RESUMO
Nonsense variants can inactivate gene function by causing the synthesis of truncated proteins or by inducing nonsense mediated decay of messenger RNAs. The occurrence of such variants in the genomes of livestock species is modulated by multiple demographic and selective factors. Even though nonsense variants can have causal effects on embryo lethality, abortions, and disease, their genomic distribution and segregation in domestic goats have not been characterized in depth yet. In this work, we have sequenced the genomes of 15 Murciano-Granadina bucks with an average coverage of 32.92 × ± 1.45 × . Bioinformatic analysis revealed 947 nonsense variants consistently detected with SnpEff and Ensembl-VEP. These variants were especially abundant in the 3'end of the protein-coding regions. Genes related to olfactory perception, ATPase activity coupled to transmembrane movement of substances, defense to virus, hormonal response, and sensory perception of taste were particularly enriched in nonsense variants. Seventeen nonsense variants expected to have harmful effects on fitness were genotyped in parent-offspring trios. We observed that several nonsense variants predicted to be lethal based on mouse knockout data did not have such effect, a finding that could be explained by the existence of multiple mechanisms counteracting lethality. These findings demonstrate that predicting the effects of putative nonsense variants on fitness is extremely challenging. As a matter of fact, such a goal could only be achieved by generating a high quality telomere-to-telomere goat reference genome combined with carefully curated annotation and functional testing of promising candidate variants.
RESUMO
BACKGROUND: Accessory proteins have diverse roles in coronavirus pathobiology. One of them in SARS-CoV (the causative agent of the severe acute respiratory syndrome outbreak in 2002-2003) is encoded by the open reading frame 8 (ORF8). Among the most dramatic genomic changes observed in SARS-CoV isolated from patients during the peak of the pandemic in 2003 was the acquisition of a characteristic 29-nucleotide deletion in ORF8. This deletion cause splitting of ORF8 into two smaller ORFs, namely ORF8a and ORF8b. Functional consequences of this event are not entirely clear. RESULTS: Here, we performed evolutionary analyses of ORF8a and ORF8b genes and documented that in both cases the frequency of synonymous mutations was greater than that of nonsynonymous ones. These results suggest that ORF8a and ORF8b are under purifying selection, thus proteins translated from these ORFs are likely to be functionally important. Comparisons with several other SARS-CoV genes revealed that another accessory gene, ORF7a, has a similar ratio of nonsynonymous to synonymous mutations suggesting that ORF8a, ORF8b, and ORF7a are under similar selection pressure. CONCLUSIONS: Our results for SARS-CoV echo the known excess of deletions in the ORF7a-ORF7b-ORF8 complex of accessory genes in SARS-CoV-2. A high frequency of deletions in this gene complex might reflect recurrent searches in "functional space" of various accessory protein combinations that may eventually produce more advantageous configurations of accessory proteins similar to the fixed deletion in the SARS-CoV ORF8 gene.
Assuntos
COVID-19 , Humanos , Fases de Leitura Aberta , SARS-CoV-2/genética , Evolução Biológica , NucleotídeosRESUMO
Protein engineering and enzyme immobilization strategies have produced numerous biocatalysts for modern industrial applications. In this study, we have also used these two strategies for improving the operational stability and catalytic efficiency of serine protease from Pseudomonas aeruginosa. The enzyme serine protease was truncated to separate its trypsin-like domain from the PDZ1 and PDZ2 domains. The truncated trypsin-like domain was expressed in Escherichia coli BL21, and its catalytic activity and thermostability were estimated. Later this trypsin-like domain was immobilized with 2% Na-alginate. The immobilized domain showed 10°C increase in optimum temperature compared to its free counterpart. Kinetic studies showed two-folds increased Vmax of the immobilized domain. Likewise, the Km value of this domain was 11.5 folds lower compared to the free trypsin-like domain. The catalytic efficiency (Kcat /Km ) of the immobilized enzyme also elevated to 311 folds. Additionally, the immobilized trypsin-like domain remained active in the presence of surfactants (Triton-X 100, SDS, and Tween-40) and metal ions (Mg2+ , Ca2+ , Na+ , and Zn2+ ). It also efficiently removes gelatin layer from X-ray film and hair from sheepskin. Thus, the immobilized trypsin-like domain of serine protease, with increased thermostability and catalytic efficiency, is operationally more stable than the soluble truncated trypsin-like domain.
Assuntos
Pseudomonas aeruginosa , Serina Proteases , Estabilidade Enzimática , Enzimas Imobilizadas/genética , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Pseudomonas aeruginosa/metabolismo , Serina Proteases/genética , Serina Proteases/metabolismo , Temperatura , Tripsina/metabolismoRESUMO
Plastid primary endosymbiosis has occurred twice, once in the Archaeplastida ancestor and once in the Paulinella (Rhizaria) lineage. Both events precipitated massive evolutionary changes, including the recruitment and activation of genes that are horizontally acquired (HGT) and the redeployment of existing genes and pathways in novel contexts. Here we address the latter aspect in Paulinella micropora KR01 (hereafter, KR01) that has independently evolved spliced leader (SL) trans-splicing (SLTS) of nuclear-derived transcripts. We investigated the role of this process in gene regulation, novel gene origination, and endosymbiont integration. Our analysis shows that 20% of KR01 genes give rise to transcripts with at least one (but in some cases, multiple) sites of SL addition. This process, which often occurs at canonical cis-splicing acceptor sites (internal introns), results in shorter transcripts that may produce 5'-truncated proteins with novel functions. SL-truncated transcripts fall into four categories that may show: (i) altered protein localization, (ii) altered protein function, structure, or regulation, (iii) loss of valid alternative start codons, preventing translation, or (iv) multiple SL addition sites at the 5'-terminus. The SL RNA genes required for SLTS are putatively absent in the heterotrophic sister lineage of photosynthetic Paulinella species. Moreover, a high proportion of transcripts derived from genes of endosymbiotic gene transfer (EGT) and HGT origin contain SL sequences. We hypothesize that truncation of transcripts by SL addition may facilitate the generation and expression of novel gene variants and that SLTS may have enhanced the activation and fixation of foreign genes in the host genome of the photosynthetic lineages, playing a key role in primary endosymbiont integration.
Assuntos
Amoeba , Rhizaria , Amoeba/genética , Amoeba/metabolismo , Evolução Biológica , RNA Líder para Processamento/genética , RNA Líder para Processamento/metabolismo , Trans-SplicingRESUMO
Autosomal primary microcephaly (MCPH) is a heterogenetic disorder that affects brain's cerebral cortex size and leads to a reduction in the cranial vault. Along with the hallmark feature of reduced head circumference, microcephalic patients also exhibit a variable degree of intellectual disability as well. Genetic studies have reported 28 MCPH genes, most of which produce microtubule-associated proteins and are involved in cell division. Herein this study, 14 patients from seven Pashtun origin Pakistani families of primary microcephaly were analyzed. Mutation analysis was performed through targeted Sanger DNA sequencing on the basis of phenotype-linked genetic makeup. Genetic analysis in one family found a novel pathogenic DNA change in the abnormal spindle microtubule assembly (ASPM) gene (NM_018136.4:c.3871dupGA), while the rest of the families revealed recurrent nonsense mutation c.3978G>A (p.Trp1326*) in the same gene. The novel reported frameshift insertion presumably truncates the protein p.(Lys1291Glyfs*14) and deletes the N-terminus domains. Identification of novel ASPM-truncating mutation expands the mutational spectrum of the ASPM gene, while mapping of recurrent mutation c.3978G>A (p.Trp1326*) will aid in establishing its founder effect in the Khyber Pakhtunkhwa (KPK) inhabitant population of Pakistan and should be suggestively screened for premarital counseling of MCPH susceptible families. Most of the recruited families are related to first-degree consanguinity. Hence, all the family elders were counseled to avoid intrafamilial marriages.
Assuntos
Microcefalia , Humanos , Microcefalia/genética , Paquistão , Proteínas do Tecido Nervoso/genética , Mutação , Análise de Sequência de DNARESUMO
Xia-Gibbs syndrome (XGS) is a rare Mendelian disease typically caused by de novo stop-gain or frameshift mutations in the AT-hook DNA binding motif containing 1 (AHDC1) gene. Patients usually present in early infancy with hypotonia and developmental delay and later exhibit intellectual disability (ID). The overall presentation is variable, however, and the emerging clinical picture is still evolving. A detailed phenotypic analysis of 34 XGS individuals revealed five core phenotypes (delayed motor milestones, speech delay, low muscle tone, ID, and hypotonia) in more than 80% of individuals and an additional 12 features that occurred more variably. Seizures and scoliosis were more frequently associated with truncations that arise before the midpoint of the protein although the occurrence of most features could not be predicted by the mutation position. Transient expression of wild type and different patient truncated AHDC1 protein forms in human cell lines revealed abnormal patterns of nuclear localization including a diffuse distribution of a short truncated form and nucleolar aggregation in mid-protein truncated forms. Overall, both the occurrence of variable phenotypes and the different distribution of the expressed protein reflect the heterogeneity of this syndrome.
Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Alelos , Proteínas de Ligação a DNA/genética , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Mutação , Fenótipo , SíndromeRESUMO
Hyperbaric oxygen (HBO) treatment of animals or ocular lenses in culture recapitulates many molecular changes observed in human age-related nuclear cataract. The guinea pig HBO model has been one of the best examples of such treatment leading to dose-dependent development of lens nuclear opacities. In this study, complimentary mass spectrometry methods were employed to examine protein truncation after HBO treatment of aged guinea pigs. Quantitative liquid chromatography-mass spectrometry (LC-MS) analysis of the membrane fraction of guinea pig lenses showed statistically significant increases in aquaporin-0 (AQP0) C-terminal truncation, consistent with previous reports of accelerated loss of membrane and cytoskeletal proteins. In addition, imaging mass spectrometry (IMS) analysis spatially mapped the acceleration of age-related αA-crystallin truncation in the lens nucleus. The truncation sites in αA-crystallin closely match those observed in human lenses with age. Taken together, our results suggest that HBO accelerates the normal lens aging process and leads to nuclear cataract.
Assuntos
Envelhecimento/fisiologia , Catarata/etiologia , Cristalinas/metabolismo , Oxigenoterapia Hiperbárica/efeitos adversos , Núcleo do Cristalino/metabolismo , Proteólise/efeitos dos fármacos , Animais , Aquaporinas/metabolismo , Catarata/metabolismo , Catarata/patologia , Cromatografia Líquida , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Proteínas do Olho/metabolismo , Cobaias , Núcleo do Cristalino/patologia , Espectrometria de Massas em Tandem , Cadeia A de alfa-Cristalina/metabolismoRESUMO
The truncation of Tau is thought to be important in promoting aggregation, with this feature characterising the pathology of dementias such as Alzheimer disease. Antibodies to the C-terminal and N-terminal regions of Tau were employed to examine Tau cleavage in five human brain regions: the entorhinal cortex, prefrontal cortex, motor cortex, hippocampus, and cerebellum. These were obtained from normal subjects ranging in age from 18 to 104 years. Tau fragments of approximately 40 kDa and 45 kDa with an intact N-terminus retained were found in soluble and insoluble brain fractions. In addition, smaller C-terminal Tau fragments ranging in mass from 17 kDa to 25 kDa were also detected. These findings are consistent with significant Tau cleavage taking place in brain regions from 18 years onwards. It appears that site-specific cleavage of Tau is widespread in the normal human brain, and that large Tau fragments that contain the N-terminus, as well as shorter C-terminal Tau fragments, are present in brain cells across the age range.
Assuntos
Envelhecimento , Encéfalo/metabolismo , Proteínas tau/análise , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Encéfalo/fisiopatologia , Cerebelo/metabolismo , Cerebelo/fisiopatologia , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Humanos , Pessoa de Meia-Idade , Desdobramento de Proteína , Proteólise , Adulto Jovem , Proteínas tau/metabolismoRESUMO
Leigh syndrome is a mitochondrial disease caused by pathogenic variants in over 85 genes. Whole exome sequencing of a patient with Leigh-like syndrome identified homozygous protein-truncating variants in two genes associated with Leigh syndrome; a reported pathogenic variant in PDHX (NP_003468.2:p.(Arg446*)), and an uncharacterized variant in complex I (CI) assembly factor TIMMDC1 (NP_057673.2:p.(Arg225*)). The TIMMDC1 variant was predicted to truncate 61 amino acids at the C-terminus and functional studies demonstrated a hypomorphic impact of the variant on CI assembly. However, the mutant protein could still rescue CI assembly in TIMMDC1 knockout cells and the patient's clinical phenotype was not clearly distinct from that of other patients with the same PDHX defect. Our data suggest that the hypomorphic effect of the TIMMDC1 protein-truncating variant does not constitute a dual diagnosis in this individual. We recommend cautious assessment of variants in the C-terminus of TIMMDC1 and emphasize the need to consider the caveats detailed within the American College of Medical Genetics and Genomics (ACMG) criteria when assessing variants.
Assuntos
Doença de Leigh/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Deleção de Sequência , Diagnóstico Precoce , Técnicas de Inativação de Genes , Células HEK293 , Homozigoto , Humanos , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Complexo Piruvato Desidrogenase/genética , Sequenciamento do ExomaRESUMO
Increasing evidence suggests that α-synuclein (αS) aggregates in brains of individuals with Parkinson's disease and dementia with Lewy bodies can spread in a prion-like manner. Although the initial αS nuclei are pivotal in determining αS fibril polymorphs and resulting phenotypes, it is not clear how the initial fibril seeds are generated. Previous studies have shown that αS truncation might have an important role in αS aggregation. However, little is known about how this truncation influences αS's propagation properties. In the present study, we generated αS fibrils from a series of truncated human αS constructs, characterized their structures and conformational stabilities, and investigated their ability to convert the conformation of full-length αS in vitro, in cultured cells, and in WT mice. We show that both C- and N-terminal truncations of human αS induce fibril polymorphs and exhibit different cross-seeding activities. N-terminally 10- or 30-residue-truncated human αS fibrils induced more abundant αS pathologies than WT fibrils in mice, whereas other truncated fibrils induced less abundant pathologies. Biochemical analyses of these truncated fibrils revealed that N-terminal 10- or 30-residue truncations of human αS change the fibril conformation in a manner that increases their structural compatibility with WT mouse αS fibrils and reduces their stability. C-terminally 20-residue-truncated fibrils displayed enhanced seeding activity in vitro Our findings imply that truncation of αS can influence its prion-like pathogenicity, resulting in phenotypic diversity of α-synucleinopathies.
Assuntos
Agregação Patológica de Proteínas/etiologia , alfa-Sinucleína/genética , Animais , Humanos , Corpos de Lewy/patologia , Camundongos , Proteínas Mutantes , Doença de Parkinson/etiologia , Príons/patogenicidade , Conformação ProteicaRESUMO
Proteolytic degradation is a serious problem that complicates downstream processing during production of recombinant therapeutic proteins. It can lead to decreased product yield, diminished biological activity, and suboptimal product quality. Proteolytic degradation or protein truncation is observed in various expression hosts and is mostly attributed to the activity of proteases released by host cells. Since these clipped proteins can impact pharmacokinetics and immunogenicity in addition to potency, they need to be appropriately controlled to ensure consistency of product quality and patient safety. A chromatography step for the selective removal of clipped proteins from an intact protein was developed in this study. Poly(ethylenimine)-grafted anion- exchange resins (PolyQUAT and PolyPEI) were evaluated and compared to traditional macroporous anion-exchange and tentacled anion-exchange resins. Isocratic retention experiments were conducted to determine the retention factors (k') and charge factors (Z) were determined through the classical stoichiometric displacement model. High selectivity in separation of closely related clipped proteins was obtained with the PolyQUAT resin. A robust design space was established for the PolyQUAT chromatography through Design-Of-Experiments (DoE) based process optimization. Results showed a product recovery of up to 63% with purity levels >99.0%. Approximately, one-log clearance of host cell protein and two-logs clearance of host cell DNA were also obtained. The newly developed PolyQUAT process was compared with an existing process and shown to be superior with respect to the number of process steps, process time, process yield, and product quality.
Assuntos
Resinas de Troca Aniônica/química , Cromatografia por Troca Iônica/métodos , Polietilenoimina/química , Proteínas/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
The Trichinella spiralis novel cystatin (TsCstN) inhibits cathepsin L (CatL) activity and inflammation of macrophages during lipopolysaccharide (LPS) induction. To identify the protease inhibitory region, this study applied an in silico modeling approach to simulate truncation sites of TsCstN (Ts01), which created four truncated forms, including TsCstN∆1-39 (Ts02), TsCstN∆1-71 (Ts03), TsCstN∆1-20, ∆73-117 (Ts04), and TsCstN∆1-20, ∆42-117 (Ts05). The superimposition of these truncates modeled with AlphaFold Colab indicated that their structures were more akin to Ts01 than those modeled with I-TASSER. Moreover, Ts04 exhibited the closest resemblance to the structure of Ts01. The recombinant Ts01 (rTs01) and truncated proteins (rTs02, rTs03, and rTs04) were successfully expressed in a prokaryotic expression system while Ts05 was synthesized, with sizes of approximately 14, 12, 8, 10, and 2.5 kDa, respectively. When determining the inhibition of CatL activity, both rTs01 and rTs04 effectively reduced CatL activity in vitro. Thus, the combination of the α1 and L1 regions may be sufficient to inhibit CatL. This study provides comprehensive insights into TsCstN, particularly regarding its protein function and inhibitory domains against CatL.
Assuntos
Cistatinas , Trichinella spiralis , Trichinella spiralis/genética , Trichinella spiralis/metabolismo , Animais , Cistatinas/metabolismo , Cistatinas/química , Cistatinas/genética , Catepsina L/metabolismo , Proteínas de Helminto/química , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Modelos Moleculares , Domínios Proteicos , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Lipopolissacarídeos/farmacologiaRESUMO
Description of genetic phenomena and variations requires exact language and concepts. Vast amounts of variation data are produced with next-generation sequencing pipelines. The obtained variations are automatically annotated, e.g., for their functional consequences. These tools and pipelines, along with systematic nomenclature, mainly work well, but there are still some problems in nomenclature, organization of some databases, misuse of concepts and certain practices. Therefore, systematic errors prevent correct annotation and often preclude further analysis of certain variation types. Problems and solutions are described for presumed protein truncations, variants that are claimed to be of loss-of-function based on the type of variation, and synonymous variants that are not synonymous and lead to sequence changes or to missing protein.
RESUMO
Effector genes play critical roles in the antagonistic interactions between plants and pathogens. However, knowledge of mutation mechanisms and evolutionary processes in effector genes and the contribution of climatic factors to the evolution of effector genes are fragmented but important in sustainable management of plant diseases and securing food supply under changing climates. Here, we used a population genetic approach to explore the evolution of the Avr4 gene in Phytophthora infestans, the causal agent of potato blight. We found that the Avr4 gene exhibited a high genetic diversity generated by point mutation and sequence deletion. Frameshifts caused by a single base-pair deletion at the 194th nucleotide position generate two stop codons, truncating almost the entire C-terminal, which is important for effector function and R4 recognition in all sequences. The effector is under natural selection for adaptation supported by comparative analyses of population differentiation (FST ) and isolation-by-distance between Avr4 sequences and simple sequence repeat marker loci. Furthermore, we found that local air temperature was positively associated with pairwise FST in the Avr4 sequences. These results suggest that the evolution of the effector gene is influenced by local air temperature, and the C-terminal truncation is one of the main mutation mechanisms in the P. infestans effector gene to circumvent the immune response of potato plants. The implication of these results to agricultural and natural sustainability in future climate conditions is discussed.
RESUMO
BACKGROUND: Alström syndrome (AS, OMIM ID 203800) is a rare disease involving multiple organs in children and is mostly reported in non-Chinese patients. In the Chinese population, there are few reports on the clinical manifestations and pathogenesis of AS. This is the first report on the association between AS and Graves' hyperthyroidism. CASE SUMMARY: An 8-year-old Chinese girl was diagnosed with AS. Two years later, Graves' hyperthyroidism developed with progressive liver dysfunction. The patient's clinical data were collected; DNA from peripheral blood of the proband, parents and sibling was collected for gene mutation detection using the second-generation sequencing method and gene panel for diabetes. The association between the patient's genotype and clinical phenotype was analyzed. She carried the pathogenic compound heterozygous mutation of ALMS1 (c.2296_2299del4 and c.11460C>A). These stop-gain mutations likely caused truncation of the ALMS1 protein. CONCLUSION: The manifestation of hyperthyroidism may suggest rapid progression of AS.
RESUMO
ARHGEF9 encodes collybistin, a brain-specific guanosine diphosphate-guanosine-5'-triphosphate exchange factor that plays an important role in clustering of gephyrin and γ-aminobutyric acid type A receptors in the postsynaptic membrane. Overwhelming evidence suggests that defects in this protein can cause X-linked intellectual disability, which comprises a series of clinical phenotypes, including autism spectrum disorder, behavior disorder, intellectual disability, and febrile seizures. Here, we report a boy with clinical symptoms of severe intellectual disability, epilepsy, and developmental delay and regression. Trio exome sequencing (trio-clinical exome sequencing) identified a novel hemizygous deletion, c.656_c.669delACTTCTTTGAGGCC (p. His219Leu fs*9), in exon 5 of ARHGEF9. This variant was not reported in either the Genome Aggregation Database or our database of 309 patients with neurodevelopmental disorders. Oxcarbazepine and levetiracetam reduced the frequency of the patient's epileptic seizures to a certain extent, but psychomotor developmental delay and developmental regression became more obvious with age. This case study seeks to report a de novo loss-of-function mutation of ARHGEF9, aiming to emphasize the genetic diagnosis of X-linked intellectual disability and further improve knowledge of the ethnic distribution of ARHGEF9 mutations.
Assuntos
Transtorno do Espectro Autista , Epilepsia , Deficiência Intelectual , Epilepsia/tratamento farmacológico , Epilepsia/genética , Humanos , Deficiência Intelectual/genética , Masculino , Mutação , Fatores de Troca de Nucleotídeo Guanina Rho/genéticaRESUMO
We have recently identified BEN1 as a protein interactor of seryl-tRNA synthetase (SerRS) from model plant Arabidopsis thaliana. BEN1 contains an NADP+ binding domain and possesses acidic N-terminal extension essential for interaction with A. thaliana SerRS. This extension, specific for BEN1 homologues from Brassicaceae family, is solvent-exposed and distant to the nucleotide-binding site. We prepared a truncated BEN1 variant ΔN17BEN1 lacking the first 17 amino acid of this N-terminal extension as well as full-length BEN1 to investigate how the truncation affects the binding affinity towards coenzyme NADP+. By performing microscale thermophoresis (MST) experiments we have shown that both BEN1 variants bind the NADP+ cofactor, however, truncated BEN1 showed 34-fold higher affinity towards NADP+ indicating that its core protein structure is not just preserved but it binds NADP+ even stronger. To further corroborate the obtained results, we opted for a computational approach based on classical molecular dynamics simulations of both complexes. Our results have shown that both truncated and intact BEN1 variants form the same number of interactions with the NADP+ cofactor; however, it was the interaction occupancy that was affected. Namely, three independent MD simulations showed that the ΔN17BEN1 variant in complex with NADP+ has significantly higher interaction occupancy thus binds NADP+ with more than one order of magnitude higher affinity. Contrary to our expectations, the truncation of this distant region that does not communicate with the nucleotide-binding site didn't result in the gain of interaction but affected the intrinsic conformational dynamics which in turn fine-tuned the binding affinity by increasing the interaction occupancy and strength of the key conserved cation-π interaction between Arg69 and adenine of NADP+ and hydrogen bond between Ser244 and phosphate of NADP+.
Assuntos
Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas/química , Algoritmos , Sequência de Aminoácidos , Sítios de Ligação , Ligação de Hidrogênio , Ligação Proteica , Relação Estrutura-AtividadeRESUMO
INTRODUCTION: The main regulatory subunits of Class IA phosphatidylinositol 3-kinase (PI3K), p85α and p85ß, initiate diverse cellular activities independent of binding to the catalytic subunit p110. Several of these signaling processes directly or indirectly contribute to a regulation of PI3K and could become targets for therapeutic efforts. Areas covered: This review will highlight two general areas of p85 activity: (1) direct interaction with regulatory proteins and with determinants of the cytoskeleton, and (2) a genetic analysis by deletion and domain switches identifying new functions for p85 domains. Expert Opinion: Isoform-specific activities of regulatory subunits have long been at the periphery of the PI3K field. Our understanding of these unique functions of the regulatory subunits is fragmentary and raises many important questions. At this time, there is insufficient information to translate this knowledge into the clinic, but some tempting targets have emerged that could move the field forward with the help of novel technologies in drug design and identification.
Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Desenho de Fármacos , Terapia de Alvo Molecular , Animais , Humanos , Isoenzimas , Fosfatidilinositol 3-Quinases/metabolismo , Subunidades Proteicas , Transdução de Sinais/fisiologiaRESUMO
Menkes disease (MD) is a rare recessively inherited lethal disorder of copper metabolism. The gene ATP7A defective in MD consists of 23 exons and the coding region encompasses 4500 bp. About 300 distinct mutations, representing all types, have been identified in ATP7A. However all mutations identified so far in the exon 2 to exon 7, corresponding to 1869 bp of the coding sequence, result in truncated protein products. No missense mutations have been identified in this region. As about 30% of the total number of mutations identified are located in exon 2 to exon 7, we have designed a protein truncation test (PTT) for rapid detecting of mutations in this part of the gene. In order to determine the applicability of the test, we analysed RNA obtained from eleven MD patients with known mutations in this region. As a truncated product could be identified in all the included samples, PTT proves to be a useful technique for rapid detection of mutations in the N-terminal part of the ATP7A gene. Furthermore as MD is a X-linked disease, normally only affecting boys, the risk of false negative results, due to nonsense mediated RNA decay, leading to allelic exclusion, can be left out of account.