose (FSG) levels have shown the most substantial increase in risk exposure. Ultimately leading to insulin resistance (IR), this condition is associated with notable deteriorations in the prognostic outlook for major diseases, including neurodegenerative diseases, cancer risk, and mortality related to cardiovascular disease. Tackling metabolic dysfunction, with a focus on prevention, is a critically important aspect for human health. In this study, an investigation into the potential antidiabetic properties of a salmon protein hydrolysate (SPH) was conducted, focusing on its potential dipeptidyl peptidase-IV (DPP-IV) inhibition and direct glucose uptake in vitro. Characterization of the SPH utilized a bioassay-guided fractionation approach to identify potent glucoregulatory peptide fractions. Low-molecular-weight (MW) fractions prepared by membrane filtration (MWCO = 3 kDa) showed significant DPP-IV inhibition (IC50 = 1.01 ± 0.12 mg/mL) and glucose uptake in vitro (p ≤ 0.0001 at 1 mg/mL). Further fractionation of the lowest MW fractions (<3 kDa) derived from the permeate resulted in three peptide subfractions. The subfraction with the lowest molecular weight demonstrated the most significant glucose uptake activity (p ≤ 0.0001), maintaining its potency even at a dilution of 1:500 (p ≤ 0.01).


Assuntos
Inibidores da Dipeptidil Peptidase IV , Glucose , Hidrolisados de Proteína , Salmo salar , Animais , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/isolamento & purificação , Inibidores da Dipeptidil Peptidase IV/química , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química , Glucose/metabolismo , Humanos , Dipeptidil Peptidase 4/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Proteínas de Peixes/farmacologia
3.
Mar Drugs ; 22(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38667796

RESUMO

Palmaria palmata is a viable source of nutrients with bioactive properties. The present study determined the potential role of post-extraction ultrasonication on some compositional features and antioxidant properties of enzymatic/alkaline extracts of P. palmata (EAEP). No significant difference was detected in terms of protein content and recovery, as well as the amino acid composition of the extracts. The nitrogen-to-protein conversion factor of 5 was found to be too high for the seaweed and EAEP. The extracts sonicated by bath for 10 min and not sonicated showed the highest and lowest total phenolic contents (p < 0.05), respectively. The highest radical scavenging and lowest metal-chelating activities were observed for the non-sonicated sample, as evidenced by IC50 values. The extract sonicated by bath for 10 min showed the most favorable in vitro antioxidant properties since its radical scavenging was not significantly different from that of the not-sonicated sample (p > 0.05). In contrast, its metal-chelating activity was significantly higher (p < 0.05). To conclude, post-extraction ultrasonication by an ultrasonic bath for 10 min is recommended to increase phenolic content and improve the antioxidant properties of EAEP.


Assuntos
Antioxidantes , Quelantes , Fenóis , Extratos Vegetais , Rodófitas , Antioxidantes/química , Antioxidantes/isolamento & purificação , Quelantes/química , Algas Comestíveis/química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/isolamento & purificação , Fenóis/química , Fenóis/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Rodófitas/química , Sonicação
4.
J Dairy Sci ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825137

RESUMO

This study characterized the sleep activity, sleep mechanism, and active peptides of whey protein hydrolysates selected through behavioral analysis of fruit-flies (Drosophila melanogaster). Sleep-inducing whey protein (WP) hydrolysate was selected through fruit fly behavior analysis, and sleep activity was measured using a pentobarbital model and electroencephalographic analysis. The mechanism of action was confirmed using a γ-aminobutyric acid (GABA) receptor antagonist, and the active peptide was identified using liquid chromatography-mass spectroscopy. Whey protein hydrolysate, prepared using Alcalase and Prozyme (WP-AP), increased sleep time in a dose-dependent manner. WP-AP significantly increased not only sleep time but also slow-wave sleep and showed an insomnia-alleviating effect in a caffeine-induced insomnia mouse model. In addition, the gene and protein expression levels of GABA sub-type A (GABAA) receptors increased in the brains of mice orally administered with WP-AP. Through peptide analysis, the mixture of DIQK, VPPF peptide, and GABA contained in WP-AP was estimated to exhibit sleep activity, and due to its high content, DIQK was speculated to be the main sleep -inducing ingredient. These results indicate that WP-AP has the potential to be used as a new ingredient to improve sleep quality.

5.
J Dairy Sci ; 107(5): 2620-2632, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38101744

RESUMO

This study aimed to investigate the neuroprotective effects of whey protein hydrolysate (WPH) containing the pentapeptide leucine-aspartate-isoleucine-glutamine-lysine (LDIQK). Whey protein hydrolysate (50, 100, and 200 µg/mL) demonstrated the ability to restore the viability of HT22 cells subjected to 300 µM hydrogen peroxide (H2O2)-induced oxidative stress. Furthermore, at a concentration of 200 µg/mL, it significantly reduced the increase in reactive oxygen species production and calcium ion (Ca2+) influx induced by H2O2 by 46.1% and 46.2%, respectively. Similarly, the hydrolysate significantly decreased the levels of p-tau, a hallmark of tauopathy, and BCL2 associated X (BAX), a proapoptosis factor, while increasing the protein levels of choline acetyltransferase (ChAT), an enzyme involved in acetylcholine synthesis, brain-derived neurotrophic factor (BDNF), a nerve growth factor, and B-cell lymphoma 2 (BCL2, an antiapoptotic factor. Furthermore, it increased nuclear factor erythroid 2-related factor 2 (Nrf2)-hemoxygenase-1(HO-1) signaling, which is associated with the antioxidant response, while reducing the activation of mitogen-activated protein kinase (MAPK) signaling pathway components, namely phosphor-extracellular signal-regulated kinases (p-ERK), phosphor-c-Jun N-terminal kinases (p-JNK), and p-p38. Column chromatography and tandem mass spectrometry analysis identified LDIQK as a compound with neuroprotective effects in WPH; it inhibited Ca2+ influx and regulated the BAX/BCL2 ratio. Collectively, WPH containing LDIQK demonstrated neuroprotective effects against H2O2-induced neuronal cell damage, suggesting that WPH or its active peptide, LDIQK, may serve as a potential edible agent for improving cognitive dysfunction.


Assuntos
Peróxido de Hidrogênio , Fármacos Neuroprotetores , Animais , Peróxido de Hidrogênio/farmacologia , Fármacos Neuroprotetores/farmacologia , Glutamina/farmacologia , Ácido Aspártico/metabolismo , Ácido Aspártico/farmacologia , Isoleucina/metabolismo , Leucina/metabolismo , Lisina/metabolismo , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia , Soro do Leite/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo
6.
Environ Toxicol ; 39(7): 3991-4003, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38606910

RESUMO

In recent times, there has been growing attention towards exploring the nutritional and functional aspects of potato protein, along with its diverse applications. In the present study, we examined the anti-osteoclast properties of potato protein hydrolysate (PP902) in vitro. Murine macrophages (RAW264.7) were differentiated into osteoclasts by receptor activator of nuclear factor-κB ligand (RANKL), and PP902 was examined for its inhibitory effect. Initially, treatment with PP902 was found to significantly prevent RANKL-induced morphological changes in macrophage cells, as determined by tartrate-resistant acid phosphatase (TRAP) staining analysis. This notion was further supported by F-actin analysis using a confocal microscope. Furthermore, PP902 treatment effectively and dose-dependently down-regulated the expression of RANKL-induced osteoclastogenic marker genes, including TRAP, CTR, RANK, NFATc1, OC-STAMP, and c-Fos. These inhibitory effects were associated with suppressing NF-κB transcriptional activation and subsequent reduced nuclear translocation. The decrease in NF-κB activity resulted from reduced activation of its upstream kinases, including I-κBα and IKKα. Moreover, PP902 significantly inhibited RANKL-induced p38MAPK and ERK1/2 activities. Nevertheless, PP902 treatment prevents RANKL-induced intracellular reactive oxygen species generation via increased HO-1 activity. The combined antioxidant and anti-inflammatory effects of PP902 resulted in significant suppression of osteoclastogenesis, suggesting its potential as an adjuvant therapy for osteoclast-related diseases.


Assuntos
NF-kappa B , Osteoclastos , Hidrolisados de Proteína , Ligante RANK , Solanum tuberosum , Animais , Camundongos , Osteoclastos/efeitos dos fármacos , Células RAW 264.7 , NF-kappa B/metabolismo , Hidrolisados de Proteína/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proteínas de Plantas/farmacologia
7.
J Fish Biol ; 104(1): 216-226, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37800368

RESUMO

A feeding study was conducted to investigate how fish protein hydrolysate (FPH) supplementation affected the growth, feed utilization, body composition, and hematology of juvenile giant trevally (Caranx ignobilis Forsskal, 1775). Seven isonitrogenous (52% protein) and isocaloric diets (10% lipid) were formulated, wherein shrimp hydrolysate (SH) and tuna hydrolysate (TH) were used to replace fishmeal at inclusion levels of 0 (control), 30, 60, and 90 g/kg and labeled as control, SH30, SH60, SH90, TH30, TH60, and TH90, respectively. Each diet was fed to triplicate groups of juvenile giant trevally for 8 weeks. The results showed higher final body weight and specific growth rate in fish fed SH30, SH60, TH30, and TH60 than fed control diet. No difference was observed in feed intake, but reduced feed conversion ratio (FCR) was found in fish fed SH30, SH60, TH30, and TH60, demonstrating these diets improved feed utilization. TH90 caused deposition of lipid droplet in the hepatocyte, a sign of liver damage. Total monounsaturated fatty acids, polyunsaturated fatty acids (PUFA), and highly unsaturated fatty acids in fish were not affected by FPH supplementation. Fish fed TH30 showed lower ∑n - 3 PUFA than the fish fed remaining dietary treatments. The elevated serum protein was seen in fish fed control, SH30, SH60, and TH30, demonstrating that these diets were beneficial for the innate immune response in giant trevally. The results indicate that TH and SH could be incorporated into diets of giant trevally at 30-60 g/kg, replacing 7%-13% fishmeal with enhanced growth and health benefits.


Assuntos
Dieta , Fígado , Animais , Dieta/veterinária , Fígado/metabolismo , Atum/metabolismo , Ácidos Graxos Insaturados/metabolismo , Suplementos Nutricionais , Composição Corporal , Ração Animal/análise
8.
Int J Mol Sci ; 25(13)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39000571

RESUMO

Hypertension is a major controllable risk factor associated with cardiovascular disease (CVD) and overall mortality worldwide. Most people with hypertension must take medications that are effective in blood pressure management but cause many side effects. Thus, it is important to explore safer antihypertensive alternatives to regulate blood pressure. In this study, peanut protein concentrate (PPC) was hydrolyzed with 3-5% Alcalase for 3-10 h. The in vitro angiotensin-converting enzyme (ACE) and renin-inhibitory activities of the resulting peanut protein hydrolysate (PPH) samples and their fractions of different molecular weight ranges were determined as two measures of their antihypertensive potentials. The results show that the crude PPH produced at 4% Alcalase for 6 h of hydrolysis had the highest ACE-inhibitory activity with IC50 being 5.45 mg/mL. The PPH samples produced with 3-5% Alcalase hydrolysis for 6-8 h also displayed substantial renin-inhibitory activities, which is a great advantage over the animal protein-derived bioactive peptides or hydrolysate. Remarkably higher ACE- and renin-inhibitory activities were observed in fractions smaller than 5 kDa with IC50 being 0.85 and 1.78 mg/mL. Hence, the PPH and its small molecular fraction produced under proper Alcalase hydrolysis conditions have great potential to serve as a cost-effective anti-hypertensive ingredient for blood pressure management.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Arachis , Peptidil Dipeptidase A , Proteínas de Plantas , Hidrolisados de Proteína , Renina , Subtilisinas , Subtilisinas/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Arachis/química , Renina/metabolismo , Renina/antagonistas & inibidores , Hidrólise , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacologia , Proteínas de Plantas/química , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/química , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/química , Humanos
9.
J Environ Manage ; 370: 122488, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39270338

RESUMO

The widespread utilization of straw return was a popular practice straw disposal for highly intensive agriculture in China, which has brought about some negative impacts such as less time for straw complete biodegradation, aggravation of greenhouse gas evolution, and lower efficient of carbon accumulation. It was urgent to find an eco-friendly N-rich organic fertilizer instead of mineral N as activator to solve the above problems and lead a carbon accumulation in long tern management. Besides, microbial necromass was considered as a crucial contributor to persistent soil carbon (C) and nitrogen (N) pool. How organic fertilizer activators influence microbial residue under different amount of crop residues input remained unclear. Thus, soils incorporating moderate and high rate of rice straw residue with additions of half and full of organic activators (fish protein hydrolysates vs. manure) were incubated for measuring carbon dioxide (CO2) and nitrous oxide (N2O) emission, microbial community and necromass. It was found that soil CO2 emission was rapidest during the first 13 days of straw decomposition but remained lowest in the treatments of 50% mineral N substituted by fish protein hydrolysate. There were that 81%-89% of total CO2 release and 59%-65% of total N2O emission occurred within 60 days of incubation period, and bacterial community and nitrate positively affected soil CO2 and N2O release respectively. Straw incorporation amount and organic activator application interactively influenced soil CO2 emission but not affected soil N2O emission. After 360 days of incubation, the difference of bacterial necromass was noticeable but fungal necromass remained almost unaltered across all treatments. All treatments showed generally comparable contribution of microbial necromass N to the total N pool. The treatment of 50% mineral N substituted by fish protein hydrolysate under high rate of straw input (HSF50) promoted the highest proportion of microbial necromass C in soil organic C because of alleviating N limitation for microorganisms. Finally, HSF50 was recommended as an eco-friendly strategy for enhancing microbial necromass C and N storage and climate benefits in agroecosystems.

10.
Int J Cosmet Sci ; 46(1): 106-118, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37736006

RESUMO

OBJECTIVE: With the constant upgrading of healthcare concepts, silicone-free hair products have attracted more attention among consumers. In the present study, transparent silicone-free shampoo containing proteins was successfully fabricated by mixing mild non-sulphate surfactants, compound cationic conditioners, natural silicone oil substitutes, protein conditioners, thickeners, and other auxiliary ingredients. The effects of the type of surfactants, hair conditioners and thickeners, the type and content of proteins, and the mass ratio of compound proteins on the hair foaming performance, hair grooming performance, and penetration performance were investigated. METHODS: The basic formulation framework for transparent silicone-free shampoo was established at first. Then, various hydrolyzed proteins were further added to the basic formulation in the form of single use or compound use to prepare transparent silicone-free shampoo containing different proteins. The morphology of hair samples and penetration of protein in hair were evaluated with a scanning electron microscope and laser confocal fluorescence microscopy, respectively. And the hair grooming performance was also determined by a dynamic combing tester. RESULTS: The compound proteins of Croquat WKP PE-LQ-WD and Gluadin® Kera-PLM with mass ratios of 1:9 and 1:1 at 2 wt% total protein content added to the silicone-free shampoo brought a higher contact angle and a lower frictional coefficient than commercial silicone-free shampoo without proteins. In addition, the compound proteins also have the dual effect of adsorbing the hair surface and penetrating deep into the interior of the hair. CONCLUSION: The combination of cationic modified hydrolyzed protein (e.g., Croquat WKP PE-LQ-WD) and hydrolyzed protein with low molecular weight (e.g., Gluadin® Kera-P LM) at an appropriate mass ratio exhibited a strong synergistic effect on hair conditioning properties. It could provide a significant reference for developing silicone-free hair products with more benefits.


OBJECTIF: Avec l'amélioration constante des concepts de soins de santé, les produits capillaires sans silicone ont attiré l'attention des consommateurs. Dans la présente étude, un shampooing transparent sans silicone contenant des protéines a été fabriqué avec succès en mélangeant des tensioactifs doux sans sulfate, des conditionneurs cationiques composés, des substituts naturels de l'huile de silicone, des conditionneurs protéiques, des épaississants et d'autres ingrédients auxiliaires. On a étudié les effets du type de tensioactifs, de conditionneurs pour les cheveux et d'épaississants, du type et de la teneur en protéines et du rapport massique des protéines composées sur les performances de moussage des cheveux, du nettoyage des cheveux et de la pénétration. MÉTHODES: le cadre de formulation de base pour le shampooing transparent sans silicone a d'abord été établi. Ensuite, diverses protéines hydrolysées ont été ajoutées à la formulation de base sous forme d'utilisation unique ou d'utilisation de composés pour préparer un shampooing transparent sans silicone contenant différentes protéines. La morphologie des échantillons de cheveux et la pénétration des protéines dans les cheveux ont été évaluées à l'aide d'un microscope électronique a balayage et d'une microscopie confocale laser à fluorescence, respectivement. Les performances de nettoyage des cheveux ont également été déterminées par un testeur de peignage dynamique. RÉSULTATS: les protéines composées de Croquat WKP PE-LQ-WD et de GluadinR Kera-PLM avec des rapports massiques de 1:9 et 1:1 à 2 % en poids de teneur en protéines totales ajoutées au shampooing sans silicone ont un angle de contact plus élevé et un coefficient de frottement plus faible que le shampooing sans silicone commercial sans protéines. En outre, les protéines composées ont également doublé l'effet d'adsorption à la surface des cheveux et de pénétration à l'intérieur des cheveux. CONCLUSION: la combinaison de protéines hydrolysées modifiées cationiques (par exemple, Croquat WKP PE-LQ-WD) et de protéines hydrolysées de faible poids moléculaire (par exemple, GluadinR Kera-P LM) avec un rapport massique approprié a montré un fort effet synergique sur les propriétés de conditionnement des cheveux. Il pourrait fournir une référence significative pour le développement de produits capillaires sans silicone avec plus d'avantages.


Assuntos
Fármacos Dermatológicos , Preparações para Cabelo , Silicones , Preparações para Cabelo/farmacologia , Cabelo , Óleos de Silicone/farmacologia , Fármacos Dermatológicos/farmacologia , Tensoativos/farmacologia
11.
J Sci Food Agric ; 104(2): 707-715, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37669418

RESUMO

BACKGROUND: The aim of the work was to develop a technology for using waste from prawn and shrimp processing as a source of active ingredients that could be used in the promotion of healthy foods. From fresh and freeze-dried prawn and shrimp shells, protein hydrolysates (carotenoproteins) were obtained using two different enzymes, Flavourzyme and Protamex. RESULTS: The obtained hydrolysates were characterised in terms of protein content, degree of hydrolysis, and antioxidant and antimicrobial activity. The hydrolysate with the best antioxidant properties (FRAP value of 2933.33 µmol L-1 TE; ORAC value of 115.58 µmol L-1 TE) was selected and tested for its possible use as a component of functional foods. Molecular weight distribution, amino acid profile and free amino acids, the solubility of the hydrolysate in different pH ranges as well as foaming ability were determined. It was found that this hydrolysate was characterised by an amino acid profile with high nutritional value, flavour enhancement properties and excellent solubility in a wide pH range (from 97.06% to 100%). Afterward, the possibility of using carotenoproteins from prawn waste as a component of an emulsion with furcellaran and a lipid preparation of astaxanthin, taken from post-hydrolysate production waste, was investigated. The obtained complexes were stable as proved by the measurement of zeta potential (ζ = -23.87 and -22.32 to -27.79 mV). CONCLUSION: It is possible to produce stable complexes of the hydrolysate with furcellaran and to emulsify a lipid preparation of astaxanthin, obtained from waste following production of the hydrolysate, in them. © 2023 Society of Chemical Industry.


Assuntos
Antioxidantes , Alimento Funcional , Animais , Antioxidantes/química , Hidrólise , Crustáceos , Aminoácidos , Lipídeos , Hidrolisados de Proteína/química
12.
J Sci Food Agric ; 104(5): 2980-2989, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38087783

RESUMO

BACKGROUND: The influence of protein hydrolysate produced from bovine liver protein hydrolysate (LPH) by enzymatic hydrolysis, using Alcalase/Protamex (1:1), on lipid dispersions was investigated. LPH production was optimized to maximize the antioxidant activity (at 45, 50, and 55 °C for 12, 18, and 24 h). Different concentrations of LPHs (1, 3, and 5 mg/g) were added to emulsions and to liposomes. Lipid oxidation level and particle size of the lipid dispersions were monitored for 14 days of storage at 25 °C. RESULTS: Radical scavenging activity and reducing power were the highest at 45 °C after 24 h of hydrolysis. Electrophoresis pattern showed that the antioxidant activity was arising from the peptides with molecular weight around 10 kDa. Lipid oxidation occurred more rapidly in samples without LPH during storage. In emulsions, lower thiobarbituric acid-reactive substance and conjugated diene values were measured with increasing concentrations of LPH at day 14. Accordingly, particle size of the samples containing 5 mg/g of LPH was smaller than those of other groups. Phase separation was observed only in lecithin emulsion without LPH at day 14. The use of LPH in liposome limited the lipid oxidation and maintained the size of the particles independently from the concentration. CONCLUSION: This study highlights the potential applications of animal by-products as natural antioxidants in complex food systems. The results demonstrate that LPH, particularly when hydrolyzed at optimized conditions, can effectively inhibit lipid oxidation. The findings suggest that biphasic systems incorporating LPH have promising prospects for enhancing the stability and quality of food products. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Antioxidantes , Hidrolisados de Proteína , Animais , Bovinos , Antioxidantes/química , Hidrolisados de Proteína/química , Oxirredução , Hidrólise , Lipídeos/química , Fígado/metabolismo , Subtilisinas/metabolismo
13.
J Sci Food Agric ; 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39243168

RESUMO

BACKGROUND: Vegetal-derived protein hydrolysates (PHs) have been recognized as sustainable biostimulant products due to their beneficial effects on crops. However, most studies on PHs have been conducted at a fixed ratio of nitrate-to-ammonium (NO3 -:NH4 +) without considering other N application scenarios, leading to inconsistent results among the studies. This study compared the influences of N levels (2 or 10 mM N), NO3:NH4 ratios (100:0, 75:25, 50:50, or 25:75), and PH application methods - control, foliar spray (PH-F) or root application (PH-R) - on the yield, morphology, nutrients, and nutraceutical quality of hydroponic lettuce. RESULTS: Nitrogen level, NO3:NH4 ratio, and PH application affected plant growth, morphology, and quality significantly, highlighting the importance of the interactions among these factors. Shoot growth was influenced by NO3:NH4 ratios, PH, and their interactions. Similar trends were observed in chlorophyll content. The interactions among all three factors significantly influenced root growth and morphology. Root application (PH-R) protected lettuce from yield loss caused by low NO3:NH4 ratios and from reduced antioxidant compounds caused by high N levels. Vegetal-derived protein hydrolysates improved nutrient uptake through two-way and three-way interactions although neither PH nor any interactions affected nitrate concentrations. CONCLUSION: This study demonstrated that PH interacts with N level and NO3:NH4 ratio, affecting hydroponic lettuce yield and quality. In particular, the root application of PH was the most effective method for enhancing yield (shoot fresh weight), quality (chlorophylls, carotenoids, flavonoids, and phenols), and nutrient uptake in hydroponically grown lettuce in relation to N form and level. © 2024 Society of Chemical Industry.

14.
J Sci Food Agric ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39056251

RESUMO

BACKGROUND: Chinese giant salamander protein hydrolysates (CGSPH) are beneficial to human health as a result of their high content of amino acids and peptides. However, the formation of bitter peptides in protein hydrolysates (PHs) would hinder their application in food industry. The ultrasound assisted wet-heating Maillard reaction (MR) is an effective way to improve the flavor of PHs. Thus, the effect of ultrasonic assisted wet-heating MR on the structure and flavor of CGSPH was investigated in the present study. RESULTS: The results indicated that the ultrasound assisted wet-heating MR products (MRPs) exhibited a higher degree of graft and more significant changes in the secondary and tertiary structures of CGSPH compared to traditional wet-heating MRPs. Moreover, ultrasound assisted wet-heating MR could significantly increase the content of small molecule peptides and reduce the content of free amino acids of CGSPH, which resulted in more significant changes in flavor characteristics. The changed in flavor properties after MR (especially ultrasound assisted wet-heating MRPs) were mainly manifested by a significant reduction in bitterness, as well as a significant increase in the content of aromatic aldehyde ester compounds such as furan-2-carbaldehyde, butanal, benzaldehyde, furfural, etc. CONCLUSIONS: Ultrasound assisted wet-heating MR between CGSPH and xylose could be a promising way to improve the sensory characteristics of CGSPH. © 2024 Society of Chemical Industry.

15.
J Sci Food Agric ; 104(6): 3665-3675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38158728

RESUMO

BACKGROUND: The limited physicochemical properties (such as low foaming and emulsifying capacity) of mung bean protein hydrolysate restrict its application in the food industry. Ultrasound treatment could change the structures of protein hydrolysate to accordingly affect its physicochemical properties. The aim of this study was to investigate the effects of ultrasound treatment on the structural and physicochemical properties of mung bean protein hydrolysate of protamex (MBHP). The structural characteristics of MBHP were evaluated using tricine sodium dodecylsulfate-polyacrylamide gel electrophoresis, laser scattering, fluorescence spectrometry, etc. Solubility, fat absorption capacity and foaming, emulsifying and thermal properties were determined to characterize the physicochemical properties of MBHP. RESULTS: MBHP and ultrasonicated-MBHPs (UT-MBHPs) all contained five main bands of 25.8, 12.1, 5.6, 4.8 and 3.9 kDa, illustrating that ultrasound did not change the subunits of MBHP. Ultrasound treatment increased the contents of α-helix, ß-sheet and random coil and enhanced the intrinsic fluorescence intensity of MBHP, but decreased the content of ß-turn, which demonstrated that ultrasound modified the secondary and tertiary structures of MBHP. UT-MBHPs exhibited higher solubility, foaming capacity and emulsifying properties than MBHP, among which MBHP-330 W had the highest solubility (97.32%), foaming capacity (200%), emulsification activity index (306.96 m2 g-1 ) and emulsion stability index (94.80%) at pH 9.0. CONCLUSION: Ultrasound treatment enhanced the physicochemical properties of MBHP, which could broaden its application as a vital ingredient in the food industry. © 2023 Society of Chemical Industry.


Assuntos
Fabaceae , Vigna , Vigna/química , Hidrolisados de Proteína/química , Proteínas de Plantas/química , Solubilidade
16.
J Sci Food Agric ; 104(9): 5419-5434, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38334319

RESUMO

BACKGROUND: Cognitive impairment (CI) is a significant public health concern, and bioactive peptides have shown potential as therapeutic agents. However, information about their synergistic effects on cognitive function is still limited. Here, we investigated the synergistic effects of tilapia head protein hydrolysate (THPH) and walnut protein hydrolysate (WPH) in mitigating CI induced by scopolamine in mice. RESULTS: The results showed that the combined supplementation of THPH and WPH (mass ratio, 1:1) was superior to either individual supplement in enhancing spatial memory and object recognition abilities in CI mice, and significantly lessened brain injury in CI mice by alleviating neuronal damage, reducing oxidative stress and stabilizing the cholinergic system. In addition, the combined supplementation was found to be more conducive to remodeling the gut microbiota structure in CI mice by not only remarkably reducing the ratio of Firmicutes to Bacteroidota, but also specifically enriching the genus Roseburia. On the other hand, the combined supplementation regulated the disorders of sphingolipid and amino acid metabolism in CI mice, particularly upregulating glutathione and histidine metabolism, and displayed a stronger ability to increase the expression of genes and proteins related to the brain-derived neurotrophic factor (BDNF)/TrkB/CrEB signaling pathway in the brain. CONCLUSION: These findings demonstrate that tilapia head and walnut-derived protein hydrolysates exerted synergistic effects in ameliorating CI, which was achieved through modulation of gut microbiota, serum metabolic pathways and BDNF signaling pathways. © 2024 Society of Chemical Industry.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Disfunção Cognitiva , Microbioma Gastrointestinal , Juglans , Hidrolisados de Proteína , Tilápia , Animais , Juglans/química , Hidrolisados de Proteína/química , Hidrolisados de Proteína/administração & dosagem , Hidrolisados de Proteína/farmacologia , Tilápia/metabolismo , Camundongos , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Masculino , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Proteínas de Peixes/metabolismo , Proteínas de Peixes/química , Humanos , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Plantas , Sinergismo Farmacológico , Cognição/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Suplementos Nutricionais/análise
17.
Artigo em Inglês | MEDLINE | ID: mdl-38825860

RESUMO

This study investigated the effects of cottonseed meal protein hydrolysate (CPH) on the growth performance, carcass characteristics, serum biochemical indices, intestinal morphology, and enzyme activities of yellow-feather broilers. We randomly divided 240 chicks into four groups, each with six replicates: a basal diet with 0% (CON), 1% (LCPH), 3% (MCPH), or 5% (HCPH) CPH. The trail spanned 63 days and included three phases: Days 1-21, 22-42, and 43-63. Increased average daily gain (ADG) and decreased ratio of feed to gain (F/G) with LCPH were observed in 21-day-old broilers (P < 0.05). MCPH led to higher ADG and average daily feed intake (ADFI) in 42-day-old broilers (P < 0.05). Additionally, CPH supplementation resulted in increased dressing percentage, percentage of half-eviscerated yield, percentage of eviscerated yield, breast muscle rate, and leg muscle rate were observed (P < 0.05) with diet. The serum levels of total protein (TP), high-density lipoprotein cholesterol (HDL-C), calcium (Ca), and phosphorus (P) were enhanced, and blood urea nitrogen (BUN) and triglyceride (TG) levels decreased with diet and CPH (P < 0.05). CPH increased the length of the jejunum and ileum and the weight of the duodenum, jejunum, and ileum in 21-day-old broilers (P < 0.05). Alterations in the duodenal villus structure in broilers occurred on Days 21 and 42, and the CPH groups performed better; however, a similar change occurred in the jejunum on Days 42 and 63 (P < 0.05). MCPH and HCPH enhanced trypsin activity in the duodenum of 21-day-old and 63-day-old broilers (p < 0.05). Chymotrypsin activity increased (P > 0.05) in the duodenum of 63-day-old broilers fed MCPH. Lipase activity increased (P < 0.05) in the jejuna of 21-day-old broilers treated with HCPH. CPH increased trypsin activity in the ilea of 21-day-old broilers (P < 0.05). These results showed that CPH influenced the growth performance, carcass characteristics, serum biochemical indices, and intestinal morphology of yellow-feather broilers, which are related to growth stage. The recommended CPH level in broilers is 1% before 21 days of age and 3% after 21 days of age.

18.
Plant Foods Hum Nutr ; 79(1): 66-72, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37994988

RESUMO

Bioactive peptides derived from proteins found in various foods provide significant health benefits, including regulating blood sugar levels by inhibiting carbohydrate-hydrolyzing enzymes. Hydrolysates of peanut protein were prepared using alcalase (AH) or trypsin (TH) to generate antidiabetic peptides with high activity against α-amylase (IC50 of 6.46 and 5.71 mg/mL) and α-glucosidase (IC50 of 6.30 and 5.57 mg/mL), as well as antiradical activity to scavenge DPPH• (IC50 of 4.18 and 3.12 mg/mL) and ABTS•+ (IC50 of 2.87 and 2.56 mg/mL), respectively. The bioactivities of hydrolysates were greatest in the ultrafiltration-generated F3 fraction (< 3 kDa). The most active fraction was TH-F3, which was purified by gel filtration chromatography to generate sub-fractions (SF). With IC50 values of 1.05 and 0.69 mg/mL, the F3-SF8 fraction was the most effective at inhibiting the activity of α-amylase and α-glucosidase, respectively. This fraction was further purified using RP-HPLC to generate sub-subfractions (SSF), the most active of which were F3-SF8-SSF9 and SSF10. The peptide sequences F3-SF8-SSF9 and SSF10 were determined using LC-MS/MS. Two novel antidiabetic peptides with the potential to inhibit α-amylase and α-glucosidase were identified, with the sequences Asp-Trp-Arg (476.22 Da, IC50 of 0.78, and 0.35 mg/mL) and Phe-Tyr (329.15 Da, IC50 of 0.91, and 0.41 mg/mL). These results suggest that peptides derived from peanut protein are attractive natural ingredients for diabetes management applications.


Assuntos
Arachis , Hipoglicemiantes , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Arachis/metabolismo , alfa-Glucosidases/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Peptídeos/farmacologia , alfa-Amilases
19.
J Food Sci Technol ; 61(8): 1609-1619, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38966797

RESUMO

The interest in algae-derived bioactive compounds has grown due to their potential therapeutic efficacy against a range of diseases. These compounds, derived from proteins, exhibit diverse functions and profound pharmacological effects. Recent research has highlighted the extensive health benefits of algae-derived bioactive compounds, positioning them as potential natural antioxidants in the food, pharmaceutical, and cosmetic industries. This study focuses on extracting proteins from Porphyra yezoensis using innovative physical pre-treatment methods such as stirring, ball milling, and homogenization, under various acidic and alkaline conditions. Enzymatic hydrolysis, employing commercial enzymes at optimal temperature, pH, and enzyme-substrate ratios, produced distinct fractions according to molecular weight. Pepsin demonstrated the highest hydrolysis rate, with the fraction above 10 kDa identified as the most bioactive hydrolysate. Antioxidant activity was evaluated through DPPH, ABTS, ferrous ion chelation, and reducing power assays, demonstrating high antioxidant potential and the ability to mitigate oxidative stress. The 10 kDa fraction of pepsin hydrolysate exhibited 82.6% DPPH activity, 77.5% ABTS activity, 88.4% ferrous ion chelation activity, and higher reducing power potential (0.84 absorbance at 700 nm). Further exploration of mechanisms, amino acid profiles, and potential in vivo benefits is essential to fully exploit the medicinal potential of these algae-derived hydrolysates.

20.
Appl Environ Microbiol ; 89(6): e0039023, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37222584

RESUMO

Protein hydrolysates made from marine by-products are very nutritious but frequently contain trimethylamine (TMA), which has an unattractive fish-like smell. Bacterial trimethylamine monooxygenases can oxidize TMA into the odorless trimethylamine N-oxide (TMAO) and have been shown to reduce TMA levels in a salmon protein hydrolysate. To make the flavin-containing monooxygenase (FMO) Methylophaga aminisulfidivorans trimethylamine monooxygenase (mFMO) more suitable for industrial application, we engineered it using the Protein Repair One-Stop Shop (PROSS) algorithm. All seven mutant variants, containing 8 to 28 mutations, displayed increases in melting temperature of between 4.7°C and 9.0°C. The crystal structure of the most thermostable variant, mFMO_20, revealed the presence of four new stabilizing interhelical salt bridges, each involving a mutated residue. Finally, mFMO_20 significantly outperformed native mFMO in its ability to reduce TMA levels in a salmon protein hydrolysate at industrially relevant temperatures. IMPORTANCE Marine by-products are a high-quality source for peptide ingredients, but the unpleasant fishy odor caused by TMA limits their access to the food market. This problem can be mitigated by enzymatic conversion of TMA into the odorless TMAO. However, enzymes isolated from nature must be adapted to industrial requirements, such as the ability to tolerate high temperatures. This study has demonstrated that mFMO can be engineered to become more thermostable. Moreover, unlike the native enzyme, the best thermostable variant efficiently oxidized TMA in a salmon protein hydrolysate at industrial temperatures. Our results present an important next step toward the application of this novel and highly promising enzyme technology in marine biorefineries.


Assuntos
Metilaminas , Hidrolisados de Proteína , Animais , Metilaminas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA