Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Pharm ; 649: 123657, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38040398

RESUMO

Reactive oxygen species (ROS) can not only induce cellular oxidative stress, but also trigger antitumor immune response. However, single ROS generated therapy is usually not enough to induce efficient antitumor immune response. Furthermore, the adaptive antioxidant mechanisms coupled with overexpressed ROS can also decrease the antitumor capacity of ROS therapy. To circumvent this problem, we designed a synergistic strategy for inducing robust ROS based ICD effect by constructing a coloaded liposomes (PPA, Pyropheophorbide-alpha and SHK, shikonin) with Fe3+ gradient to simultaneously enhance ROS mediated oxidative stress and glutathione depletion. Interestingly, the coloaded liposome possesses an acid/GSH dual triggered release profile. More importantly, with the help of depleting GSH, LipoPS (coloaded liposome of SHK and PPA) can excite robust ROS and demonstrate synergistic antitumor efficacy with amplified ICD effect. Summarized, the established coloaded liposome LipoPS exhibits good therapeutic security and synergistic antitumor effect with strong antitumor immune activation, providing potential for further development.


Assuntos
Morte Celular Imunogênica , Lipossomos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Glutationa/metabolismo
2.
ACS Appl Bio Mater ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302413

RESUMO

Reactive nitrogen species (RNS) are more lethal than reactive oxygen species (ROS), which gives them a very promising future in the field of cancer treatment. However, there are still a few drugs available for RNS generation. In this work, two 5th-order nonlinear optical materials, FB-Fe(III)/SNP@PEG and FB-Fe(II)-FB/SNP@PEG, are synthesized. The outstanding nonlinear optical properties of FB-Fe(III)/SNP@PEG help to achieve generation of bounteous superoxide anions (O2•-) in deep tissues, while sodium nitroprusside (SNP) provides NO in the body, both of which are prerequisites for RNS generation. Meanwhile, type I and type II ROS were also generated under irradiation of a 1600 nm laser. Based on the synergistic effect of ROS and RNS, FB-Fe(III)/SNP@PEG induced mitochondrial damage and DNA fragmentation and inhibited tumor cells through apoptosis, possessing better therapeutic effects than FB-Fe(II)-FB/SNP@PEG. This work put forward an innovative strategy to achieve the cooperative release of RNS and ROS in deep tissues, which provides insights and ideas for applying nonlinear optical materials to RNS therapy.

3.
Chem Asian J ; 18(22): e202300749, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37755123

RESUMO

The potential of reactive oxygen species (ROS) cancer therapy in tumor treatment has been greatly enhanced by the introduction of catalytically superior polyoxometalate (POM)-based nanoplatforms, mainly composed of atomic clusters consisting of pre-transition metals and oxygen. These nanoplatforms have unique advantages, such as Fenton activity at neutral pH, induction of cellular ferroptosis instead of just apoptosis, and sensitivity to external field stimulation. However, there are also inevitable challenges such as neutralization of ROS by the antioxidant system of the tumor microenvironment (TME), hypoxia, and limited hydrogen peroxide concentrations. This review article aims to provide an overview of recent research advancements in POM-based nanoplatforms for ROS therapy from the perspective of chemical reactions and biological processes, addressing endogenous and exogenous factors that affect the antitumor efficacy. Endogenous factors include the mechanism of ROS generation by POM, the impact of pH and antioxidant systems on POM, and the various manners of tumor cell death. Exogenous stimuli mainly include light, heat, X-rays, and electricity. The article analyzes the specific mechanisms of action of each influencing factor in the first two sections, concluding with the limitations of the present study and some possible directions for future research.


Assuntos
Antioxidantes , Neoplasias , Humanos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias/patologia , Oxigênio , Linhagem Celular Tumoral , Peróxido de Hidrogênio , Microambiente Tumoral
4.
Colloids Surf B Biointerfaces ; 160: 1-10, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28910676

RESUMO

Metal-organic frameworks are a novel class of organic-inorganic hybrid polymer with potential applications in bioimaging, drug delivery, and ROS therapy. NH2-MIL-125, which is a titanium-based metal organic framework with a large surface area of 1540m2/g, was synthesized using a hydrothermal method. The material was characterized by powder X-ray diffreaction (PXRD), thermogravimetric analysis (TGA), and transmission electron microscopy (TEM), and N2 isotherm analyses. The size of the polymer was reduced to the nanoscale using a high-frequency sonication process. PEGylation was carried out to improve the stability and bioavailability of the NMOF. The as-synthesized nano-NH2-MIL-125/PEG (NMOF/PEG) exhibited good biocompatibility over the (Cancer) MCF-7 and (Normal) COS-7 cell line. The interaction of NMOF/PEG with the breast cancer cell line (MCF-7) was examined by BIO-TEM analysis and laser confocal imaging. 2',7'-dichlorofluorescin diacetate (DCFDA) analysis confirmed that NMOF/PEG produced free radicals inside the cancer cell line (MCF-7) upon visible light irradiation. NMOF/PEG absorbed a large amount of DOX (20wt.% of DOX) and showed pH, and photosensitive release. This controlled drug delivery was attributed to the presence of NH2, Ti group in MOF and a hydroxyl group in PEG. This combination of chemo- and ROS-therapy showed excellent efficiency in killing cancer MCF-7 cells.


Assuntos
Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas Metálicas/química , Titânio/química , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/metabolismo , Células COS , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Doxorrubicina/química , Doxorrubicina/metabolismo , Humanos , Células MCF-7 , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica , Neoplasias/metabolismo , Neoplasias/patologia , Polietilenoglicóis/química , Porosidade , Espécies Reativas de Oxigênio/metabolismo , Termogravimetria , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA