Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int Wound J ; 14(1): 79-84, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26712337

RESUMO

For proper wound healing, control of bacteria or bacterial infections is of major importance. While caring for a wound, dressing material plays a key role as bacteria can live in the bandage and keep re-infecting the wound. They do this by forming biofilms in the bandage, which slough off planktonic bacteria and overwhelm the host defense. It is thus necessary to develop a wound dressing that will inhibit bacterial growth. This study examines the effectiveness of a polyurethane foam wound dressing bound with polydiallyl-dimethylammonium chloride (pDADMAC) to inhibit the growth of bacteria in a wound on the back of a mouse. This technology does not allow pDADMAC to leach away from the dressing into the wound, thereby preventing cytotoxic effects. Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii were chosen for the study to infect the wounds. S. aureus and P. aeruginosa are important pathogens in wound infections, while A. baumannii was selected because of its ability to acquire or upregulate antibiotic drug resistance determinants. In addition, two different isolates of methicillin-resistant S. aureus (MRSA) were tested. All the bacteria were measured in the wound dressing and in the wound tissue under the dressing. Using colony-forming unit (CFU) assays, over six logs of inhibition (100%) were found for all the bacterial strains using pDADMAC-treated wound dressing when compared with control-untreated dressing. The CFU assay results obtained with the tissues were significant as there were 4-5 logs of reduction (100%) of the test organism in the tissue of the pDADMAC-covered wound versus that of the control dressing-covered wound. As the pDADMAC cannot leave the dressing (like other antimicrobials), this would imply that the dressing acts as a reservoir for free bacteria from a biofilm and plays a significant role in the development of a wound infection.


Assuntos
Infecções Bacterianas/terapia , Biofilmes/efeitos dos fármacos , Dimetilaminas/uso terapêutico , Curativos Oclusivos , Cicatrização/fisiologia , Infecção dos Ferimentos/terapia , Ferimentos e Lesões/terapia , Animais , Modelos Animais de Doenças , Camundongos , Uretana , Infecção dos Ferimentos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA