Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Neuroendocrinol ; 65: 100979, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35122778

RESUMO

This article is an amalgamation of the current status of RFRP-3 (GnIH) in reproduction and its association with the nutrition and stress-mediated changes in the reproductive activities. GnIH has been demonstrated in the hypothalamus of all the vertebrates studied so far and is a well-known inhibitor of GnRH mediated reproduction. The RFRP-3 neurons interact with the other hypothalamic neurons and the hormonal signals from peripheral organs for coordinating the nutritional, stress, and environmental associated changes to regulate reproduction. RFRP-3 has also been shown to regulate puberty, reproductive cyclicity and senescence depending upon the nutritional status. A favourable nutritional status and the environmental cues which are permissive for the successful breeding and pregnancy outcome keep RFRP-3 level low, whereas unfavourable nutritional status and stressful conditions increase the expression of RFRP-3 which impairs the reproduction. Still our knowledge about RFRP-3 is incomplete regarding its therapeutic application for nutritional or stress-related reproductive disorders.


Assuntos
Neuropeptídeos , Estado Nutricional , Animais , Feminino , Hipotálamo/metabolismo , Neuropeptídeos/metabolismo , Gravidez , Reprodução/fisiologia , Maturidade Sexual
2.
Front Neuroendocrinol ; 66: 100990, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35227765

RESUMO

Reproduction is a key biological function requiring a precise synchronization with annual and daily cues to cope with environmental fluctuations. Therefore, humans and animals have developed well-conserved photoneuroendocrine pathways to integrate and process daily and seasonal light signals within the hypothalamic-pituitary-gonadal axis. However, in the past century, industrialization and the modern 24/7 human lifestyle have imposed detrimental changes in natural habitats and rhythms of life. Indeed, exposure to an excessive amount of artificial light at inappropriate timing because of shift work and nocturnal urban lighting, as well as the ubiquitous environmental contamination by endocrine-disrupting chemicals, threaten the integrity of the daily and seasonal timing of biological functions. Here, we review recent epidemiological, field and experimental studies to discuss how light and chemical pollution of the environment can disrupt reproductive rhythms by interfering with the photoneuroendocrine timing system.


Assuntos
Disruptores Endócrinos , Melatonina , Animais , Ritmo Circadiano , Disruptores Endócrinos/toxicidade , Humanos , Iluminação , Reprodução
3.
Cell Tissue Res ; 391(1): 159-172, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36355189

RESUMO

RFamide-related peptide (RFRP) is a homologous neuropeptide to gonadotropin-inhibitory hormone (GnIH), which is a hypothalamic neuropeptide that negatively regulates the hypothalamic-pituitary-gonadal axis. RFRP/GnIH is thought to be the mediator of stress because various stressors increase RFRP/GnIH mRNA expression and/or RFRP/GnIH neuronal activities. RFRP/GnIH may also directly regulate behavior, because RFRP/GnIH neuronal fibers and RFRP/GnIH receptor are widely expressed in the brain. Here, we create a RFRP/GnIH knockout (GnIH-KO) mice and conduct various behavioral tests. Dense RFRP/GnIH neuronal fibers are located in the limbic system and broad areas in the thalamus, hypothalamus, and midbrain in wild-type mice but not in RFRP/GnIH-KO mice. Spatial working memory is not improved in GnIH-KO mice as shown by Y-maze test. GnIH-KO mice perform intensive wheel running exercise for several hours after light-off. Hot plate test shows that GnIH-KO mice have decreased sensitivity to pain and central administration of RFRP3 to GnIH-KO mice recovers pain sensitivity. Elevated plus maze test shows that GnIH-KO mice have decreased level of anxiety and central administration of RFRP3 to GnIH-KO mice recovers anxiety level. These results indicate that RFRP3 regulates pain and anxiety in mice. RFRP3 may be involved in the negative regulation of spontaneous activity in addition to negatively regulating the reproductive neuroendocrine axis in stressful conditions.


Assuntos
Atividade Motora , Neuropeptídeos , Camundongos , Animais , Neuropeptídeos/metabolismo , Gonadotropinas , Ansiedade , Dor , Mamíferos/metabolismo
4.
J Exp Biol ; 226(19)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37827114

RESUMO

Animals face unpredictable challenges that require rapid, facultative physiological reactions to support survival but may compromise reproduction. Bats have a long-standing reputation for being highly sensitive to stressors, with sensitivity and resilience varying both within and among species, yet little is known about how stress affects the signaling that regulates reproductive physiology. Here, we provide the first description of the molecular response of the hypothalamic-pituitary-gonadal (HPG) axis of male big brown bats (Eptesicus fuscus) in response to short-term stress using a standardized restraint manipulation. This acute stressor was sufficient to upregulate plasma corticosterone and resulted in a rapid decrease in circulating testosterone. While we did not find differences in the mRNA expression of key steroidogenic enzymes (StAR, aromatase, 5-alpha reductase), seminiferous tubule diameter was reduced in stressed bats coupled with a 5-fold increase in glucocorticoid receptor (GR) mRNA expression in the testes. These changes, in part, may be mediated by RFamide-related peptide (RFRP) because fewer immunoreactive cell bodies were detected in the brains of stressed bats compared with controls - suggesting a possible increase in secretion - and increased RFRP expression locally in the gonads. The rapid sensitivity of the bat testes to stress may be connected to deleterious impacts on tissue health and function as supported by significant transcriptional upregulation of key pro-apoptotic signaling molecules (Bax, cytochrome c). Experiments like this broadly contribute to our understanding of the stronger ecological predictions regarding physiological responses of bats within the context of stress, which may impact decisions surrounding animal handling and conservation approaches.


Assuntos
Quirópteros , Animais , Masculino , Quirópteros/fisiologia , Neuroendocrinologia , Reprodução/fisiologia , Gônadas , RNA Mensageiro
5.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37958834

RESUMO

Reproductive function is critical for species survival; however, it is energetically costly and physically demanding. Reproductive suppression is therefore a physiologically appropriate adaptation to certain ecological, environmental, and/or temporal conditions. This 'allostatic' suppression of fertility enables individuals to accommodate unfavorable reproductive circumstances and safeguard survival. The mechanisms underpinning this reproductive suppression are complex, yet culminate with the reduced secretion of gonadotropin-releasing hormone (GnRH) from the hypothalamus, which in turn suppresses gonadotropin release from the pituitary, thereby impairing gonadal function. The focus of this review will be on the role of RFamide-related peptide (RFRP) neurons in different examples of allostatic reproductive suppression. RFRP neurons release the RFRP-3 peptide, which negatively regulates GnRH neurons and thus appears to act as a 'brake' on the neuroendocrine reproductive axis. In a multitude of predictable (e.g., pre-puberty, reproductive senescence, and seasonal or lactational reproductive quiescence) and unpredictable (e.g., metabolic, immune and/or psychosocial stress) situations in which GnRH secretion is suppressed, the RFRP neurons have been suggested to act as modulators. This review examines evidence for and against these roles.


Assuntos
Neuropeptídeos , Humanos , Neuropeptídeos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo , Reprodução/fisiologia
6.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37108163

RESUMO

RF amide-related peptide 3 (RFRP-3), a mammalian ortholog of gonadotropin-inhibitory hormone (GnIH), is identified to be a novel inhibitory endogenous neurohormonal peptide that regulates mammalian reproduction by binding with specific G protein-coupled receptors (GPRs) in various species. Herein, our objectives were to explore the biological functions of exogenous RFRP-3 on the apoptosis and steroidogenesis of yak cumulus cells (CCs) and the developmental potential of yak oocytes. The spatiotemporal expression pattern and localization of GnIH/RFRP-3 and its receptor GPR147 were determined in follicles and CCs. The effects of RFRP-3 on the proliferation and apoptosis of yak CCs were initially estimated by EdU assay and TUNEL staining. We confirmed that high-dose (10-6 mol/L) RFRP-3 suppressed viability and increased the apoptotic rates, implying that RFRP-3 could repress proliferation and induce apoptosis. Subsequently, the concentrations of E2 and P4 were significantly lower with 10-6 mol/L RFRP-3 treatment than that of the control counterparts, which indicated that the steroidogenesis of CCs was impaired after RFRP-3 treatment. Compared with the control group, 10-6 mol/L RFRP-3 treatment decreased the maturation of yak oocytes efficiently and subsequent developmental potential. We sought to explore the potential mechanism of RFRP-3-induced apoptosis and steroidogenesis, so we observed the levels of apoptotic regulatory factors and hormone synthesis-related factors in yak CCs after RFRP-3 treatment. Our results indicated that RFRP-3 dose-dependently elevated the expression of apoptosis markers (Caspase and Bax), whereas the expression levels of steroidogenesis-related factors (LHR, StAR, 3ß-HSD) were downregulated in a dose-dependent manner. However, all these effects were moderated by cotreatment with inhibitory RF9 of GPR147. These results demonstrated that RFRP-3 adjusted the expression of apoptotic and steroidogenic regulatory factors to induce apoptosis of CCs, probably through binding with its receptor GPR147, as well as compromised oocyte maturation and developmental potential. This research revealed the expression profiles of GnIH/RFRP-3 and GPR147 in yak CCs and supported a conserved inhibitory action on oocyte developmental competence.


Assuntos
Células do Cúmulo , Oócitos , Animais , Feminino , Bovinos , Células do Cúmulo/metabolismo , Oócitos/metabolismo , Gonadotropinas/metabolismo , Mamíferos/metabolismo , Apoptose
7.
J Neurosci ; 41(3): 474-488, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219002

RESUMO

RF-amide related peptide 3 (RFRP-3) is a neuropeptide thought to inhibit central regulation of fertility. We investigated whether alterations in RFRP neuronal activity led to changes in puberty onset, fertility, and stress responses, including stress and glucocorticoid-induced suppression of pulsatile luteinizing hormone secretion. We first validated a novel RFRP-Cre mouse line, which we then used in combination with Cre-dependent neuronal ablation and DREADD technology to selectively ablate, stimulate, and inhibit RFRP neurons to interrogate their physiological roles in the regulation of fertility and stress responses. Chronic RFRP neuronal activation delayed male puberty onset and female reproductive cycle progression, but RFRP-activated and ablated mice exhibited apparently normal fertility. When subjected to either restraint- or glucocorticoid-induced stress paradigms. However, we observed a critical sex-specific role for RFRP neurons in mediating acute and chronic stress-induced reproductive suppression. Female mice exhibiting RFRP neuron ablation or silencing did not exhibit the stress-induced suppression in pulsatile luteinizing hormone secretion observed in control mice. Furthermore, RFRP neuronal activation markedly stimulated glucocorticoid secretion, demonstrating a feedback loop whereby stressful stimuli activate RFRP neurons, which in turn further activate the stress axis. These data provide evidence for a neuronal link between the stress and reproductive axes.


Assuntos
Neurônios/fisiologia , Neuropeptídeos/fisiologia , Reprodução/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Feminino , Fertilidade/fisiologia , Técnicas de Introdução de Genes , Inativação Gênica , Genótipo , Glucocorticoides/metabolismo , Hormônio Luteinizante/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeos/genética , Restrição Física , Caracteres Sexuais , Maturidade Sexual/fisiologia
8.
Biol Reprod ; 107(6): 1490-1502, 2022 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-36074524

RESUMO

The dromedary camel (Camelus dromedarius) is a short-day desert breeder in which female ovulation is induced by mating. Current data indicate that male-induced ovulation is triggered by its seminal plasma nerve growth factor beta (ß-NGF), but the exact mechanisms involved in the induction of ovulation are still unknown. In this study, we report that an intramuscular injection of ß-NGF in sexually active short-day-adapted female camels induces an ovulation attested by a surge of circulating LH (2-6 h after treatment) followed by an oocyte release with its cumulus oophorus (confirmed by ultrasonography 72 h after treatment) and a large and progressive increase in circulating progesterone (significant from the 2nd to the 10th days after ß-NGF injection). In addition, this ß-NGF treatment induces a broad nuclear c-FOS activation in cells located in various hypothalamic areas, notably the preoptic area, the arcuate nucleus, the dorso- and ventromedial hypothalamus, the paraventricular nucleus, and the supraoptic nucleus. A double immunostaining with neuropeptides known to be involved in the central control of reproduction indicates that ~28% kisspeptin neurons and 43% GnRH neurons in the proptic area, and ~10% RFRP-3 neurons in the dorso- and ventromedial hypothalamus are activated following ß-NGF injection. In conclusion, our study demonstrates that systemic ß-NGF induces ovulation in the female dromedary camel and indicates that this effect involves the central activation of hypothalamic neurons, notably the kisspeptin neurons.


Assuntos
Camelus , Kisspeptinas , Animais , Feminino , Masculino , Kisspeptinas/metabolismo , Camelus/metabolismo , Fator de Crescimento Neural/metabolismo , Hormônio Luteinizante/metabolismo , Ovulação/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo
9.
Reprod Med Biol ; 21(1): e12479, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847413

RESUMO

Propose: The mechanism that underpins how RFRP-3 and kisspeptin interacts are not fully understood in higher primates. This study therefore set out to assess RFRP-3 and kisspeptin expression and their morphological interactions in the breeding, and in the non-breeding period in monkey hypothalamus. Methods: Eight mature male macaques (Macaca mulatta) in the breeding season (February; n = 4) and non-breeding season (June; n = 4) were used. To reveal the expression and co-localization of RFRP-3 and kisspeptin, double-labeled immunohistochemistry was performed. Testicular volume, sperm count, and plasma testosterone level were also measured to validate the breeding and non-breeding paradigms. Results: Testicular volume, plasma testosterone level, and sperm count showed a significant reduction during non-breeding season. The number of kisspeptin-positive cells was significantly increased during the breeding season (p < 0.05), whereas more RFRP-3-positive cell bodies were seen in the non-breeding season (p < 0.01). Close contacts of RFRP-3 fibers with kisspeptin cells showed no significant difference (p > 0.05) across seasons. However, co-localization of RFRP-3-ir cell bodies onto kisspeptin IR cell bodies showed a statistical increase (p < 0.01) in non-breeding season. Conclusion: In higher primates, RFRP-3 decreases kisspeptin drives from the same cells to GnRH neurons in an autocrine manner causing suppression of the reproductive axis during the non-breeding period.

10.
J Exp Biol ; 224(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34494651

RESUMO

Mammals living at temperate latitudes typically display annual cyclicity in their reproductive activity: births are synchronized when environmental conditions are most favorable. In a majority of these species, day length is the main proximate factor used to anticipate seasonal changes and to adapt physiology. The brain integrates this photoperiodic signal through key hypothalamic structures, which regulate the reproductive axis. In this context, our study aimed to characterize regulations that occur along the hypothalamo-pituitary-gonadal (HPG) axis in male fossorial water voles (Arvicola terrestris, also known as Arvicola amphibius) throughout the year and to further probe the implication of photoperiod in these seasonal regulations. Our monthly field monitoring showed dramatic seasonal changes in the morphology and activity of reproductive organs, as well as in the androgen-dependent lateral scent glands. Moreover, our data uncovered seasonal variations at the hypothalamic level. During the breeding season, kisspeptin expression in the arcuate nucleus (ARC) decreases, while RFRP3 expression in the dorsomedial hypothalamic nucleus (DMH) increases. Our follow-up laboratory study revealed activation of the reproductive axis and confirmed a decrease in kisspeptin expression in males exposed to a long photoperiod (summer condition) compared with those maintained under a short photoperiod (winter condition) that retain all features reminiscent of sexual inhibition. Altogether, our study characterizes neuroendocrine and anatomical markers of seasonal reproductive rhythmicity in male water voles and further suggests that these seasonal changes are strongly impacted by photoperiod.


Assuntos
Arvicolinae , Fotoperíodo , Animais , Hipotálamo , Masculino , Reprodução , Estações do Ano
11.
Mol Biol Rep ; 48(2): 1837-1852, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33566226

RESUMO

A hypothalamic neuropeptide, RF-amide related peptide-3 (RFRP-3), the mammalian ortholog of the avian gonadotropin-inhibitory hormone (GnIH) has inhibitory signals for reproductive axis via G-protein coupled receptor 147 in mammals. Moreover, RFRP-3 has orexigenic action but the mechanism involved in energy homeostasis and glucose metabolism is not yet known. Though, the RFRP-3 modulates orexigenic action in co-operation with other neuropeptides, which regulates metabolic cues in the hypothalamus. Administration of GnIH/RFRP-3 suppresses plasma luteinizing hormone, at the same time stimulates feeding behavior in birds and mammals. Likewise, in the metabolically deficient conditions, its expression is up-regulated suggests that RFRP-3 contributes to the integration of energy balance and reproduction. However, in many other metabolic conditions like induced diabetes and high-fat diet obesity, etc. its role is still not clear while, RFRP-3 induces the glucose homeostasis by adipocytes is reported. The physiological role of RFRP-3 in metabolic homeostasis and the metabolic effects of RFRP-3 signaling in pharmacological studies need a detailed discussion. Further studies are required to find out whether RFRP-3 is associated with restricted neuroendocrine function observed in type II diabetes mellitus, aging, or sub-fertility. In this context, the current review is focused on the role of RFRP-3 in the above-mentioned mechanisms. Studies from search engines including PubMed, Google Scholar, and science.gov are included after following set inclusion/exclusion criteria. As a developing field few mechanisms are still inconclusive, however, based on the available information RFRP-3 seems to be a putative tool in future treatment strategies towards metabolic disease.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/efeitos dos fármacos , Gonadotropinas/metabolismo , Hipotálamo/metabolismo , Neuropeptídeos/metabolismo , Reprodução/efeitos dos fármacos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Metabolismo Energético/genética , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Humanos , Neuropeptídeos/biossíntese , Neuropeptídeos/genética , Neuropeptídeos/farmacologia , Receptores de Neuropeptídeos/metabolismo , Reprodução/genética
12.
Adv Exp Med Biol ; 1319: 59-103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34424513

RESUMO

The African mole-rat family (Bathyergidae) includes the first mammalian species identified as eusocial: naked mole-rats. Comparative studies of eusocial and solitary mole-rat species have identified differences in neuropeptidergic systems that may underlie the phenomenon of eusociality. These differences are found in the oxytocin, vasopressin and corticotrophin-releasing factor (CRF) systems within the nucleus accumbens, amygdala, bed nucleus of the stria terminalis and lateral septal nucleus. As a corollary of their eusociality, most naked mole-rats remain pre-pubertal throughout life because of the presence of the colony's only reproductive female, the queen. To elucidate the neuroendocrine mechanisms that mediate this social regulation of reproduction, research on the hypothalamo-pituitary-gonadal axis in naked mole-rats has identified differences between the many individuals that are reproductively suppressed and the few that are reproductively mature: the queen and her male consorts. These differences involve gonadal steroids, gonadotrophin-releasing hormone-1 (GnRH-1), kisspeptin, gonadotrophin-inhibitory hormone/RFamide-related peptide-3 (GnIH/RFRP-3) and prolactin. The comparative findings in eusocial and solitary mole-rat species are assessed with reference to a broad range of studies on other mammals.


Assuntos
Ratos-Toupeira , Reprodução , Animais , Feminino , Gonadotropinas , Masculino , Sistemas Neurossecretores , Ocitocina
13.
J Circadian Rhythms ; 19: 4, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33953780

RESUMO

Female reproductive success relies on proper integration of circadian- and ovarian- signals to the hypothalamic-pituitary-gonadal axis in order to synchronize the preovulatory LH surge at the end of the ovarian follicular stage with the onset of the main active period. In this study, we used a combination of neuroanatomical and electrophysiological approaches to assess whether the hypothalamic neurons expressing Arg-Phe amide-related peptide (RFRP-3), a gonadotropin inhibitory peptide, exhibit daily and estrous stage dependent variations in female mice. Furthermore, we investigated whether arginine vasopressin (AVP), a circadian peptide produced by the suprachiamatic nucleus regulates RFRP-3 neurons. The number of c-Fos-positive RFRP-3 immunoreactive neurons is significantly reduced at the day-to-night transition with no difference between diestrus and proestrus. Contrastingly, RFRP neuron firing rate is higher in proestrus as compared to diestrus, independently of the time of the day. AVP immunoreactive fibers contact RFRP neurons with the highest density observed during the late afternoon of diestrus and proestrus. Application of AVP increases RFRP neurons firing in the afternoon (ZT6-10) of diestrus, but not at the same time point of proestrus, indicating that AVP signaling on RFRP neurons may depend on circulating ovarian steroids. Together, these studies show that RFRP neurons integrate both daily and estrogenic signals, which downstream may help to properly time the preovulatory LH surge.

14.
Morphologie ; 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34774455

RESUMO

RFamide-related peptide (RFRP-3), the Mammalian ortholog of the Avian gonadotropin-inhibitory hormone (GnIH), is a novel neuropeptide known for its inhibitory regulatory effect on reproduction in various mammalian species. However, a stimulatory action has been reported. This paper aims to: i) study the histology of the epididymis (caput) of Gerbillus tarabuli during the breeding period; and ii) to determine the distribution of the "RFRP-3/receptors system" in the epididymis (caput) of this desert rodent during the active season, and thus, to inspect its potential local interfering in sperm maturation. For that, immunohistochemistry was performed to detect the epididymal immunolocalizations of the three molecules, RFRP-3, GPR147, and GPR74. This is the first report of the epididymis histology in Gerbillus tarabuli, as it is the first evidence of the existence of the RFRP-3/Receptor system in the same organ of the same species. During the breeding season, moderate immunostaining of the RFRP-3/receptors system was present in the caput epididymis' epithelial parts (basal and principal cells) and spermatozoa. In contrast, these three molecules were absent in the peritubular and muscle coat's myoid cells and of the interstitial part of the caput epididymis. The results suggest that the epididymis is a potential source of RFRP-3 in the desert Rodent, Gerbillus tarabuli, which may function as a paracrine and/or autocrine factor affecting the main epididymis' function: sperm maturation.

15.
Front Neuroendocrinol ; 52: 12-21, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29608929

RESUMO

RFamide-related peptides (RFRPs) have long been identified as inhibitors of the hypothalamus-pituitary-gonad axis in mammals. However, less progress has been made in the detailed roles of RFRPs in the control of LH secretion. Recent studies have suggested that RFRP-3 neurons in the hypothalamus can regulate the secretion of LH at different levels, including kisspeptin neurons, GnRH neurons, and the pituitary. Additionally, conflicting results regarding the effects of RFRP-3 on these levels exist. In this review, we collect the latest evidence related to the effects of RFRP-3 neurons in regulating LH secretion by acting on kisspeptin neurons, GnRH neurons, and the pituitary and discuss the potential role of the timely reduction of RFRP-3 signaling in the modulation of the preovulatory LH surge.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Hipófise/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos
16.
Eur J Neurosci ; 52(3): 2995-3001, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32372526

RESUMO

GnRH neuron activity is under the influence of multiple stimuli, including those coming from the endocannabinoid and the immune systems. Since it has been previously suggested that some of the main elements controlling the GnRH pulse generator possess the TRPV1 receptor, the aim of the present study was to evaluate the participation of the hypothalamic TRPV1, through its pharmacological blockade, in the activity of the hypothalamic-pituitary-testicular axis in male rats under basal or acute inflammatory conditions. Our hypothesis was based on the idea that the hypothalamic TRPV1 participates in the synthesis of the main neuromodulatory signals controlling GnRH, and therefore the reproductive axis. Our results showed that the hypothalamic TRPV1 blockade induced pro-inflammatory effects by increasing Tnfα and Il-1ß mRNA hypothalamic levels and inhibited the reproductive axis by affecting Gnrh, Kiss1 and Rfrp3 mRNA levels and decreasing plasma levels of luteinizing hormone and testosterone under basal conditions, without significant additive effects in rats exposed to systemic LPS. Altogether, these results suggest that the hypothalamic TRPV1 receptor participates in the regulation of the GnRH system, probably by modulating immune-dependent mechanisms.


Assuntos
Hormônio Liberador de Gonadotropina , Hormônio Luteinizante , Animais , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Masculino , Neurônios/metabolismo , Ratos , Canais de Cátion TRPV/genética , Testosterona
17.
Eur J Neurosci ; 51(1): 509-530, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30472752

RESUMO

Reproduction, like many other biological functions, exhibits marked daily and seasonal rhythms in order to anticipate and adapt breeding activity to environmental challenges. In recent years, studies investigating the neuroendocrine mechanisms driving rhythms in reproduction have unveiled the pivotal role of hypothalamic neurons expressing kisspeptin in integrating and forwarding daily and seasonal cues to the reproductive system. The objective of this review is to summarize the knowledge on the effect and role of this neuropeptide on the mammalian hypothalamo-pituitary-gonadal axis and describe how it is involved in the daily control of ovulation in females and long-term adaptation of reproduction in seasonal breeders.


Assuntos
Neuropeptídeos , Reprodução , Animais , Feminino , Hipotálamo/metabolismo , Neuropeptídeos/metabolismo , Sistemas Neurossecretores/metabolismo , Estações do Ano
18.
J Exp Biol ; 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34005441

RESUMO

Mus musculus molossinus (MSM) is a wild-derived mouse strain which maintains the ability to synthesize melatonin in patterns reflecting the ambient photoperiod. The objective of this study was to characterize the effects of photoperiodic variation on metabolic and reproductive traits, and the related changes in pituitary-hypothalamic gene expression in MSM mice. MSM mice were kept in long (LP) or short photoperiod (SP) for 6 weeks. Our results demonstrate that MSM mice kept in LP, as compared to mice kept in SP, display higher expression of genes encoding thyrotropin (TSH) in the pars tuberalis, thyroid hormone deiodinase 2 (dio2) in the tanycytes, RFamide-related peptide (RFRP3) in the hypothalamus and lower expression of dio3 in the tanycytes, along with larger body and reproductive organ mass. Additionally, to assess the effects of the gestational photoperiodic environment on the expression of these genes, we kept MSM mice in LP or SP from gestation and studied offspring. We show that the gestational photoperiod affects the TSH/dio pathway in newborn MSM mice in a similar way to adults. This result indicates a transgenerational effect of photoperiod from the mother to the fetus in utero. Overall, these results indicate that photoperiod can influence neuroendocrine regulation in a melatonin-proficient mouse strain, in a manner similar that documented in other seasonal rodent species. MSM mice may therefore become a useful model for research into the molecular basis of photoperiodic regulation of seasonal biology.

19.
J Exp Biol ; 223(Pt 6)2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32098881

RESUMO

MSM/Ms (MSM) is a mouse strain derived from Japanese wild mice, Mus musculus molossinus, that maintains the ability to synthesize melatonin in patterns reflecting the ambient photoperiod. The objective of this study was to characterize the effects of photoperiodic variation on metabolic and reproductive traits, and the related changes in pituitary-hypothalamic gene expression in MSM mice. MSM mice were kept in long (LP) or short photoperiod (SP) for 6 weeks. Our results demonstrate that MSM mice kept in LP, as compared with mice kept in SP, display higher expression of genes encoding thyrotropin (TSH) in the pars tuberalis, thyroid hormone deiodinase 2 (dio2) in the tanycytes and RFamide-related peptide (RFRP3) in the hypothalamus, and lower expression of dio3 in the tanycytes, along with larger body and reproductive organ mass. Additionally, to assess the effects of the gestational photoperiodic environment on the expression of these genes, we kept MSM mice in LP or SP from gestation and studied their offspring. We show that the gestational photoperiod affects the TSH/dio pathway in newborn MSM mice in a similar way to adults. This result indicates a transgenerational effect of photoperiod from the mother to the fetus in utero Overall, these results indicate that photoperiod can influence neuroendocrine regulation in a melatonin-proficient mouse strain, in a manner similar to that documented in other seasonal rodent species. MSM mice may therefore become a useful model for research into the molecular basis of photoperiodic regulation of seasonal biology.


Assuntos
Melatonina , Fotoperíodo , Animais , Ritmo Circadiano , Regulação da Expressão Gênica , Hipotálamo , Camundongos , Estações do Ano , Hormônios Tireóideos
20.
Proc Natl Acad Sci U S A ; 114(5): 1207-1212, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096421

RESUMO

Neuroendocrine mechanisms underlying social inhibition of puberty are not well understood. Here, we use a model exhibiting the most profound case of pubertal suppression among mammals to explore a role for RFamide-related peptide-3 [RFRP-3; mammalian ortholog to gonadotropin-inhibitory hormone (GnIH)] in neuroendocrine control of reproductive development. Naked mole rats (NMRs) live in sizable colonies where breeding is monopolized by two to four dominant animals, and no other members exhibit signs of puberty throughout their lives unless they are removed from the colony. Because of its inhibitory action on the reproductive axis in other vertebrates, we investigated the role of RFRP-3 in social reproductive suppression in NMRs. We report that RFRP-3 immunofluorescence expression patterns and RFRP-3/GnRH cross-talk are largely conserved in the NMR brain, with the exception of the unique presence of RFRP-3 cell bodies in the arcuate nucleus (Arc). Immunofluorescence comparisons revealed that central expression of RFRP-3 is altered by reproductive status, with RFRP-3 immunoreactivity enhanced in the paraventricular nucleus, dorsomedial nucleus, and Arc of reproductively quiescent NMRs. We further observed that exogenous RFRP-3 suppresses gonadal steroidogenesis and mating behavior in NMRs given the opportunity to undergo puberty. Together, our findings establish a role for RFRP-3 in preserving reproductive immaturity, and challenge the view that stimulatory peptides are the ultimate gatekeepers of puberty.


Assuntos
Sistema Límbico/metabolismo , Ratos-Toupeira/fisiologia , Neuropeptídeos/fisiologia , Maturidade Sexual/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Hipotalâmico Dorsomedial/metabolismo , Feminino , Hormônio Liberador de Gonadotropina/fisiologia , Injeções Intraventriculares , Kisspeptinas/metabolismo , Masculino , Neuropeptídeos/farmacologia , Ovário/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Progesterona/biossíntese , Progesterona/sangue , Comportamento Sexual Animal/efeitos dos fármacos , Comportamento Sexual Animal/fisiologia , Maturidade Sexual/efeitos dos fármacos , Isolamento Social , Testículo/metabolismo , Testosterona/biossíntese , Testosterona/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA