Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38475235

RESUMO

Algorithms for QRS detection are fundamental in the ECG interpretive processing chain. They must meet several challenges, such as high reliability, high temporal accuracy, high immunity to noise, and low computational complexity. Unfortunately, the accuracy expressed by missed or redundant events statistics is often the only parameter used to evaluate the detector's performance. In this paper, we first notice that statistics of true positive detections rely on researchers' arbitrary selection of time tolerance between QRS detector output and the database reference. Next, we propose a multidimensional algorithm evaluation method and present its use on four example QRS detectors. The dimensions are (a) influence of detection temporal tolerance, tested for values between 8.33 and 164 ms; (b) noise immunity, tested with an ECG signal with an added muscular noise pattern and signal-to-noise ratio to the effect of "no added noise", 15, 7, 3 dB; and (c) influence of QRS morphology, tested on the six most frequently represented morphology types in the MIT-BIH Arrhythmia Database. The multidimensional evaluation, as proposed in this paper, allows an in-depth comparison of QRS detection algorithms removing the limitations of existing one-dimensional methods. The method enables the assessment of the QRS detection algorithms according to the medical device application area and corresponding requirements of temporal accuracy, immunity to noise, and QRS morphology types. The analysis shows also that, for some algorithms, adding muscular noise to the ECG signal improves algorithm accuracy results.

2.
Sensors (Basel) ; 23(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37837133

RESUMO

A low-power long-term ambulatory ECG monitor was developed for the acquisition, storage and processing of three simultaneous leads DI, aVF and V2 with a beat-to-beat heart rate measurement in real time. It provides long-term continuous ECG recordings until 84 h. The monitor uses a QRS complex detection algorithm based on the continuous wavelet transform with splines, which automatically selects the scale for the analysis of ECG records with different sampling frequencies. It includes a lead-off detection to continuously monitor the electrode connections and a real-time system of visual and acoustic alarms to alert users of abnormal conditions in its operation. The monitor presented is based in an ADS1294 analogue front end with four channels, 24-bit analog-to-digital converters and programmable gain amplifiers, a low-power dual-core ESP32 microcontroller, a microSD memory for data storage in a range of 4 GB to 32 GB and a 1.4 in thin-film transistor liquid crystal display (LCD) variant with a resolution of 128 × 128 pixels. It has programmable sampling rates of 250, 500 and 1000 Hz; a bandwidth of 0 Hz to 50% of the selected sampling rate; a CMRR of -105 dB; an input margin of ±2.4 V; a resolution of 286 nV; and a current consumption of 50 mA for an average battery life of 84 h. The ambulatory ECG monitor was evaluated with the commercial data-acquisition system BIOPAC MP36 and its module for ECG LABEL SS2LB, simultaneously comparing the morphologies of two ECG records and obtaining a correlation of 91.78%. For the QRS detection in real time, the implemented algorithm had an error less than 5%. The developed ambulatory ECG monitor can be used for the analysis of the dynamics of the heart rate variability in long-term ECG records and for the development of one's own databases of ECG recordings of normal subjects and patients with cardiovascular and noncardiovascular diseases.


Assuntos
Eletrocardiografia Ambulatorial , Processamento de Sinais Assistido por Computador , Humanos , Frequência Cardíaca/fisiologia , Coração/fisiologia , Eletrocardiografia , Arritmias Cardíacas/diagnóstico , Algoritmos
3.
Ann Noninvasive Electrocardiol ; 27(5): e12993, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35904510

RESUMO

BACKGROUND: Electrocardiogram (ECG) signal conditioning is a vital step in the ECG signal processing chain that ensures effective noise removal and accurate feature extraction. OBJECTIVE: This study evaluates the performance of the FDA 510 (k) cleared HeartKey Signal Conditioning and QRS peak detection algorithms on a range of annotated public and proprietary ECG databases (HeartKey is a UK Registered Trademark of B-Secur Ltd). METHODS: Seven hundred fifty-one raw ECG files from a broad range of use cases were individually passed through the HeartKey signal processing engine. The algorithms include several advanced filtering steps to enable significant noise removal and accurate identification of the QRS complex. QRS detection statistics were generated against the annotated ECG files. RESULTS: HeartKey displayed robust performance across 14 ECG databases (seven public, seven proprietary), covering a range of healthy and unhealthy patient data, wet and dry electrode types, various lead configurations, hardware sources, and stationary/ambulatory recordings from clinical and non-clinical settings. Over the NSR, MIT-BIH, AHA, and MIT-AF public databases, average QRS Se and PPV values of 98.90% and 99.08% were achieved. Adaptable performance (Se 93.26%, PPV 90.53%) was similarly observed on the challenging NST database. Crucially, HeartKey's performance effectively translated to the dry electrode space, with an average QRS Se of 99.22% and PPV of 99.00% observed over eight dry electrode databases representing various use cases, including two challenging motion-based collection protocols. CONCLUSION: HeartKey demonstrated robust signal conditioning and QRS detection performance across the broad range of tested ECG signals. It should be emphasized that in no way have the algorithms been altered or trained to optimize performance on a given database, meaning that HeartKey is potentially a universal solution capable of maintaining a high level of performance across a broad range of clinical and everyday use cases.


Assuntos
Eletrocardiografia , Processamento de Sinais Assistido por Computador , Algoritmos , Bases de Dados Factuais , Eletrocardiografia/métodos , Humanos
4.
Sensors (Basel) ; 22(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36236340

RESUMO

Sudden cardiac death (SCD) risk can be reduced by early detection of short-lived and transient cardiac arrhythmias using long-term electrocardiographic (ECG) monitoring. Early detection of ventricular arrhythmias can reduce the risk of SCD by allowing appropriate interventions. Long-term continuous ECG monitoring, using a non-invasive armband-based wearable device is an appealing solution for detecting early heart rhythm abnormalities. However, there is a paucity of understanding on the number and best bipolar ECG electrode pairs axial orientation around the left mid-upper arm circumference (MUAC) for such devices. This study addresses the question on the best axial orientation of ECG bipolar electrode pairs around the left MUAC in non-invasive armband-based wearable devices, for the early detection of heart rhythm abnormalities. A total of 18 subjects with almost same BMI values in the WASTCArD arm-ECG database were selected to assess arm-ECG bipolar leads quality using proposed metrics of relative (normalized) signal strength measurement, arm-ECG detection performance of the main ECG waveform event component (QRS) and heart-rate variability (HRV) in six derived bipolar arm ECG-lead sensor pairs around the armband circumference, having regularly spaced axis angles (at 30° steps) orientation. The analysis revealed that the angular range from -30° to +30°of arm-lead sensors pair axis orientation around the arm, including the 0° axis (which is co-planar to chest plane), provided the best orientation on the arm for reasonably good QRS detection; presenting the highest sensitivity (Se) median value of 93.3%, precision PPV median value at 99.6%; HRV RMS correlation (p) of 0.97 and coefficient of determination (R2) of 0.95 with HRV gold standard values measured in the standard Lead-I ECG.


Assuntos
Braço , Dispositivos Eletrônicos Vestíveis , Arritmias Cardíacas/diagnóstico , Eletrocardiografia , Eletrodos , Humanos
5.
Sensors (Basel) ; 21(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34641007

RESUMO

R peak detection is crucial in electrocardiogram (ECG) signal analysis to detect and diagnose cardiovascular diseases (CVDs). Herein, the dynamic mode selected energy (DMSE) and adaptive window sizing (AWS) algorithm are proposed for detecting R peaks with better efficiency. The DMSE algorithm adaptively separates the QRS components and all non-objective components from the ECG signal. Based on local peaks in QRS components, the AWS algorithm adaptively determines the Region of Interest (ROI). The Feature Extraction process computes the statistical properties of energy, frequency, and noise from each ROI. The Sequential Forward Selection (SFS) procedure is used to find the best subsets of features. Based on these characteristics, an ensemble of decision tree algorithms detects the R peaks. Finally, the R peak position on the initial ECG signal is adjusted using the R location correction (RLC) algorithm. The proposed method has an experimental accuracy of 99.94%, a sensitivity of 99.98%, positive predictability of 99.96%, and a detection error rate of 0.06%. Given the high efficiency in detection and fast processing speed, the proposed approach is ideal for intelligent medical and wearable devices in the diagnosis of CVDs.


Assuntos
Eletrocardiografia , Processamento de Sinais Assistido por Computador , Algoritmos , Árvores de Decisões , Fenômenos Físicos
6.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 38(6): 1181-1192, 2021 Dec 25.
Artigo em Zh | MEDLINE | ID: mdl-34970902

RESUMO

The detection of electrocardiogram (ECG) characteristic wave is the basis of cardiovascular disease analysis and heart rate variability analysis. In order to solve the problems of low detection accuracy and poor real-time performance of ECG signal in the state of motion, this paper proposes a detection algorithm based on segmentation energy and stationary wavelet transform (SWT). Firstly, the energy of ECG signal is calculated by segmenting, and the energy candidate peak is obtained after moving average to detect QRS complex. Secondly, the QRS amplitude is set to zero and the fifth component of SWT is used to locate P wave and T wave. The experimental results show that compared with other algorithms, the algorithm in this paper has high accuracy in detecting QRS complex in different motion states. It only takes 0.22 s to detect QSR complex of a 30-minute ECG record, and the real-time performance is improved obviously. On the basis of QRS complex detection, the accuracy of P wave and T wave detection is higher than 95%. The results show that this method can improve the efficiency of ECG signal detection, and provide a new method for real-time ECG signal classification and cardiovascular disease diagnosis.


Assuntos
Eletrocardiografia , Análise de Ondaletas , Algoritmos , Arritmias Cardíacas , Frequência Cardíaca , Humanos , Processamento de Sinais Assistido por Computador
7.
J Electrocardiol ; 60: 165-171, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32380280

RESUMO

BACKGROUND: Accurate detection of QRS complexes during mobile, ultra-long-term ECG monitoring is challenged by instances of high heart rate, dramatic and persistent changes in signal amplitude, and intermittent deformations in signal quality that arise due to subject motion, background noise, and misplacement of the ECG electrodes. PURPOSE: We propose a revised QRS detection algorithm which addresses the above-mentioned challenges. METHODS AND RESULTS: Our proposed algorithm is based on a state-of-the-art algorithm after applying two key modifications. The first modification is implementing local estimates for the amplitude of the signal. The second modification is a mechanism by which the algorithm becomes adaptive to changes in heart rate. We validated our proposed algorithm against the state-of-the-art algorithm using short-term ECG recordings from eleven annotated databases available at Physionet, as well as four ultra-long-term (14-day) ECG recordings which were visually annotated at a central ECG core laboratory. On the database of ultra-long-term ECG recordings, our proposed algorithm showed a sensitivity of 99.90% and a positive predictive value of 99.73%. Meanwhile, the state-of-the-art QRS detection algorithm achieved a sensitivity of 99.30% and a positive predictive value of 99.68% on the same database. The numerical efficiency of our new algorithm was evident, as a 14-day recording sampled at 200 Hz was analyzed in approximately 157 s. CONCLUSIONS: We developed a new QRS detection algorithm. The efficiency and accuracy of our algorithm makes it a good fit for mobile health applications, ultra-long-term and pathological ECG recordings, and the batch processing of large ECG databases.


Assuntos
Eletrocardiografia , Processamento de Sinais Assistido por Computador , Algoritmos , Bases de Dados Factuais , Frequência Cardíaca , Humanos
8.
Sensors (Basel) ; 20(24)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352643

RESUMO

Reliable and diverse labeled reference data are essential for the development of high-quality processing algorithms for medical signals, such as electrocardiogram (ECG) and photoplethysmogram (PPG). Here, we present the Platform for Analysis and Labeling of Medical time Series (PALMS) designed in Python. Its graphical user interface (GUI) facilitates three main types of manual annotations-(1) fiducials, e.g., R-peaks of ECG; (2) events with an adjustable duration, e.g., arrhythmic episodes; and (3) signal quality, e.g., data parts corrupted by motion artifacts. All annotations can be attributed to the same signal simultaneously in an ergonomic and user-friendly manner. Configuration for different data and annotation types is straightforward and flexible in order to use a wide range of data sources and to address many different use cases. Above all, configuration of PALMS allows plugging-in existing algorithms to display outcomes of automated processing, such as automatic R-peak detection, and to manually correct them where needed. This enables fast annotation and can be used to further improve algorithms. The GUI is currently complemented by ECG and PPG algorithms that detect characteristic points with high accuracy. The ECG algorithm reached 99% on the MIT/BIH arrhythmia database. The PPG algorithm was validated on two public databases with an F1-score above 98%. The GUI and optional algorithms result in an advanced software tool that allows the creation of diverse reference sets for existing datasets.


Assuntos
Eletrocardiografia , Processamento de Sinais Assistido por Computador , Algoritmos , Artefatos , Frequência Cardíaca
9.
Sensors (Basel) ; 20(14)2020 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-32708473

RESUMO

As one of the important components of electrocardiogram (ECG) signals, QRS signal represents the basic characteristics of ECG signals. The detection of QRS waves is also an essential step for ECG signal analysis. In order to further meet the clinical needs for the accuracy and real-time detection of QRS waves, a simple, fast, reliable, and hardware-friendly algorithm for real-time QRS detection is proposed. The exponential transform (ET) and proportional-derivative (PD) control-based adaptive threshold are designed to detect QRS-complex. The proposed ET can effectively narrow the magnitude difference of QRS peaks, and the PD control-based method can adaptively adjust the current threshold for QRS detection according to thresholds of previous two windows and predefined minimal threshold. The ECG signals from MIT-BIH databases are used to evaluate the performance of the proposed algorithm. The overall sensitivity, positive predictivity, and accuracy for QRS detection are 99.90%, 99.92%, and 99.82%, respectively. It is also implemented on Altera Cyclone V 5CSEMA5F31C6 Field Programmable Gate Array (FPGA). The time consumed for a 30-min ECG record is approximately 1.3 s. It indicates that the proposed algorithm can be used for wearable heart rate monitoring and automatic ECG analysis.


Assuntos
Algoritmos , Eletrocardiografia , Processamento de Sinais Assistido por Computador , Bases de Dados Factuais , Humanos
10.
Sensors (Basel) ; 18(5)2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29723990

RESUMO

Despite the wide literature on R-wave detection algorithms for ECG Holter recordings, the long-term monitoring applications are bringing new requirements, and it is not clear that the existing methods can be straightforwardly used in those scenarios. Our aim in this work was twofold: First, we scrutinized the scope and limitations of existing methods for Holter monitoring when moving to long-term monitoring; Second, we proposed and benchmarked a beat detection method with adequate accuracy and usefulness in long-term scenarios. A longitudinal study was made with the most widely used waveform analysis algorithms, which allowed us to tune the free parameters of the required blocks, and a transversal study analyzed how these parameters change when moving to different databases. With all the above, the extension to long-term monitoring in a database of 7-day Holter monitoring was proposed and analyzed, by using an optimized simultaneous-multilead processing. We considered both own and public databases. In this new scenario, the noise-avoid mechanisms are more important due to the amount of noise that exists in these recordings, moreover, the computational efficiency is a key parameter in order to export the algorithm to the clinical practice. The method based on a Polling function outperformed the others in terms of accuracy and computational efficiency, yielding 99.48% sensitivity, 99.54% specificity, 99.69% positive predictive value, 99.46% accuracy, and 0.85% error for MIT-BIH arrhythmia database. We conclude that the method can be used in long-term Holter monitoring systems.

11.
Sensors (Basel) ; 17(9)2017 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-28846610

RESUMO

In the new-generation wearable Electrocardiogram (ECG) system, signal processing with low power consumption is required to transmit data when detecting dangerous rhythms and to record signals when detecting abnormal rhythms. The QRS complex is a combination of three of the graphic deflection seen on a typical ECG. This study proposes a real-time QRS detection and R point recognition method with low computational complexity while maintaining a high accuracy. The enhancement of QRS segments and restraining of P and T waves are carried out by the proposed ECG signal transformation, which also leads to the elimination of baseline wandering. In this study, the QRS fiducial point is determined based on the detected crests and troughs of the transformed signal. Subsequently, the R point can be recognized based on four QRS waveform templates and preliminary heart rhythm classification can be also achieved at the same time. The performance of the proposed approach is demonstrated using the benchmark of the MIT-BIH Arrhythmia Database, where the QRS detected sensitivity (Se) and positive prediction (+P) are 99.82% and 99.81%, respectively. The result reveals the approach's advantage of low computational complexity, as well as the feasibility of the real-time application on a mobile phone and an embedded system.


Assuntos
Dispositivos Eletrônicos Vestíveis , Algoritmos , Arritmias Cardíacas , Eletrocardiografia , Humanos , Processamento de Sinais Assistido por Computador
12.
Biomed Phys Eng Express ; 10(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109783

RESUMO

This work presents an algorithm for the detection and classification of QRS complexes based on the continuous wavelet transform (CWT) with splines. This approach can evaluate the CWT at any integer scale and the analysis is not restricted to powers of two. The QRS detector comprises four stages: implementation of CWT with splines, detection of QRS complexes, searching for undetected QRS complexes, and correction of the R wave peak location in detected QRS complexes. After, the onsets and ends of the QRS complexes are detected. The algorithm was evaluated with synthetic ECG and with the manually annotated databases: MIT-BIH Arrhythmia, European ST-T, QT and PTB Diagnostic ECG. Evaluation results of the QRS detector were: MIT-BIH arrhythmia database (109,447 beats analyzed), sensitivity Se = 99.72% and positive predictivity P+ = 99.87%; European ST-T database (790522 beats analyzed), Se = 99.92% and P+ = 99.55% and QT database (86498 beats analyzed), Se = 99.97% and P+ = 99.99%. To evaluate the delineation algorithm of the QRS onset (Qi) and QRS end (J) with the QT and PTB Diagnostic ECG databases, the mean and standard deviations of the differences between the automatic and manual annotated location of these points were calculated. The standard deviations were close to the accepted tolerances for deviations determined by the CSE experts. The proposed algorithm is robust to noise, artifacts and baseline drifts, classifies QRS complexes, automatically selects the CWT scale according to the sampling frequency of the ECG record used, and adapts to changes in the heart rate, amplitude and morphology of QRS complexes.


Assuntos
Eletrocardiografia , Análise de Ondaletas , Humanos , Eletrocardiografia/métodos , Algoritmos , Arritmias Cardíacas/diagnóstico , Bases de Dados Factuais
13.
Physiol Meas ; 45(5)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38722552

RESUMO

Objective.Perinatal asphyxia poses a significant risk to neonatal health, necessitating accurate fetal heart rate monitoring for effective detection and management. The current gold standard, cardiotocography, has inherent limitations, highlighting the need for alternative approaches. The emerging technology of non-invasive fetal electrocardiography shows promise as a new sensing technology for fetal cardiac activity, offering potential advancements in the detection and management of perinatal asphyxia. Although algorithms for fetal QRS detection have been developed in the past, only a few of them demonstrate accurate performance in the presence of noise and artifacts.Approach.In this work, we proposePower-MF, a new algorithm for fetal QRS detection combining power spectral density and matched filter techniques. We benchmarkPower-MFagainst three open-source algorithms on two recently published datasets (Abdominal and Direct Fetal ECG Database: ADFECG, subsets B1 Pregnancy and B2 Labour; Non-invasive Multimodal Foetal ECG-Doppler Dataset for Antenatal Cardiology Research: NInFEA).Main results.Our results show thatPower-MFoutperforms state-of-the-art algorithms on ADFECG (B1 Pregnancy: 99.5% ± 0.5% F1-score, B2 Labour: 98.0% ± 3.0% F1-score) and on NInFEA in three of six electrode configurations by being more robust against noise.Significance.Through this work, we contribute to improving the accuracy and reliability of fetal cardiac monitoring, an essential step toward early detection of perinatal asphyxia with the long-term goal of reducing costs and making prenatal care more accessible.


Assuntos
Algoritmos , Eletrocardiografia , Processamento de Sinais Assistido por Computador , Humanos , Eletrocardiografia/métodos , Feminino , Gravidez , Monitorização Fetal/métodos , Feto/fisiologia
14.
Med Eng Phys ; 118: 104007, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37536830

RESUMO

OBJECTIVES: A new modified Pan-Tompkins' (mPT) method for fetal heart rate detection is presented. The mPT method is based on the hypothesis that optimal fractional order derivative and optimal window width of the moving average filter would enable efficient estimation of fetal heart rate from surface abdominal electrophysiological recordings with relatively low signal-to-noise ratios. METHODS: The algorithm is tested on signals recorded from the abdomen of pregnant women available from the PhysioNet Computing in Cardiology Challenge database. Fetal heart rate detection is performed on 10-s long segments selected by the estimation of signal-to-noise ratios (the extravagance of the fetal QRS peak to its surroundings and to the whole signal; and the mean ratio of fetal and maternal QRS peaks) and on the manually selected segments. RESULTS: The best results are obtained via criteria based on the extravagance of the fetal QRS peak to its surroundings that reached average sensitivity of 97%, positive predictive value of 97%, error rate of ∼3.5%, and F1 score of 97%. The obtained averaged optimal parameters for mPT are 0.51 for fractional order and 24.5 ms for the window width of the moving average filter. CONCLUSION: Proposed mPT algorithm showed satisfactory performance for fetal heart rate detection. Further adaptations of the presented mPT method could be used for peak detection in noisy environments in biomedical signal analysis in general.


Assuntos
Frequência Cardíaca Fetal , Processamento de Sinais Assistido por Computador , Feminino , Humanos , Gravidez , Eletrocardiografia , Algoritmos , Abdome , Frequência Cardíaca
15.
Front Physiol ; 14: 1260074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239883

RESUMO

Introduction: This study proposes an algorithm for preprocessing VCG records to obtain a representative QRS loop. Methods: The proposed algorithm uses the following methods: Digital filtering to remove noise from the signal, wavelet-based detection of ECG fiducial points and isoelectric PQ intervals, spatial alignment of QRS loops, QRS time synchronization using root mean square error minimization and ectopic QRS elimination. The representative QRS loop is calculated as the average of all QRS loops in the VCG record. The algorithm is evaluated on 161 VCG records from a database of 58 healthy control subjects, 69 patients with myocardial infarction, and 34 patients with bundle branch block. The morphologic intra-individual beat-to-beat variability rate is calculated for each VCG record. Results and Discussion: The maximum relative deviation is 12.2% for healthy control subjects, 19.3% for patients with myocardial infarction, and 17.2% for patients with bundle branch block. The performance of the algorithm is assessed by measuring the morphologic variability before and after QRS time synchronization and ectopic QRS elimination. The variability is reduced by a factor of 0.36 for healthy control subjects, 0.38 for patients with myocardial infarction, and 0.41 for patients with bundle branch block. The proposed algorithm can be used to generate a representative QRS loop for each VCG record. This representative QRS loop can be used to visualize, compare, and further process VCG records for automatic VCG record classification.

16.
Front Physiol ; 13: 941827, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338495

RESUMO

This paper deals with a wavelet-based algorithm for automatic detection of isoelectric coordinates of individual QRS loops of VCG record. Fiducial time instants of QRS peak, QRS onset, QRS end, and isoelectric PQ interval are evaluated on three VCG leads ( X , Y , Z ) together with global QRS boundaries of a record to spatiotemporal QRS loops alignment. The algorithm was developed and optimized on 161 VCG records of PTB diagnostic database of healthy control subjects (HC), patients with myocardial infarction (MI) and patients with bundle branch block (BBB) and validated on CSE multilead measurement database of 124 records of the same diagnostic groups. The QRS peak was evaluated correctly for all of 1,467 beats. QRS onset, QRS end were detected with standard deviation of 5,5 ms and 7,8 ms respectively from the referee annotation. The isoelectric 20 ms length PQ interval window was detected correctly between the P end and QRS onset for all the cases. The proposed algorithm complies the ( 2 σ C S E ) limits for the QRS onset and QRS end detection and provides comparable or better results to other well-known algorithms. The algorithm evaluates well a wide QRS based on automated wavelet scale switching. The designed multi-lead approach QRS loop detector accomplishes diagnostic VCG processing, aligned QRS loops imaging and it is suitable for beat-to-beat variability assessment and further automatic VCG classification.

17.
Biosensors (Basel) ; 12(8)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36005061

RESUMO

The respiratory rate is widely used for evaluating a person's health condition. Compared to other invasive and expensive methods, the ECG-derived respiration estimation is a more comfortable and affordable method to obtain the respiration rate. However, the existing ECG-derived respiration estimation methods suffer from low accuracy or high computational complexity. In this work, a high accuracy and ultra-low power ECG-derived respiration estimation processor has been proposed. Several techniques have been proposed to improve the accuracy and reduce the computational complexity (and thus power consumption), including QRS detection using refractory period refreshing and adaptive threshold EDR estimation. Implemented and fabricated using a 55 nm processing technology, the proposed processor achieves a low EDR estimation error of 0.73 on CEBS database and 1.2 on MIT-BIH Polysomnographic Database while demonstrating a record-low power consumption (354 nW) for the respiration monitoring, outperforming the existing designs. The proposed processor can be integrated in a wearable sensor for ultra-low power and high accuracy respiration monitoring.


Assuntos
Processamento de Sinais Assistido por Computador , Dispositivos Eletrônicos Vestíveis , Algoritmos , Eletrocardiografia , Humanos , Respiração
18.
Technol Health Care ; 27(6): 623-642, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31033468

RESUMO

We analyzed several QRS detection algorithms in order to build a quality industrial beat detector, intended for a small, wearable, one channel electrocardiogram sensor with a sampling rate of 125 Hz, and analog-to-digital conversion of 10 bits. The research was a lengthy process that included building several hundred rules to cope with the QRS detection problems and finding an optimal threshold value for several parameters. We obtained 99.90% QRS sensitivity and 99.90% QRS positive predictive rate measured on the first channel of rescaled and resampled MIT-BIH Arrhythmia ECG database. Even more so, our solution works better than the algorithms for the original signals with a sampling rate of 360 Hz and analog-to-digital conversion of 11 bits.


Assuntos
Eletrocardiografia , Algoritmos , Conversão Análogo-Digital , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/fisiopatologia , Eletrocardiografia/métodos , Humanos , Cadeias de Markov , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador
19.
Biomed Signal Process Control ; 51: 243-252, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-33868447

RESUMO

We aimed at evaluating semi-automatic detection and quantification of polysomnographic REM sleep without atonia (RSWA). As basic requirements, we defined lower time demand, the possibility of comparison of several evaluations and ease of examination for neurologists. We focused on well-known primary processing of surface electromyographic signals and selected recordings that were free of technical artifacts that could compromise automated signal detection. Thus we created a comprehensive method consisting of several modules (data preprocessing, signal filtration, envelopes creation, detection of ECG QRS complexes, iterative RSWA detection, detection evaluation and interactive visualization). The original dataset consisted of 7 individual polysomnography (PSG) recordings of individual human adult subjects with REM sleep behavior disorder (RBD). RSWA detection was performed with three different methods for envelope creation (envelope by moving average filter, envelope by Savitzky-Golay filtration and peaks interpolation). Best RSWA detection was achieved using the envelope by moving average filter (average precision 64.24±12.34 % and recall 91.63±10.07 %). The lowest precision was 42.86 % with 100 % recall.

20.
Biomed Tech (Berl) ; 63(2): 207-217, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28475486

RESUMO

Detection of QRS complexes in ECG signals is required for various purposes such as determination of heart rate, feature extraction and classification. The problem of automatic QRS detection in ECG signals is complicated by the presence of noise spectrally overlapping with the QRS frequency range. As a solution to this problem, we propose the use of least-squares-optimisation-based smoothing techniques that suppress the noise peaks in the ECG while preserving the QRS complexes. We also propose a novel nonlinear transformation technique that is applied after the smoothing operations, which equalises the QRS amplitudes without boosting the supressed noise peaks. After these preprocessing operations, the R-peaks can finally be detected with high accuracy. The proposed technique has a low computational load and, therefore, it can be used for real-time QRS detection in a wearable device such as a Holter monitor or for fast offline QRS detection. The offline and real-time versions of the proposed technique have been evaluated on the standard MIT-BIH database. The offline implementation is found to perform better than state-of-the-art techniques based on wavelet transforms, empirical mode decomposition, etc. and the real-time implementation also shows improved performance over existing real-time QRS detection techniques.


Assuntos
Eletrocardiografia/métodos , Frequência Cardíaca/fisiologia , Bases de Dados Factuais , Humanos , Projetos de Pesquisa , Análise de Ondaletas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA