Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 37(4): e22892, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36951647

RESUMO

Epidermal nerve fiber regeneration and sensory function are severely impaired in skin wounds of diabetic patients. To date, however, research on post-traumatic nerve regeneration and sensory reconstruction remains scarce, and effective clinical therapeutics are lacking. In the current study, localized treatment with RL-QN15, considered as a drug candidate for intervention in skin wounds in our previous research, accelerated the healing of full-thickness dorsal skin wounds in diabetic mice and footpad skin wounds in diabetic rats. Interestingly, nerve density and axonal plasticity in the skin wounds of diabetic rats and mice, as well as plantar sensitivity in diabetic rats, were markedly enhanced by RL-QN15 treatment. Furthermore, RL-QN15 promoted the proliferation, migration, and axonal length of neuron-like PC12 cells, which was likely associated with activation of the phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt) signaling pathway. The therapeutic effects of RL-QN15 were partially reduced by blocking the PI3K/Akt signaling pathway with the inhibitor LY294002. Thus, RL-QN15 showed positive therapeutic effects on the distribution of epidermal nerve fibers and stimulated the recovery of sensory function after cutaneous injury. This study lays a solid foundation for the development of RL-QN15 peptide-based therapeutics against diabetic skin wounds.


Assuntos
Diabetes Mellitus Experimental , Proteínas Proto-Oncogênicas c-akt , Ratos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases , Pele , Fibras Nervosas/metabolismo , Sensação , Peptídeos/farmacologia , Regeneração Nervosa/fisiologia
2.
Pharmacol Res ; 163: 105296, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33220421

RESUMO

Despite extensive efforts to develop efficacious therapeutic approaches, the treatment of skin wounds remains a considerable clinical challenge. Existing remedies cannot sufficiently meet current needs, so the discovery of novel pro-healing agents is of growing importance. In the current research, we identified a novel short peptide (named RL-QN15, primary sequence 'QNSYADLWCQFHYMC') from Rana limnocharis skin secretions, which accelerated wound healing in mice. Exploration of the underlying mechanisms showed that RL-QN15 activated the MAPK and Smad signaling pathways, and selectively modulated the secretion of cytokines from macrophages. This resulted in the proliferation and migration of skin cells and dynamic regulation of TGF-ß1 and TGF-ß3 in wounds, which accelerated re-epithelialization and granulation tissue formation and thus skin regeneration. Moreover, RL-QN15 showed significant therapeutic potency against chronic wounds, skin fibrosis, and oral ulcers. Our results highlight frog skin secretions as a potential treasure trove of bioactive peptides with healing activity. The novel peptide (RL-QN15) identified in this research shows considerable capacity as a candidate for the development of novel pro-healing agents.


Assuntos
Úlceras Orais/tratamento farmacológico , Peptídeos/uso terapêutico , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Fibrose , Masculino , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Peptídeos/farmacologia , Células RAW 264.7 , Ranidae , Pele/lesões , Pele/metabolismo , Pele/patologia , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta3/metabolismo
3.
J Nanobiotechnology ; 19(1): 309, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34627291

RESUMO

BACKGROUND: Skin wound healing remains a considerable clinical challenge, thus stressing the urgent need for the development of new interventions to promote repair. Recent researches indicate that both peptides and nanoparticles may be potential therapies for the treatment of skin wounds. METHODS: In the current study, the mesoporous polydopamine (MPDA) nanoparticles were prepared and the peptide RL-QN15 that was previously identified from amphibian skin secretions and exhibited significant potential as a novel prohealing agent was successfully loaded onto the MPDA nanoparticles, which was confirmed by results of analysis of scanning electron microscopy and fourier transform infrared spectroscopy. The encapsulation efficiency and sustained release rate of RL-QN15 from the nanocomposites were determined. The prohealing potency of nanocomposites were evaluated by full-thickness injured wounds in both mice and swine and burn wounds in mice. RESULTS: Our results indicated that, compared with RL-QN15 alone, the prohealing potency of nanocomposites of MPDA and RL-QN15 in the full-thickness injured wounds and burn wounds in mice was increased by up to 50 times through the slow release of RL-QN15. Moreover, the load on the MPDA obviously increased the prohealing activities of RL-QN15 in full-thickness injured wounds in swine. In addition, the obvious increase in the prohealing potency of nanocomposites of MPDA and RL-QN15 was also proved by the results from histological analysis. CONCLUSIONS: Based on our knowledge, this is the first research to report that the load of MPDA nanoparticles could significantly increase the prohealing potency of peptide and hence highlighted the promising potential of MPDA nanoparticles-carrying peptide RL-QN15 for skin wound therapy.


Assuntos
Fármacos Dermatológicos , Indóis , Nanopartículas/química , Peptídeos , Polímeros , Cicatrização/efeitos dos fármacos , Animais , Fármacos Dermatológicos/química , Fármacos Dermatológicos/farmacocinética , Fármacos Dermatológicos/farmacologia , Indóis/química , Indóis/farmacocinética , Indóis/farmacologia , Masculino , Camundongos , Peptídeos/química , Peptídeos/farmacocinética , Peptídeos/farmacologia , Polímeros/química , Polímeros/farmacocinética , Polímeros/farmacologia , Pele/química , Pele/lesões , Pele/metabolismo , Suínos
4.
J Nanobiotechnology ; 19(1): 304, 2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34600530

RESUMO

BACKGROUND: Although the treatments of skin wounds have greatly improved with the increase in therapeutic methods and agents, available interventions still cannot meet the current clinical needs. Therefore, the development of new pro-regenerative therapies remains urgent. Owing to their unique characteristics, both nanomaterials and peptides have provided novel clues for the development of pro-regenerative agents, however, more efforts were still be awaited and anticipated. RESULTS: In the current research, Hollow polydopamine (HPDA) nanoparticles were synthesized and HPDA nanoparticles loading with RL-QN15 (HPDAlR) that was an amphibian-derived peptide with obvious prohealing activities were prepared successfully. The characterization, biodistribution and clearance of both HPDA nanoparticles and HPDAlR were evaluated, the loading efficiency of HPDA against RL-QN15 and the slow-releasing rate of RL-QN15 from HPDAlR were also determined. Our results showed that both HPDA nanoparticles and HPDAlR exerted no obvious toxicity against keratinocyte, macrophage and mice, and HPDA nanoparticles showed no prohealing potency in vivo and in vitro. Interestingly, HPDAlR significantly enhanced the ability of RL-QN15 to accelerate the healing of scratch of keratinocytes and selectively modulate the release of healing-involved cytokines from macrophages. More importantly, in comparison with RL-QN15, by evaluating on animal models of full-thickness injured skin wounds in mice and oral ulcers in rats, HPDAlR showed significant increasing in the pro-regenerative potency of 50 and 10 times, respectively. Moreover, HPDAlR also enhanced the prohealing efficiency of peptide RL-QN15 against skin scald in mice and full-thickness injured wounds in swine. CONCLUSIONS: HPDA obviously enhanced the pro-regenerative potency of RL-QN15 in vitro and in vivo, hence HPDAlR exhibited great potential in the development of therapeutics for skin wound healing.


Assuntos
Fármacos Dermatológicos , Indóis , Nanopartículas , Peptídeos , Polímeros , Cicatrização/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Fármacos Dermatológicos/química , Fármacos Dermatológicos/farmacologia , Fármacos Dermatológicos/toxicidade , Modelos Animais de Doenças , Células HaCaT , Humanos , Indóis/química , Indóis/toxicidade , Masculino , Camundongos , Camundongos Nus , Nanopartículas/química , Nanopartículas/toxicidade , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/toxicidade , Polímeros/química , Polímeros/toxicidade , Células RAW 264.7 , Ratos Sprague-Dawley , Pele/efeitos dos fármacos , Pele/lesões , Suínos
5.
Burns Trauma ; 11: tkad035, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026443

RESUMO

Background: Wound management of diabetic foot ulcers (DFUs) is a complex and challenging task, and existing strategies fail to meet clinical needs. Therefore, it is important to develop novel drug candidates and discover new therapeutic targets. However, reports on peptides as molecular probes for resolving issues related to DFUs remain rare. This study utilized peptide RL-QN15 as an exogenous molecular probe to investigate the underlying mechanism of endogenous non-coding RNA in DFU wound healing. The aim was to generate novel insights for the clinical management of DFUs and identify potential drug targets. Methods: We investigated the wound-healing efficiency of peptide RL-QN15 under diabetic conditions using in vitro and in vivo experimental models. RNA sequencing, in vitro transfection, quantitative real-time polymerase chain reaction, western blotting, dual luciferase reporter gene detection, in vitro cell scratches, and cell proliferation and migration assays were performed to explore the potential mechanism underlying the promoting effects of RL-QN15 on DFU repair. Results: Peptide RL-QN15 enhanced the migration and proliferation of human immortalized keratinocytes (HaCaT cells) in a high-glucose environment and accelerated wound healing in a DFU rat model. Based on results from RNA sequencing, we defined a new microRNA (miR-4482-3p) related to the promotion of wound healing. The bioactivity of miR-4482-3p was verified by inhibiting and overexpressing miR-4482-3p. Inhibition of miR-4482-3p enhanced the migration and proliferation ability of HaCaT cells as well as the expression of vascular endothelial growth factor B (VEGFB). RL-QN15 also promoted the migration and proliferation ability of HaCaT cells, and VEGFB expression was mediated via inhibition of miR-4482-3p expression by the p38 mitogen-activated protein kinase (p38MAPK) and smad3 signaling pathways. Conclusions: RL-QN15 is an effective molecule for the treatment of DFUs, with the underlying mechanism related to the inhibition of miR-4482-3p expression via the p38MAPK and smad3 signaling pathways, ultimately promoting re-epithelialization, angiogenesis and wound healing. This study provides a theoretical basis for the clinical application of RL-QN15 as a molecular probe in promoting DFU wound healing.

6.
ACS Appl Mater Interfaces ; 14(26): 29491-29505, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35731847

RESUMO

Chronic and non-healing wounds pose a great challenge to clinical management and patients. Many studies have explored novel interventions against skin wounds, with bioactive peptides, nanoparticles, and hydrogels arousing considerable attention regarding their therapeutic potential. In this study, the prohealing peptide RL-QN15 was loaded into hollow silica nanoparticles (HSNs), with these HSN@RL-QN15 nanocomposites then combined with zinc alginate (ZA) gels to obtain HSN@RL-QN15/ZA hydrogel. The characteristics, biological properties, and safety profiles of the hydrogel composites were then evaluated. Results showed that the hydrogel had good porosity, hemocompatibility, biocompatibility, and broad-spectrum antimicrobial activity, with the slow release of loaded RL-QN15. Further analysis indicated that the hydrogel promoted skin cell proliferation and keratinocyte scratch repair, regulated angiogenesis, reduced inflammation, and accelerated re-epithelialization and granulation tissue formation, resulting in the rapid healing of both full-thickness skin wounds and methicillin-resistant Staphylococcus aureus biofilm-infected chronic wounds in mice. This peptide-based hydrogel provides a novel intervention for the treatment of chronic skin wounds and shows promise as a wound dressing in the field of tissue regeneration.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Infecção dos Ferimentos , Alginatos/química , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Nanopartículas/química , Peptídeos , Dióxido de Silício , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA