Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
mBio ; 12(5): e0251021, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34607452

RESUMO

The sensitivity of SARS-CoV-2 variants of concern (VOCs) to neutralizing antibodies has largely been studied in the context of key receptor binding domain (RBD) mutations, including E484K and N501Y. Little is known about the epistatic effects of combined SARS-CoV-2 spike mutations. We now investigate the neutralization sensitivity of variants containing the non-RBD mutation Q677H, including B.1.525 (Nigerian isolate) and Bluebird (U.S. isolate) variants. The effect on neutralization of Q677H was determined in the context of the RBD mutations and in the background of major VOCs, including B.1.1.7 (United Kingdom, Alpha), B.1.351 (South Africa, Beta), and P1-501Y-V3 (Brazil, Gamma). We demonstrate that the Q677H mutation increases viral infectivity and syncytium formation, as well as enhancing resistance to neutralization for VOCs, including B.1.1.7 and P1-501Y-V3. Our work highlights the importance of epistatic interactions between SARS-CoV-2 spike mutations and the continued need to monitor Q677H-bearing VOCs. IMPORTANCE SARS-CoV-2, the causative agent of COVID-19, is rapidly evolving to be more transmissible and to evade acquired immunity. To date, most investigations of SARS-CoV-2 variants have focused on RBD mutations. However, the impact of non-RBD mutations and their synergy with studied RBD mutations are poorly understood. Here, we examine the role of the non-RBD Q677H mutation arising in many SARS-CoV-2 lineages, including VOCs. We demonstrate that the Q677H mutation enhances viral infectivity and confers neutralizing antibody resistance, particularly in the background of other SARS-CoV-2 VOCs.


Assuntos
Anticorpos Neutralizantes/metabolismo , COVID-19/metabolismo , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Antivirais/metabolismo , Células HEK293 , Humanos , Mutação , Ligação Proteica , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
2.
Viruses ; 13(9)2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34578382

RESUMO

Uruguay controlled the viral dissemination during the first nine months of the SARS-CoV-2 pandemic. Unfortunately, towards the end of 2020, the number of daily new cases exponentially increased. Herein, we analyzed the country-wide genetic diversity of SARS-CoV-2 between November 2020 and April 2021. We identified that the most prevalent viral variant during the first epidemic wave in Uruguay (December 2020-February 2021) was a B.1.1.28 sublineage carrying Spike mutations Q675H + Q677H, now designated as P.6, followed by lineages P.2 and P.7. P.6 probably arose around November 2020, in Montevideo, Uruguay's capital department, and rapidly spread to other departments, with evidence of further local transmission clusters; it also spread sporadically to the USA and Spain. The more efficient dissemination of lineage P.6 with respect to P.2 and P.7 and the presence of mutations (Q675H and Q677H) in the proximity of the key cleavage site at the S1/S2 boundary suggest that P.6 may be more transmissible than other lineages co-circulating in Uruguay. Although P.6 was replaced by the variant of concern (VOC) P.1 as the predominant lineage in Uruguay since April 2021, the monitoring of the concurrent emergence of Q675H + Q677H in VOCs should be of worldwide interest.


Assuntos
COVID-19/virologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/transmissão , Genoma Viral , Humanos , Mutação , Filogeografia , Estudos Retrospectivos , SARS-CoV-2/patogenicidade , Uruguai
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA