Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hepatol ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39260704

RESUMO

BACKGROUND & AIMS: The mechanisms underlying the regulation of hepatocyte non-receptor tyrosine kinases in metabolic dysfunction-associated steatohepatitis (MASH) remain largely unclear. METHODS: Hepatocyte-specific overexpression or deletion and anti-protein tyrosine kinase 2 beta (PYK2) or anti-TRAF6-binding protein (T6BP) crosslinking were utilised to study fatty liver protection by T6BP. P-PTC, a peptide-proteolysis targeting chimaera, degrades PYK2 to block MASH progression. RESULTS: Since PYK2 activation is promoter signalling in steatohepatitis development, we find that T6BP is a novel and critical suppressor of PYK2 that reduces hepatic lipid accumulation, pro-inflammatory factor release, and pro-fibrosis production by ubiquitin ligase CBL to degrade PYK2. Mechanistic evidence suggests that T6BP directly targets PYK2 and prevents its N-terminal FERM domain-triggered dimerization, disrupting downstream PYK2-JNK signalling hyperactivation. Additionally, T6BP favourably recruits CBL, a particular E3 ubiquitin ligase targeting PYK2, to form a complex and degrade PYK2. T6BP (F1), a core fragment of T6BP, directly blocks N-terminal FERM domain-associated dimerization of PYK2, followed by T6BP-recruiting CBL-mediated PYK2 degradation in a typical T6BP-dependent manner when the tiny fragment is specifically expressed using thyroxine binding globulin (TBG)-ground vectors. This inhibits the progression of MASH, metabolic dysfunction-associated steatotic liver disease (MASLD)-related HCC (MASH-HCC), and metabolic syndrome in dietary rodent models. First-ever peptide-proteolysis targeting chimaera (P-PTC) based on the core segment of T6BP as a ligand for targeted recruitment of CBL targeting metabolic disorders like MASH has been devised and validated in animal models. CONCLUSIONS: Our study revealed a previously unknown mechanism: identification of T6BP as a key eliminator of fatty liver strongly contributes to the development of promising therapeutic targets, and the discovery of crucial fragments of T6BP-based pharmacon that interrupt PYK2 dimerization are novel and viable treatments for fatty liver and its advanced symptoms and complications. IMPACT AND IMPLICATIONS: Excessive high-energy diet ingestion is critical in driving steatohepatitis via regulation of hepatocyte non-receptor tyrosine kinases. The mechanisms under lying the regulation of hepatocyte PYK2 in metabolic dysfunction-associated steatohepatitis (MASH) remain largely unclear. Here, we found that T6BP as a critical fatty liver eliminator has a significant impact on the development of promising therapeutic targets. Additionally, vital T6BP-based pharmacon fragments that impede PYK2 dimerization have been found, offering new and effective treatments for advanced fatty liver symptoms and complications.

2.
J Neuroinflammation ; 21(1): 196, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107821

RESUMO

Multinucleated microglia have been observed in contexts associated with infection, inflammation, and aging. Though commonly linked to pathological conditions, the larger cell size of multinucleated microglia might enhance their phagocytic functions, potentially aiding in the clearance of brain debris and suggesting a reassessment of their pathological significance. To assess the phagocytic capacity of multinucleated microglia and its implications for brain debris clearance, we induced their formation by inhibiting Pyk2 activity using the pharmacological inhibitor PF-431396, which triggers cytokinesis regression. Multinucleated microglia demonstrate enhanced phagocytic function, as evidenced by their increased capacity to engulf ß-amyloid (Aß) oligomers. Concurrently, the phosphorylation of Pyk2, induced by Aß peptide, was diminished upon treatment with a Pyk2 inhibitor (Pyk2-Inh, PF-431396). Furthermore, the increased expression of Lamp1, a lysosomal marker, with Pyk2-inh treatment, suggests an enhancement in proteolytic activity. In vivo, we generated an acute Alzheimer's disease (AD) model by infusing Aß into the brains of Iba-1 EGFP transgenic (Tg) mice. The administration of the Pyk2-Inh led to an increased migration of microglia toward amyloid deposits in the brains of Iba-1 EGFP Tg mice, accompanied by morphological activation, suggesting a heightened affinity for Aß. In human microglia, lipopolysaccharide (LPS)-induced inflammatory responses showed that inhibition of Pyk2 signaling significantly reduced the transcription and protein expression of pro-inflammatory markers. These results suggest that Pyk2 inhibition can modulate microglial functions, potentially reducing neuroinflammation and aiding in the clearance of neurodegenerative disease markers. This highlights Pyk2 as a promising target for therapeutic intervention in neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Modelos Animais de Doenças , Quinase 2 de Adesão Focal , Camundongos Transgênicos , Microglia , Fagocitose , Quinase 2 de Adesão Focal/metabolismo , Quinase 2 de Adesão Focal/antagonistas & inibidores , Animais , Peptídeos beta-Amiloides/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Camundongos , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Humanos , Camundongos Endogâmicos C57BL
3.
Int Arch Allergy Immunol ; 183(5): 552-565, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34915498

RESUMO

OBJECTIVE: Sepsis is a predominant reason for the growing morbidity and mortality in the world. The role of circular RNAs (CircRNAs) is actively researched in sepsis. In this study, we attempt to find out the effect of CircRNA protein tyrosine kinase 2 (circPTK2) on cardiomyocyte apoptosis in septic mice. METHODS: Septic mouse model was established by cecal ligation and puncture. Then circPTK2 expression was detected and the role of circPTK2 in myocardial damage was assessed after circPTK2 expression was silenced using Ad-sh-circHIPK3. The subcellular localization of circPTK2 was analyzed. Besides, the binding relation between circPTK2 and microRNA (miR)-29b-3p and between miR-29b-3p and BCL2 antagonist/killer 1 (BAK1) was verified. The expression of miR-29b-3p and BAK1 in the myocardium was detected. Functional rescue was conducted to evaluate the role of miR-29b-3p and BAK1 in cardiomyocyte apoptosis in septic mice. RESULTS: CircPTK2 was highly expressed in the myocardium of septic mice, while circPTK2 silencing relieved the cardiac function and reduced inflammatory reaction and cardiomyocyte apoptosis of septic mice. Mechanically, circPTK2 competitively bound to miR-29b-3p to upregulate BAK1 mRNA level. Inhibition of miR-29b-3p and BAK1 overexpression could counteract the protective role of circPTK2 silencing in the myocardium of septic mice. CONCLUSION: CircPTK2 is overexpressed in the myocardium of septic mice. CircPTK2 competitively bound to miR-29b-3p to upregulate BAK1 mRNA level, to promote cardiomyocyte apoptosis, inflammatory response, and myocardial damage of the myocardium of septic mice.


Assuntos
MicroRNAs , Sepse , Animais , Apoptose/genética , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , RNA Circular/genética , RNA Mensageiro/metabolismo , Sepse/genética , Sepse/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo
4.
J Biol Chem ; 295(41): 14111-14124, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32753481

RESUMO

The multifaceted adaptor protein ß-arr1 (ß-arrestin1) promotes activation of focal adhesion kinase (FAK) by the chemokine receptor CXCR4, facilitating chemotaxis. This function of ß-arr1 requires the assistance of the adaptor protein STAM1 (signal-transducing adaptor molecule 1) because disruption of the interaction between STAM1 and ß-arr1 reduces CXCR4-mediated activation of FAK and chemotaxis. To begin to understand the mechanism by which ß-arr1 together with STAM1 activates FAK, we used site-directed spin-labeling EPR spectroscopy-based studies coupled with bioluminescence resonance energy transfer-based cellular studies to show that STAM1 is recruited to activated ß-arr1 by binding to a novel surface on ß-arr1 at the base of the finger loop, at a site that is distinct from the receptor-binding site. Expression of a STAM1-deficient binding ß-arr1 mutant that is still able to bind to CXCR4 significantly reduced CXCL12-induced activation of FAK but had no impact on ERK-1/2 activation. We provide evidence of a novel surface at the base of the finger loop that dictates non-GPCR interactions specifying ß-arrestin-dependent signaling by a GPCR. This surface might represent a previously unidentified switch region that engages with effector molecules to drive ß-arrestin signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Complexos Endossomais de Distribuição Requeridos para Transporte , Sistema de Sinalização das MAP Quinases , Fosfoproteínas , Receptores CXCR4 , beta-Arrestina 1 , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Quimiocina CXCL12/química , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Quinase 1 de Adesão Focal/química , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Células HEK293 , Humanos , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Estrutura Secundária de Proteína , Receptores CXCR4/química , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , beta-Arrestina 1/química , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo
5.
J Biol Chem ; 294(34): 12836-12845, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31292193

RESUMO

Focal adhesion kinase (FAK) is a central regulator of integrin-dependent cell adhesion and migration and has recently been shown to co-localize with endosomal proteins. The early endocytic protein Rab5 controls integrin trafficking, focal adhesion disassembly, and cell migration and has been shown to be activated upon integrin engagement by mechanisms that remain unclear. Because FAK is a critical regulator of integrin-dependent signaling and Rab5 recapitulates FAK-mediated effects, we evaluated the possibility that FAK activates Rab5 and contributes to cell migration. Pulldown assays revealed that Rab5-GTP levels are decreased upon treatment with a pharmacological inhibitor of FAK, PF562,271, in resting A549 cells. These events were associated with decreased peripheral Rab5 puncta and a reduced number of early endosome antigen 1 (EEA1)-positive early endosomes. Accordingly, as indicated by FAK inhibition experiments and in FAK-null fibroblasts, adhesion-induced FAK activity increased Rab5-GTP levels. In fact, expression of WT FAK and FAK/Y180A/M183A (open conformation), but not FAK/Arg454 (kinase-dead), augmented Rab5-GTP levels in FAK-null fibroblasts and A549 cells. Moreover, expression of a GDP-bound Rab5 mutant (Rab5/S34N) or shRNA-mediated knockdown of endogenous Rab5 prevented FAK-induced A549 cell migration, whereas expression of WT or GTP-bound Rab5 (Rab5/Q79L), but not Rab5/S34N, promoted cell migration in FAK-null fibroblasts. Mechanistically, FAK co-immunoprecipitated with the GTPase-activating protein p85α in a phosphorylation (Tyr397)-dependent manner, preventing Rab5-GTP loading, as shown by knockdown and transfection recovery experiments. Taken together, these results reveal that FAK activates Rab5, leading to cell migration.


Assuntos
Movimento Celular , Quinase 1 de Adesão Focal/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Células A549 , Humanos , Células Tumorais Cultivadas
6.
Cell Microbiol ; 21(9): e13048, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31099453

RESUMO

The apicomplexan parasite Toxoplasma gondii invades tissues and traverses non-permissive biological barriers in infected humans and other vertebrates. Following ingestion, the parasite penetrates the intestinal wall and disseminates to immune-privileged sites such as the brain parenchyma, after crossing the blood-brain barrier. In the present study, we have established a protocol for high-purification of primary mouse brain endothelial cells to generate stably polarised monolayers that allowed assessment of cellular barrier traversal by T. gondii. We report that T. gondii tachyzoites translocate across polarised monolayers of mouse brain endothelial cells and human intestinal Caco2 cells without significantly perturbing barrier impermeability and with minimal change in transcellular electrical resistance. In contrast, challenge with parasite lysate or LPS increased barrier permeability by destabilising intercellular tight junctions (TJs) and accentuated transmigration of T. gondii. Conversely, reduced phosphorylation of the TJ-regulator focal adhesion kinase (FAK) was observed dose-dependently upon challenge of monolayers with live T. gondii but not with parasite lysate or LPS. Pharmacological inhibition of FAK phosphorylation reversibly altered barrier integrity and facilitated T. gondii translocation. Finally, gene silencing of FAK by shRNA facilitated transmigration of T. gondii across epithelial and endothelial monolayers. Jointly, the data demonstrate that T. gondii infection transiently alters the TJ stability through FAK dysregulation to facilitate transmigration. This work identifies the implication of the TJ regulator FAK in the transmigration of T. gondii across polarised cellular monolayers and provides novel insights in how microbes overcome the restrictiveness of biological barriers.


Assuntos
Barreira Hematoencefálica/parasitologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Toxoplasma/patogenicidade , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiopatologia , Encéfalo/parasitologia , Células CACO-2 , Polaridade Celular/fisiologia , Células Endoteliais/parasitologia , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/genética , Inativação Gênica , Interações Hospedeiro-Patógeno , Humanos , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , RNA Interferente Pequeno , Junções Íntimas/metabolismo , Junções Íntimas/parasitologia , Virulência/efeitos dos fármacos , Virulência/imunologia
7.
J Biol Chem ; 292(6): 2065-2079, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-27994061

RESUMO

Autophagy is an evolutionarily conserved intracellular degradation/recycling system that is essential for cellular homeostasis but is dysregulated in a number of diseases, including myocardial hypertrophy. Although it is clear that limiting or accelerating autophagic flux can result in pathological cardiac remodeling, the physiological signaling pathways that fine-tune cardiac autophagy are poorly understood. Herein, we demonstrated that stimulation of cardiomyocytes with phenylephrine (PE), a well known hypertrophic agonist, suppresses autophagy and that activation of focal adhesion kinase (FAK) is necessary for PE-stimulated autophagy suppression and subsequent initiation of hypertrophic growth. Mechanistically, we showed that FAK phosphorylates Beclin1, a core autophagy protein, on Tyr-233 and that this post-translational modification limits Beclin1 association with Atg14L and reduces Beclin1-dependent autophagosome formation. Remarkably, although ectopic expression of wild-type Beclin1 promoted cardiomyocyte atrophy, expression of a Y233E phosphomimetic variant of Beclin1 failed to affect cardiomyocyte size. Moreover, genetic depletion of Beclin1 attenuated PE-mediated/FAK-dependent initiation of myocyte hypertrophy in vivo Collectively, these findings identify FAK as a novel negative regulator of Beclin1-mediated autophagy and indicate that this pathway can facilitate the promotion of compensatory hypertrophic growth. This novel mechanism to limit Beclin1 activity has important implications for treating a variety of pathologies associated with altered autophagic flux.


Assuntos
Autofagia , Proteína Beclina-1/metabolismo , Cardiomegalia/patologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Miócitos Cardíacos/patologia , Animais , Proteína Beclina-1/genética , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Receptores Adrenérgicos alfa/metabolismo , Transdução de Sinais
8.
J Biol Chem ; 292(2): 488-504, 2017 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-27895123

RESUMO

We previously identified focal adhesion kinase (FAK) as an important regulator of ciliogenesis in multiciliated cells. FAK and other focal adhesion (FA) proteins associate with the basal bodies and their striated rootlets and form complexes named ciliary adhesions (CAs). CAs display similarities with FAs but are established in an integrin independent fashion and are responsible for anchoring basal bodies to the actin cytoskeleton during ciliogenesis as well as in mature multiciliated cells. FAK down-regulation leads to aberrant ciliogenesis due to impaired association between the basal bodies and the actin cytoskeleton, suggesting that FAK is an important regulator of the CA complex. However, the mechanism through which FAK functions in the complex is not clear, and in this study we examined the role of this protein in both ciliogenesis and ciliary function. We show that localization of FAK at CAs depends on interactions taking place at the amino-terminal (FERM) and carboxyl-terminal (FAT) domains and that both domains are required for proper ciliogenesis and ciliary function. Furthermore, we show that an interaction with another CA protein, paxillin, is essential for correct localization of FAK in multiciliated cells. This interaction is indispensable for both ciliogenesis and ciliary function. Finally, we provide evidence that despite the fact that FAK is in the active, open conformation at CAs, its kinase activity is dispensable for ciliogenesis and ciliary function revealing that FAK plays a scaffolding role in multiciliated cells. Overall these data show that the role of FAK at CAs displays similarities but also important differences compared with its role at FAs.


Assuntos
Proteínas Aviárias/metabolismo , Corpos Basais/enzimologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Citoesqueleto de Actina/enzimologia , Citoesqueleto de Actina/genética , Animais , Proteínas Aviárias/genética , Galinhas , Cílios/enzimologia , Cílios/genética , Proteína-Tirosina Quinases de Adesão Focal/genética , Paxilina/genética , Paxilina/metabolismo , Domínios Proteicos , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
9.
J Biol Chem ; 292(44): 18281-18289, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-28860193

RESUMO

The Cas family scaffolding protein p130Cas is a Src substrate localized in focal adhesions (FAs) and functions in integrin signaling to promote cell motility, invasion, proliferation, and survival. p130Cas targeting to FAs is essential for its tyrosine phosphorylation and downstream signaling. Although the N-terminal SH3 domain is important for p130Cas localization, it has also been reported that the C-terminal region is involved in p130Cas FA targeting. The C-terminal region of p130Cas or Cas family homology domain (CCHD) has been reported to adopt a structure similar to that of the focal adhesion kinase C-terminal focal adhesion-targeting domain. The mechanism by which the CCHD promotes FA targeting of p130Cas, however, remains unclear. In this study, using a calorimetry approach, we identified the first LD motif (LD1) of the FA-associated protein paxillin as the binding partner of the p130Cas CCHD (in a 1:1 stoichiometry with a Kd ∼4.2 µm) and elucidated the structure of the p130Cas CCHD in complex with the paxillin LD1 motif by X-ray crystallography. Of note, a comparison of the CCHD/LD1 complex with a previously solved structure of CCHD in complex with the SH2-containing protein NSP3 revealed that LD1 had almost identical positioning of key hydrophobic and acidic residues relative to NSP3. Because paxillin is one of the key scaffold molecules in FAs, we propose that the interaction between the p130Cas CCHD and the LD1 motif of paxillin plays an important role in p130Cas FA targeting.


Assuntos
Proteínas Aviárias/metabolismo , Proteína Substrato Associada a Crk/metabolismo , Modelos Moleculares , Paxilina/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Proteínas Aviárias/química , Sítios de Ligação , Galinhas , Proteína Substrato Associada a Crk/química , Proteína Substrato Associada a Crk/genética , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Cinética , Leucina , Camundongos , Mutação , Paxilina/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína
10.
J Biol Chem ; 292(39): 16321-16332, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28821612

RESUMO

The syndecan family of heparan sulfate proteoglycans contributes to cell adhesion and communication by serving as co-receptors for cell signaling and extracellular matrix molecules. Syndecan-2 is located at the cell surface, and we previously reported that it induces matrix metalloproteinase-7 (MMP-7) expression in colon cancer cells. However, the underlying regulatory mechanisms are unknown. Here, we report that overexpression of syndecan-2 in HT-29 colon cancer cells increases the phosphorylation of focal adhesion kinase (FAK) and ERK in parallel with up-regulated MMP-7 expression, but a syndecan-2 mutant lacking the cytoplasmic domain showed significant reductions in these effects. Consistent with this observation, FAK inhibition via FAK-related non-kinase expression or inhibition of ERK with the ERK1/2 inhibitor SCH772984 diminished the syndecan-2-mediated up-regulation of MMP-7. Activation of PKC enhanced syndecan-2-mediated MMP-7 expression, whereas inhibition of PKC had the opposite effect. Of note, the exogenous expression of syndecan-2 triggered localization of PKCγ to the membrane. Expression of syndecan-2 harboring a phosphomimetic (S198E) mutation of the variable region of the cytoplasmic domain enhanced MMP-7 expression and FAK phosphorylation. Finally, experimental suppression of shedding of the syndecan-2 extracellular domain did not significantly affect the syndecan-2-mediated up-regulation of MMP-7 in the early period after syndecan-2 overexpression. Taken together, these findings suggest that syndecan-2's cytoplasmic domain up-regulates MMP-7 expression in colon cancer cells via PKCγ-mediated activation of FAK/ERK signaling.


Assuntos
Carcinoma/metabolismo , Neoplasias do Colo/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Quinase C/metabolismo , Processamento de Proteína Pós-Traducional , Sindecana-2/metabolismo , Substituição de Aminoácidos , Animais , Carcinoma/tratamento farmacológico , Carcinoma/enzimologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/enzimologia , Indução Enzimática/efeitos dos fármacos , Quinase 1 de Adesão Focal/química , Quinase 1 de Adesão Focal/genética , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinase 7 da Matriz/genética , Metaloproteinase 7 da Matriz/metabolismo , Mutação , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Interferência de RNA , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sindecana-2/antagonistas & inibidores , Sindecana-2/química , Sindecana-2/genética
11.
BMC Complement Altern Med ; 18(1): 17, 2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29338725

RESUMO

BACKGROUND: Based on clinical medications and related studies, we established a Yang-Gan Jie-Du Sang-Jie (YGJDSJ) herbal formula for hepatocarcinoma treatment. In present study, we evaluated the anti-cancer potential of YGJDSJ on suspension-grown human hepatocellular carcinoma Bel-7402 cells. METHODS: Bel-7402 cells were cultured in poly(2-hydroxyethyl methacrylate) (poly-HEMA) coated plates and treated with YGJDSJ. Anchorage-independent cell growth was detected by cell Counting Kit-8 (CCK-8) assay and soft agar colony formation assay. Anoikis was detected by ethdium homodimer-1 (EthD-1) staining and flow cytometry analysis. Caspases activities were detected by the cleavage of chromogenic substrate. Reactive oxygen species (ROS) was detected by 2',7'-dichlorofluorescin diacetate (DCFH-DA) staining. Protein expression and phosphorylation was identified by western blot. Protein expression was knocked-down by siRNA. RESULTS: YGJDSJ inhibited the proliferation of Bel-7402 cells in poly-HEMA coated plates and anchorage-independent growth of Bel-7402 cells in soft agar. YGJDSJ also induced anoikis in Bel-7402 cells as indicated by EthD-1 staining and flow cytometry analysis. YGJDSJ activated caspase-3, - 8, and - 9 in suspension-grown Bel-7402 cells. The pan-caspase inhibitor Z-VAD-FMK significantly abrogated the effects of YGJDSJ on anoikis in suspension-grown Bel-7402 cells. In addition, YGJDSJ increased ROS in suspension-grown Bel-7402 cells. The ROS scavenger N-acetyl-L-cysteine (NAC) partially attenuated YGJDSJ-induced activation of caspase-3, - 8 and - 9 and anoikis in suspension-grown Bel-7402 cells. Furthermore, YGJDSJ inhibited expression and phosphorylation of protein tyrosine kinase 2 (PTK2) in suspension-grown Bel-7402 cells. Over-expression of PTK2 significantly abrogated YGJDSJ induced anoikis. CONCLUSIONS: YGJDSJ inhibits anchorage-independent growth and induce caspase-mediated anoikis in Bel-7402 cells, and may relate to ROS generation and PTK2 downregulation.


Assuntos
Anoikis/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Hepáticas/metabolismo , Caspases/metabolismo , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 1 de Adesão Focal/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo
12.
J Biol Chem ; 291(30): 15540-50, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27226554

RESUMO

CD133, a widely known cancer stem cell marker, has been proved to promote tumor metastasis. However, the mechanism by which CD133 regulates metastasis remains largely unknown. Here, we report that CD133 knockdown inhibits cancer cell migration, and CD133 overexpression promotes cell migration. CD133 expression is beneficial to activate the Src-focal adhesion kinase (FAK) signaling pathway. Further studies show that CD133 could interact with Src, and the region between amino acids 845 and 857 in the CD133 C-terminal domain is indispensable for its interaction with Src. The interaction activates Src to phosphorylate its substrate FAK and to promote cell migration. Likewise, a Src binding-deficient CD133 mutant loses the abilities to increase Src and FAK phosphorylation and to promote cell migration. Inhibition of Src activity by PP2, a known Src activity inhibitor, could block the activation of FAK phosphorylation and cell migration induced by CD133. In summary, our data suggest that activation of FAK by the interaction between CD133 and Src promotes cell migration, providing clues to understand the migratory mechanism of CD133(+) tumor cells.


Assuntos
Antígeno AC133/metabolismo , Movimento Celular , Quinase 1 de Adesão Focal/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Antígeno AC133/genética , Linhagem Celular Tumoral , Quinase 1 de Adesão Focal/genética , Humanos , Células-Tronco Neoplásicas/patologia , Fosforilação , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/genética
13.
J Biol Chem ; 291(38): 19774-85, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27440046

RESUMO

Extracellular vesicles (EVs), including exosomes and microvesicles (MVs), have emerged as a major form of intercellular communication, playing important roles in several physiological processes and diseases, including cancer. EVs generated by cancer cells contain a variety of proteins and RNA species that can be transferred between cancer cells as well as between cancer and non-transformed (normal) cells, thereby impacting a number of aspects of cancer progression. Here we show how oncogenic transformation influences the biogenesis and function of EVs using a mouse embryonic fibroblast (MEF) cell line that can be induced to express an oncogenic form of diffuse B cell lymphoma (Dbl). Although MEFs induced to express onco-Dbl generated a similar amount of MVs as uninduced control cells, we found that MVs isolated from onco-Dbl-transformed cells contain a unique signaling protein, the ubiquitously expressed non-receptor tyrosine kinase focal adhesion kinase. The addition of MVs isolated from MEFs expressing onco-Dbl to cultures of fibroblasts strongly promoted their survival and induced their ability to grow under anchorage-independent conditions, outcomes that could be reversed by knocking down focal adhesion kinase and depleting it from the MVs or by inhibiting its kinase activity using a specific inhibitor. We then showed the same to be true for MVs isolated from aggressive MDAMB231 breast cancer cells. Together, these findings demonstrate that the induction of oncogenic transformation gives rise to MVs, which uniquely contain a signaling protein kinase that helps propagate the transformed phenotype and thus may offer a specific diagnostic marker of malignant disease.


Assuntos
Transformação Celular Neoplásica/metabolismo , Micropartículas Derivadas de Células/metabolismo , Exossomos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Micropartículas Derivadas de Células/genética , Embrião de Mamíferos/metabolismo , Exossomos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Camundongos , Células NIH 3T3 , Neoplasias/genética , Proteínas Proto-Oncogênicas/genética
14.
J Biol Chem ; 291(50): 26083-26097, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27789711

RESUMO

The chemokine receptor CXCR4 and its chemokine ligand CXCL12 mediate directed cell migration during organogenesis, immune responses, and metastatic disease. However, the mechanisms governing CXCL12/CXCR4-dependent chemotaxis remain poorly understood. Here, we show that the ß-arrestin1·signal-transducing adaptor molecule 1 (STAM1) complex, initially identified to govern lysosomal trafficking of CXCR4, also mediates CXCR4-dependent chemotaxis. Expression of minigene fragments from ß-arrestin1 or STAM1, known to disrupt the ß-arrestin1·STAM1 complex, and RNAi against ß-arrestin1 or STAM1, attenuates CXCL12-induced chemotaxis. The ß-arrestin1·STAM1 complex is necessary for promoting autophosphorylation of focal adhesion kinase (FAK). FAK is necessary for CXCL12-induced chemotaxis and associates with and localizes with ß-arrestin1 and STAM1 in a CXCL12-dependent manner. Our data reveal previously unknown roles in CXCR4-dependent chemotaxis for ß-arrestin1 and STAM1, which we propose act in concert to regulate FAK signaling. The ß-arrestin1·STAM1 complex is a promising target for blocking CXCR4-promoted FAK autophosphorylation and chemotaxis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Quimiotaxia/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Complexos Multiproteicos/metabolismo , Fosfoproteínas/metabolismo , Receptores CXCR4/metabolismo , beta-Arrestina 1/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Quinase 1 de Adesão Focal/genética , Células HeLa , Humanos , Complexos Multiproteicos/genética , Fosfoproteínas/genética , Fosforilação/fisiologia , Receptores CXCR4/genética , Transdução de Sinais/fisiologia , beta-Arrestina 1/genética
15.
Eur J Appl Physiol ; 117(4): 713-720, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28251396

RESUMO

PURPOSE: The aim of the study was to investigate two single nucleotide polymorphisms (SNP) in PTK2 for associations with human muscle strength phenotypes in healthy men. METHODS: Measurement of maximal isometric voluntary knee extension (MVCKE) torque, net MVCKE torque and vastus lateralis (VL) specific force, using established techniques, was completed on 120 Caucasian men (age = 20.6 ± 2.3 year; height = 1.79 ± 0.06 m; mass = 75.0 ± 10.0 kg; mean ± SD). All participants provided either a blood (n = 96) or buccal cell sample, from which DNA was isolated and genotyped for the PTK2 rs7843014 A/C and rs7460 A/T SNPs using real-time polymerase chain reaction. RESULTS: Genotype frequencies for both SNPs were in Hardy-Weinberg equilibrium (X 2 ≤ 1.661, P ≥ 0.436). VL specific force was 8.3% higher in rs7843014 AA homozygotes than C-allele carriers (P = 0.017) and 5.4% higher in rs7460 AA homozygotes than T-allele carriers (P = 0.029). No associations between either SNP and net MVCKE torque (P ≥ 0.094) or peak MVCKE torque (P ≥ 0.107) were observed. CONCLUSIONS: These findings identify a genetic contribution to the inter-individual variability within muscle specific force and provides the first independent replication, in a larger Caucasian cohort, of an association between these PTK2 SNPs and muscle specific force, thus extending our understanding of the influence of genetic variation on the intrinsic strength of muscle.


Assuntos
Quinase 1 de Adesão Focal/genética , Força Muscular/genética , Polimorfismo de Nucleotídeo Único , Adolescente , Frequência do Gene , Heterozigoto , Homozigoto , Humanos , Masculino , Músculo Esquelético/fisiologia , Fenótipo , Adulto Jovem
16.
J Biol Chem ; 290(42): 25356-73, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26318452

RESUMO

Ceramide synthases (CerS1-CerS6), which catalyze the N-acylation of the (dihydro)sphingosine backbone to produce (dihydro)ceramide in both the de novo and the salvage or recycling pathway of ceramide generation, have been implicated in the control of programmed cell death. However, the regulation of the de novo pathway compared with the salvage pathway is not fully understood. In the current study, we have found that late accumulation of multiple ceramide and dihydroceramide species in MCF-7 cells treated with TNFα occurred by up-regulation of both pathways of ceramide synthesis. Nevertheless, fumonisin B1 but not myriocin was able to protect from TNFα-induced cell death, suggesting that ceramide synthase activity is crucial for the progression of cell death and that the pool of ceramide involved derives from the salvage pathway rather than de novo biosynthesis. Furthermore, compared with control cells, TNFα-treated cells exhibited reduced focal adhesion kinase and subsequent plasma membrane permeabilization, which was blocked exclusively by fumonisin B1. In addition, exogenously added C6-ceramide mimicked the effects of TNFα that lead to cell death, which were inhibited by fumonisin B1. Knockdown of individual ceramide synthases identified CerS6 and its product C16-ceramide as the ceramide synthase isoform essential for the regulation of cell death. In summary, our data suggest a novel role for CerS6/C16-ceramide as an upstream effector of the loss of focal adhesion protein and plasma membrane permeabilization, via the activation of caspase-7, and identify the salvage pathway as the critical mechanism of ceramide generation that controls cell death.


Assuntos
Apoptose , Ceramidas/biossíntese , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Oxirredutases/metabolismo , Fator de Necrose Tumoral alfa/fisiologia , Caspases/metabolismo , Ativação Enzimática , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Fumonisinas/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , Oxirredutases/genética , Fator de Necrose Tumoral alfa/antagonistas & inibidores
17.
J Biol Chem ; 290(6): 3803-13, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25538248

RESUMO

The NET (nocA, Nlz, elB, TLP-1) subfamily of zinc finger proteins is an important mediator during developmental processes. The evolutionary conserved zinc finger protein ZNF503/Zeppo2 (zinc finger elbow-related proline domain protein 2, Zpo2) plays critical roles during embryogenesis. We found that Zpo2 is expressed in adult tissue and examined its function. We found that ZPO2 is a nuclearly targeted transcriptional repressor that is expressed in mammary epithelial cells. Elevated Zpo2 levels increase mammary epithelial cell proliferation. Zpo2 promotes cellular invasion through down-regulation of E-cadherin and regulates the invasive phenotype in a RAC1-dependent manner. We detect elevated Zpo2 expression during breast cancer progression in a MMTV-PyMT transgenic mouse model. Tumor transplant experiments indicated that overexpression of Zpo2 in MMTV-PyMT mammary tumor cell lines enhances lung metastasis. Our findings suggest that Zpo2 plays a significant role in mammary gland homeostasis and that deregulation of Zpo2 may promote breast cancer development.


Assuntos
Proteínas de Transporte/metabolismo , Proliferação de Células , Células Epiteliais/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Movimento Celular , Células Epiteliais/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Mamárias Experimentais/patologia , Camundongos , Invasividade Neoplásica , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
18.
J Biol Chem ; 290(7): 4149-62, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25525271

RESUMO

Deleted in Liver Cancer 1 (DLC1) is a RHO GTPase-activating protein (GAP) that negatively regulates RHO. Through its GAP activity, it modulates the actin cytoskeleton network and focal adhesion dynamics, ultimately leading to suppression of cell invasion and metastasis. Despite its presence in various structural and signaling components, little is known about how the activity of DLC1 is regulated at focal adhesions. Here we show that EGF stimulation activates the GAP activity of DLC1 through a concerted mechanism involving DLC1 phosphorylation by MEK/ERK and its subsequent dephosphorylation by protein phosphatase 2A (PP2A) and inhibition of focal adhesion kinase by MEK/ERK to allow the binding between DLC1 and PP2A. Phosphoproteomics and mutation studies revealed that threonine 301 and serine 308 on DLC1, known previously to be mutated in certain cancers, are required for DLC1-PP2A interaction and the subsequent activation of DLC1 upon their dephosphorylation. The intricate interplay of this "MEK/ERK-focal adhesion kinase-DLC1-PP2A" quartet provides a novel checkpoint in the spatiotemporal control of cell spreading and cell motility.


Assuntos
Fator de Crescimento Epidérmico/farmacologia , Quinase 1 de Adesão Focal/metabolismo , Adesões Focais/efeitos dos fármacos , Proteínas Ativadoras de GTPase/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Western Blotting , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células HEK293 , Células HeLa , Humanos , Imunoprecipitação , MAP Quinase Quinase 1/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Proteoma/análise , Transdução de Sinais , Cicatrização
19.
J Biol Chem ; 290(19): 12247-55, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25805500

RESUMO

Elevated levels of p130(Cas) (Crk-associated substrate)/BCAR1 (breast cancer antiestrogen resistance 1 gene) are associated with aggressiveness of breast tumors. Following phosphorylation of its substrate domain, p130(Cas) promotes the integration of protein complexes involved in multiple signaling pathways and mediates cell proliferation, adhesion, and migration. In addition to the known BCAR1-1A (wild-type) and 1C variants, we identified four novel BCAR1 mRNA variants, generated by alternative first exon usage (1B, 1B1, 1D, and 1E). Exons 1A and 1C encode for four amino acids (aa), whereas 1D and 1E encode for 22 aa and 1B1 encodes for 50 aa. Exon 1B is non-coding, resulting in a truncated p130(Cas) protein (Cas1B). BCAR1-1A, 1B1, and variant 1C mRNAs were ubiquitously expressed in cell lines and a survey of human tissues, whereas 1B, 1D, and 1E expression was more restricted. Reconstitution of all isoforms except for 1B in p130(Cas)-deficient murine fibroblasts induced lamellipodia formation and membrane ruffling, which was unrelated to the substrate domain phosphorylation status. The longer isoforms exhibited increased binding to focal adhesion kinase (FAK), a molecule important for migration and adhesion. The shorter 1B isoform exhibited diminished FAK binding activity and significantly reduced migration and invasion. In contrast, the longest variant 1B1 established the most efficient FAK binding and greatly enhanced migration. Our results indicate that the p130(Cas) exon 1 variants display altered functional properties. The truncated variant 1B and the longer isoform 1B1 may contribute to the diverse effects of p130(Cas) on cell biology and therefore will be the target of future studies.


Assuntos
Proteína Substrato Associada a Crk/genética , Proteína Substrato Associada a Crk/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Regulação Enzimológica da Expressão Gênica , Processamento Alternativo , Animais , Sequência de Bases , Adesão Celular , Movimento Celular , Éxons , Fibroblastos/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Invasividade Neoplásica , Isoformas de Proteínas , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Homologia de Sequência do Ácido Nucleico , Transdução de Sinais , Domínios de Homologia de src
20.
J Biol Chem ; 289(36): 24792-800, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25059660

RESUMO

Dynamic exchange of molecules between the cytoplasm and integrin-based focal adhesions provides a rapid response system for modulating cell adhesion. Increased residency time of molecules that regulate adhesion turnover contributes to adhesion stability, ultimately determining migration speed across two-dimensional surfaces. In the present study we test the role of Src kinase in regulating dynamic exchange of the focal adhesion protein NEDD9/HEF1/Cas-L. Using either chemical inhibition or fibroblasts genetically null for Src together with fluorescence recovery after photobleaching (FRAP), we find that Src significantly reduces NEDD9 exchange at focal adhesions. Analysis of NEDD9 mutant constructs with the two major Src-interacting domains disabled revealed the greatest effects were due to the NEDD9 SH2 binding domain. This correlated with a significant change in two-dimensional migratory speed. Given the emerging role of NEDD9 as a regulator of focal adhesion stability, the time of NEDD9 association at the focal adhesions is key in modulating rates of migration and invasion. Our study suggests that Src kinase activity determines NEDD9 exchange at focal adhesions and may similarly modulate other focal adhesion-targeted Src substrates to regulate cell migration.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fibroblastos/metabolismo , Adesões Focais/metabolismo , Quinases da Família src/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Adesão Celular/genética , Movimento Celular/genética , Células Cultivadas , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Immunoblotting , Cinética , Camundongos Knockout , Microscopia Confocal , Mutação , Fatores de Tempo , Domínios de Homologia de src/genética , Quinases da Família src/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA