Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Plant Biotechnol J ; 22(1): 116-130, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37752622

RESUMO

Arabidopsis RESISTANCE TO POWDERY MILDEW 8.1 (RPW8.1) is an important tool for engineering broad-spectrum disease resistance against multiple pathogens. Ectopic expression of RPW8.1 leads to enhanced disease resistance with cell death at leaves and compromised plant growth, implying a regulatory mechanism balancing RPW8.1-mediated resistance and growth. Here, we show that RPW8.1 constitutively enhances the expression of transcription factor WRKY51 and activates salicylic acid and ethylene signalling pathways; WRKY51 in turn suppresses RPW8.1 expression, forming a feedback regulation loop. RPW8.1 and WRKY51 are both induced by pathogen infection and pathogen-/microbe-associated molecular patterns. In ectopic expression of RPW8.1 background (R1Y4), overexpression of WRKY51 not only rescues the growth suppression and cell death caused by RPW8.1, but also suppresses RPW8.1-mediated broad-spectrum disease resistance and pattern-triggered immunity. Mechanistically, WRKY51 directly binds to and represses RPW8.1 promoter, thus limiting the expression amplitude of RPW8.1. Moreover, WRKY6, WRKY28 and WRKY41 play a role redundant to WRKY51 in the suppression of RPW8.1 expression and are constitutively upregulated in R1Y4 plants with WRKY51 being knocked out (wrky51 R1Y4) plants. Notably, WRKY51 has no significant effects on disease resistance or plant growth in wild type without RPW8.1, indicating a specific role in RPW8.1-mediated disease resistance. Altogether, our results reveal a regulatory circuit controlling the accumulation of RPW8.1 to an appropriate level to precisely balance growth and disease resistance during pathogen invasion.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Resistência à Doença/genética , Retroalimentação , Arabidopsis/metabolismo , Morte Celular , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas/genética
2.
New Phytol ; 238(1): 367-382, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36522832

RESUMO

Arabidopsis RESISTANCE TO POWDERY MILDEW 8.2 (RPW8.2) is specifically induced by the powdery mildew (PM) fungus (Golovinomyces cichoracearum) in the infected epidermal cells to activate immunity. However, the mechanism of RPW8.2-induction is not well understood. Here, we identify a G. cichoracearum effector that interacts with RPW8.2, named Gc-RPW8.2 interacting protein 1 (GcR8IP1), by a yeast two-hybrid screen of an Arabidopsis cDNA library. GcR8IP1 is physically associated with RPW8.2 with its REALLY INTERESTING NEW GENE finger domain that is essential and sufficient for the association. GcR8IP1 was secreted and translocated into the nucleus of host cell infected with PM. Association of GcR8IP1 with RPW8.2 led to an increase in RPW8.2 in the nucleus. In turn, the nucleus-localized RPW8.2 promoted the activity of the RPW8.2 promoter, resulting in transcriptional self-amplification of RPW8.2 to boost immunity at infection sites. Additionally, ectopic expression or host-induced gene silencing of GcR8IP1 supported its role as a virulence factor in PM. Altogether, our results reveal a mechanism of RPW8.2-dependent defense strengthening via altered partitioning of RPW8.2 and transcriptional self-amplification triggered by a PM fungal effector, which exemplifies an atypical form of effector-triggered immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ascomicetos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Resistência à Doença , Ascomicetos/fisiologia , Doenças das Plantas/microbiologia
3.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293447

RESUMO

The RPW8s (Resistance to Powdery Mildew 8) are atypical broad-spectrum resistance genes that provide resistance to the powdery mildew fungi. Powdery mildew of rubber tree is one of the serious fungal diseases that affect tree growth and latex production. However, the RPW8 homologs in rubber tree and their role of resistance to powdery mildew remain unclear. In this study, four RPW8 genes, HbRPW8-a, b, c, d, were identified in rubber tree, and phylogenetic analysis showed that HbRPW8-a was clustered with AtRPW8.1 and AtRPW8.2 of Arabidopsis. The HbRPW8-a protein was localized on the plasma membrane and its expression in rubber tree was significantly induced upon powdery mildew infection. Transient expression of HbRPW8-a in tobacco leaves induced plant immune responses, including the accumulation of reactive oxygen species and the deposition of callose in plant cells, which was similar to that induced by AtRPW8.2. Consistently, overexpression of HbRPW8-a in Arabidopsis thaliana enhanced plant resistance to Erysiphe cichoracearum UCSC1 and Pseudomonas syringae pv. tomato DC30000 (PstDC3000). Moreover, such HbRPW8-a mediated resistance to powdery mildew was in a salicylic acid (SA) dependent manner. Taken together, we demonstrated a new RPW8 member in rubber tree, HbRPW8-a, which could potentially contribute the resistance to powdery mildew.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ascomicetos , Hevea , Arabidopsis/metabolismo , Hevea/genética , Hevea/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Expressão Ectópica do Gene , Filogenia , Espécies Reativas de Oxigênio/metabolismo , Látex/metabolismo , Doenças das Plantas/microbiologia , Ascomicetos/fisiologia , Erysiphe , Ácido Salicílico/metabolismo , Nicotiana/metabolismo , Resistência à Doença/genética
4.
New Phytol ; 229(1): 516-531, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32767839

RESUMO

The Arabidopsis RESISTANCE TO POWDERY MILDEW 8.1 (RPW8.1) activates confined cell death and defense against different pathogens. However, the underlying regulatory mechanisms still remain elusive. Here, we show that RPW8.1 activates ethylene signaling that, in turn, negatively regulates RPW8.1 expression. RPW8.1 binds and stabilizes 1-aminocyclopropane-1-carboxylate oxidase 4 (ACO4), which may in part explain increased ethylene production and signaling in RPW8.1-expressing plants. In return, ACO4 and other key components of ethylene signaling negatively regulate RPW8.1-mediated cell death and disease resistance via suppressing RPW8.1 expression. Loss of function in ACO4, EIN2, EIN3 EIL1, ERF6, ERF016 or ORA59 increases RPW8.1-mediated cell death and defense response. By contrast, overexpression of EIN3 abolishes or significantly compromises RPW8.1-mediated cell death and disease resistance. Furthermore, ERF6, ERF016 and ORA59 appear to act as trans-repressors of RPW8.1, with OAR59 being able to directly bind to the RPW8.1 promoter. Taken together, our results have revealed a feedback regulatory circuit connecting RPW8.1 and the ethylene-signaling pathway, in which RPW8.1 enhances ethylene signaling, and the latter, in return, negatively regulates RPW8.1-mediated cell death and defense response via suppressing RPW8.1 expression to attenuate its defense activity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ascomicetos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ascomicetos/metabolismo , Morte Celular , Resistência à Doença , Etilenos , Retroalimentação , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Plantas Geneticamente Modificadas/metabolismo , Transdução de Sinais
5.
New Phytol ; 232(6): 2440-2456, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34628646

RESUMO

Activation of nucleotide-binding leucine-rich repeat receptors (NLRs) results in immunity and a localized cell death. NLR cell death activity requires oligomerization and in some cases plasma membrane (PM) localization. The exact mechanisms underlying PM localization of NLRs lacking predicted transmembrane domains or recognizable lipidation motifs remain elusive. We used confocal microscopy, genetically encoded molecular tools and protein-lipid overlay assays to determine whether PM localization of members of the Arabidopsis HeLo-/RPW8-like domain 'helper' NLR (RNL) family is mediated by the interaction with negatively charged phospholipids of the PM. Our results show that PM localization and stability of some RNLs and one CC-type NLR (CNL) depend on the direct interaction with PM phospholipids. Depletion of phosphatidylinositol-4-phosphate from the PM led to a mis-localization of the analysed NLRs and consequently inhibited their cell death activity. We further demonstrate homo- and hetero-association of members of the RNL family. Our results provide new insights into the molecular mechanism of NLR localization and defines an important role of phospholipids for CNL and RNL PM localization and consequently, for their function. We propose that RNLs interact with anionic PM phospholipids and that RNL-mediated cell death and immune responses happen at the PM.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular , Proteínas NLR/genética , Fosfolipídeos , Doenças das Plantas , Imunidade Vegetal
6.
Theor Appl Genet ; 134(8): 2531-2545, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33914112

RESUMO

KEY MESSAGE: Powdery mildew resistance in zucchini is controlled by one major dominant locus, CpPM10.1. CpPM10.1 was fine mapped. The expression of candidate gene Cp4.1LG10g02780 in resistant individuals was significantly upregulated after inoculation with the powdery mildew. Powdery mildew (PM) is one of the most destructive fungal diseases, reducing the productivity of Cucurbita crops globally. PM influences the photosynthesis, growth and development of infected zucchini and seriously reduces fruit yield and quality. In the present study, the zucchini inbred line 'X10' had highly stable PM resistance, and the inbred line 'Jin234' was highly susceptible to PM in the seedling stage and adult stages. Genetic analysis revealed that PM resistance in 'X10' is controlled by one major dominant locus. Based on the strategy of QTL-seq combined with linkage analysis and developed molecular markers, the major locus was found to be located in a 382.9-kb candidate region on chromosome 10; therefore, the major locus was named CpPM10.1. Using 1,400 F2 individuals derived from a cross between 'X10' and 'JIN234' and F2:3 offspring of the recombinants, the CpPM10.1 locus was defined in a region of approximately 20.9 kb that contained 5 coding genes. Among them, Cp4.1LG10g02780 contained a conserved domain (RPW8), which controls resistance to a broad range of PM pathogens. Cp4.1LG10g02780 also had nonsynonymous SNPs between the resistant 'X10' and susceptible 'Jin234.' Furthermore, the expression of Cp4.1LG10g02780 was strongly positively involved in PM resistance in the key period of inoculation. Further allelic diversity analysis in zucchini germplasm resources indicated that PM resistance was associated with two SNPs in the Cp4.1LG10g02780 RPW8 domain. This study not only provides highly stable PM resistance gene resources for cucurbit crops but also lays the foundation for the functional analysis of PM resistance and resistance breeding in zucchini.


Assuntos
Ascomicetos/fisiologia , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Cucurbita/genética , Resistência à Doença/imunologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Cucurbita/crescimento & desenvolvimento , Cucurbita/microbiologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética
7.
J Integr Plant Biol ; 63(2): 378-392, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33073904

RESUMO

Study on the regulation of broad-spectrum resistance is an active area in plant biology. RESISTANCE TO POWDERY MILDEW 8.1 (RPW8.1) is one of a few broad-spectrum resistance genes triggering the hypersensitive response (HR) to restrict multiple pathogenic infections. To address the question how RPW8.1 signaling is regulated, we performed a genetic screen and tried to identify mutations enhancing RPW8.1-mediated HR. Here, we provided evidence to connect an annexin protein with RPW8.1-mediated resistance in Arabidopsis against powdery mildew. We isolated and characterized Arabidopsis b7-6 mutant. A point mutation in b7-6 at the At5g12380 locus resulted in an amino acid substitution in ANNEXIN 8 (AtANN8). Loss-of-function or RNA-silencing of AtANN8 led to enhanced expression of RPW8.1, RPW8.1-dependent necrotic lesions in leaves, and defense against powdery mildew. Conversely, over-expression of AtANN8 compromised RPW8.1-mediated disease resistance and cell death. Interestingly, the mutation in AtANN8 enhanced RPW8.1-triggered H2 O2 . In addition, mutation in AtANN8 led to hypersensitivity to salt stress. Together, our data indicate that AtANN8 is involved in multiple stress signaling pathways and negatively regulates RPW8.1-mediated resistance against powdery mildew and cell death, thus linking ANNEXIN's function with plant immunity.


Assuntos
Anexinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/microbiologia , Resistência à Doença , Doenças das Plantas/microbiologia , Adaptação Fisiológica , Sequência de Aminoácidos , Anexinas/química , Anexinas/genética , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Ascomicetos/fisiologia , Morte Celular , Retículo Endoplasmático/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Peróxido de Hidrogênio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mutação/genética , Necrose , Estresse Salino , Estresse Fisiológico
8.
Plant J ; 98(1): 55-70, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30552775

RESUMO

The extrahaustorial membrane (EHM) is a host-derived interfacial membrane encasing the haustorium of powdery mildew fungi. Arabidopsis thaliana RESISTANCE TO POWDERY MILDEW 8.2 (RPW8.2) is specifically targeted to the EHM via two EHM-targeting signals. Here, we demonstrate that proper coordination between the trafficking forces engaged via the EHM-targeting signals and the nuclear localization signals (NLSs), as well as the nuclear export signals (NESs), in RPW8.2 is critical for the activation of cell death and defense. We show that in the absence of pathogens, RPW8.2 is partitioned between the cytoplasm and the nucleus, and turned over via both the 26S proteasome- and the vacuole-dependent pathways. Enhanced cytoplasmic localization of RPW8.2 by tagging it with a NES led to lethal cell death. By contrast, enhanced nuclear localization of RPW8.2 by adding an NLS to it resulted in resistance to powdery mildew. Whereas expression of the NES-containing C-terminal domain of RPW8.2 in the cytoplasm is sufficient to trigger cell death, no such cell death-inducing activity is found with RPW8.2 variants that contain the two EHM-targeting signals along with the NES-containing C-terminal domain. In addition, we present evidence for the involvement of a leaf senescence pathway in RPW8.2-mediated cell death and defense. Taken together, our data suggest that RPW8.2 is subject to adjustment by distinct and perhaps coordinated mechanisms for its localization and function via interaction with the multiple intramolecular trafficking signals, which should provide further insights into RPW8.2-activated, EHM-focused resistance against powdery mildew.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ascomicetos/fisiologia , Resistência à Doença , Doenças das Plantas/imunologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Morte Celular , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Genes Reporter , Interações Hospedeiro-Patógeno , Modelos Biológicos , Mutação , Sinais de Exportação Nuclear , Sinais de Localização Nuclear , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Transporte Proteico
9.
Plant Biotechnol J ; 16(2): 428-441, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28640974

RESUMO

The Arabidopsis gene RESISTANCE TO POWDERY MILDEW8.1 (RPW8.1) confers resistance to virulent fungal and oomycete pathogens that cause powdery mildew and downy mildew, respectively. However, the underlying mechanism remains unclear. Here, we show that ectopic expression of RPW8.1 boosts pattern-triggered immunity (PTI) resulting in enhanced resistance against different pathogens in both Arabidopsis and rice. In Arabidopsis, transcriptome analysis revealed that ectopic expression of RPW8.1-YFP constitutively up-regulates expression of many pathogen-associated molecular pattern (PAMP-)-inducible genes. Consistently, upon PAMP application, the transgenic line expressing RPW8.1-YFP exhibited more pronounced PTI responses such as callose deposition, production of reactive oxygen species, expression of defence-related genes and hypersensitive response-like cell death. Accordingly, the growth of a virulent bacterial pathogen was significantly inhibited in the transgenic lines expressing RPW8.1-YFP. Conversely, impairment of the PTI signalling pathway from PAMP cognition to the immediate downstream relay of phosphorylation abolished or significantly compromised RPW8.1-boosted PTI responses. In rice, heterologous expression of RPW8.1-YFP also led to enhanced resistance to the blast fungus Pyricularia oryzae (syn. Magnaporthe oryzae) and the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo). Taken together, our data suggest a surprising mechanistic connection between RPW8.1 function and PTI, and demonstrate the potential of RPW8.1 as a transgene for engineering disease resistance across wide taxonomic lineages of plants.


Assuntos
Arabidopsis/imunologia , Arabidopsis/metabolismo , Oryza/imunologia , Oryza/metabolismo , Imunidade Vegetal/fisiologia , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Oryza/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Xanthomonas/imunologia , Xanthomonas/patogenicidade
10.
Int J Mol Sci ; 19(3)2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-29534026

RESUMO

RPW8 genes are atypical broad-spectrum genes that provide resistance to powdery mildew, downy mildew, the cauliflower mosaic virus in Arabidopsis thaliana, and powdery mildew in tobacco. They play important roles in basal plant pathogen defense. They also provide insights into a novel disease resistance mechanism. In this study, we report on homologous RPW8 genes in Vitis pseudoreticulata. Five VpRPW8 genes were cloned; their Open Reading Frame (ORF) sequences ranged from 1994 base pairs to 2478 base pairs. They were comprised of five exons and four introns and shared 78.66% identity. Their proteins had typical conserved RPW8 and NB-LRR (the nucleotide-binding site and the leucine-rich repeats) domains (except VpRPW8-d, which lacked LRR domains). Prokaryotic expression results were consistent with predicted molecular weights. All five RPW8 genes were located in the cytoplasm. Quantitative real-time PCR (qRT-PCR) analysis showed that VpRPW8s in V. pseudoreticulata were induced by Plasmopara viticola, but nearly only VvRPW8-d genes were induced in Vitis vinifera. Furthermore, a VpRPW8 transgenic tobacco system was established. Overexpressed VpRPW8s enhanced resistance to Phytophthora capsici and VpRPW8s conferred varying degrees of resistance to Ph. capsici in Nicotiana benthamiana. Our study presents novel members of the plant RPW8 family and suggests that VpRPW8s are involved in enhanced resistance to P. viticola and Ph. capsici.


Assuntos
Resistência à Doença/genética , Nicotiana/genética , Proteínas de Plantas/genética , Transgenes , Sítios de Ligação , Phytophthora/patogenicidade , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Nicotiana/imunologia , Nicotiana/microbiologia , Vitis/genética
11.
Plant J ; 79(5): 835-47, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24941879

RESUMO

Plants employ multiple cell-autonomous defense mechanisms to impede pathogenesis of microbial intruders. Previously we identified an exocytosis defense mechanism in Arabidopsis against pathogenic powdery mildew fungi. This pre-invasive defense mechanism depends on the formation of ternary protein complexes consisting of the plasma membrane-localized PEN1 syntaxin, the adaptor protein SNAP33 and closely sequence-related vesicle-resident VAMP721 or VAMP722 proteins. The Arabidopsis thaliana resistance to powdery mildew 8.2 protein (RPW8.2) confers disease resistance against powdery mildews upon fungal entry into host cells and is specifically targeted to the extrahaustorial membrane (EHM), which envelops the haustorial complex of the fungus. However, the secretory machinery involved in trafficking RPW8.2 to the EHM is unknown. Here we report that RPW8.2 is transiently located on VAMP721/722 vesicles, and later incorporated into the EHM of mature haustoria. Resistance activity of RPW8.2 against the powdery mildew Golovinomyces orontii is greatly diminished in the absence of VAMP721 but only slightly so in the absence of VAMP722. Consistent with this result, trafficking of RPW8.2 to the EHM is delayed in the absence of VAMP721. These findings implicate VAMP721/722 vesicles as key components of the secretory machinery for carrying RPW8.2 to the plant-fungal interface. Quantitative fluorescence recovery after photobleaching suggests that vesicle-mediated trafficking of RPW8.2-yellow fluorescent protein (YFP) to the EHM occurs transiently during early haustorial development and that lateral diffusion of RPW8.2-YFP within the EHM exceeds vesicle-mediated replenishment of RPW8.2-YFP in mature haustoria. Our findings imply the engagement of VAMP721/722 in a bifurcated trafficking pathway for pre-invasive defense at the cell periphery and post-invasive defense at the EHM.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ascomicetos/fisiologia , Doenças das Plantas/imunologia , Proteínas R-SNARE/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Resistência à Doença , Genes Reporter , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Transporte Proteico , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/genética , Proteínas Recombinantes de Fusão
12.
Int J Mol Sci ; 13(7): 9110-9128, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22942755

RESUMO

Plants are constantly exposed to microbes, for this reason they have evolved sophisticated strategies to perceive and identify biotic interactions. Thus, plants have large collections of so-called resistance (R) proteins that recognize specific microbe factors as signals of invasion. One of these proteins is codified by the Arabidopsis thaliana HR4 gene in the Col-0 ecotype that is homologous to RPW8 genes present in the Ms-0 ecotype. In this study, we investigated the expression patterns of the HR4 gene in Arabidopsis seedlings interacting with the beneficial fungus Trichoderma atroviride. We observed the induction of the HR4 gene mainly at 96 hpi when the fungus interaction was established. Furthermore, we found that the HR4 gene was differentially regulated in interactions with the beneficial bacterium Pseudomonas fluorescens and the pathogenic bacterium P. syringae. When hormone treatments were applied to A. thaliana (Col-0), each hormone treatment induced changes in HR4 gene expression. On the other hand, the expression of the RPW8.1 and RPW8.2 genes of Arabidopsis ecotype Ms-0 in interaction with T. atroviride was assessed. Interestingly, these genes are interaction-responsive; in particular, the RPW8.1 gene shows a very high level of expression in the later stages of interaction. These results indicate that HR4 and RPW8 genes could play a role in the establishment of Arabidopsis interactions with beneficial microbes.


Assuntos
Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/fisiologia , Plântula/metabolismo , Trichoderma/fisiologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/biossíntese , Plântula/microbiologia
13.
Cell Host Microbe ; 27(3): 405-417.e6, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32101702

RESUMO

In certain plant hybrids, immunity signaling is initiated when immune components interact in the absence of a pathogen trigger. In Arabidopsis thaliana, such autoimmunity and cell death are linked to variants of the NLR RPP7 and the RPW8 proteins involved in broad-spectrum resistance. We uncover the molecular basis for this autoimmunity and demonstrate that a homolog of RPW8, HR4Fei-0, can trigger the assembly of a higher-order RPP7 complex, with autoimmunity signaling as a consequence. HR4Fei-0-mediated RPP7 oligomerization occurs via the RPP7 C-terminal leucine-rich repeat (LRR) domain and ATP-binding P-loop. RPP7 forms a higher-order complex only in the presence of HR4Fei-0 and not with the standard HR4 variant, which is distinguished from HR4Fei-0 by length variation in C-terminal repeats. Additionally, HR4Fei-0 can independently form self-oligomers, which directly kill cells in an RPP7-independent manner. Our work provides evidence for a plant resistosome complex and the mechanisms by which RPW8/HR proteins trigger cell death.


Assuntos
Proteínas de Arabidopsis/imunologia , Arabidopsis/imunologia , Morte Celular , Imunidade Vegetal , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Multimerização Proteica , Nicotiana/imunologia
14.
Front Plant Sci ; 8: 2044, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29250093

RESUMO

Ectopic expression of the Arabidopsis RESISTANCE TO POWDERY MILDEW8.1 (RPW8.1) boosts pattern-triggered immunity leading to enhanced resistance to different pathogens in Arabidopsis and rice. However, the underlying regulatory mechanism remains largely elusive. Here, we report that XAP5 CIRCADIAN TIMEKEEPER (XCT, At2g21150) positively regulates RPW8.1-mediated cell death and disease resistance. Forward genetic screen identified the b3-17 mutant that exhibited less cell death and susceptibility to powdery mildew and bacterial pathogens. Map-based cloning identified a G-to-A point mutation at the 3' splice site of the 8th intron, which resulted in splice shift to 8-bp down-stream of the original splice site of XCT in b3-17, and introduced into a stop codon after two codons leading to a truncated XCT. XCT has previously been identified as a circadian clock gene required for small RNA biogenesis and acting down-stream of ETHYLENE-INSENSITIVE3 (EIN3) in the ethylene-signaling pathway. Here we further showed that mutation or down-regulation of XCT by artificial microRNA reduced RPW8.1-mediated immunity in R1Y4, a transgenic line expressing RPW8.1-YFP from the RPW8.1 native promoter. On the contrary, overexpression of XCT in R1Y4 background enhanced RPW8.1-mediated cell death, H2O2 production and resistance against powdery mildew. Consistently, the expression of RPW8.1 was down- and up-regulated in xct mutant and XCT overexpression lines, respectively. Taken together, these results indicate that XCT positively regulates RPW8.1-mediated cell death and disease resistance, and provide new insight into the regulatory mechanism of RPW8.1-mediated immunity.

15.
Front Plant Sci ; 7: 1065, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27493652

RESUMO

The Resistance to Powdery Mildew 8 (RPW8) locus confers broad-spectrum resistance to powdery mildew in Arabidopsis thaliana. There are four Homologous to RPW8s (BrHRs) in Brassica rapa and three in Brassica oleracea (BoHRs). Brassica napus (Bn) is derived from diploidization of a hybrid between B. rapa and B. oleracea, thus should have seven homologs of RPW8 (BnHRs). It is unclear whether these genes are still maintained or lost in B. napus after diploidization and how they might have been evolved. Here, we reported the identification and sequence polymorphisms of BnHRs from a set of B. napus accessions. Our data indicated that while the BoHR copy from B. oleracea is highly conserved, the BrHR copy from B. rapa is relatively variable in the B. napus genome owing to multiple evolutionary events, such as gene loss, point mutation, insertion, deletion, and intragenic recombination. Given the overall high sequence homology of BnHR genes, it is not surprising that both intragenic recombination between two orthologs and two paralogs were detected in B. napus, which may explain the loss of BoHR genes in some B. napus accessions. When ectopically expressed in Arabidopsis, a C-terminally truncated version of BnHRa and BnHRb, as well as the full length BnHRd fused with YFP at their C-termini could trigger cell death in the absence of pathogens and enhanced resistance to powdery mildew disease. Moreover, subcellular localization analysis showed that both BnHRa-YFP and BnHRb-YFP were mainly localized to the extra-haustorial membrane encasing the haustorium of powdery mildew. Taken together, our data suggest that the duplicated BnHR genes might have been subjected to differential selection and at least some may play a role in defense and could serve as resistance resource in engineering disease-resistant plants.

16.
Plant Signal Behav ; 10(3): e989766, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25830634

RESUMO

Powdery mildew fungi form feeding structures called haustoria inside epidermal cells of host plants to extract photosynthates for their epiphytic growth and reproduction. The haustorium is encased by an interfacial membrane termed the extrahaustorial membrane (EHM). The atypical resistance protein RPW8.2 from Arabidopsis is specifically targeted to the EHM where RPW8.2 activates haustorium-targeted (thus broad-spectrum) resistance against powdery mildew fungi. EHM-specific localization of RPW8.2 suggests the existence of an EHM-oriented protein/membrane trafficking pathway during EHM biogenesis. However, the importance of this specific trafficking pathway for host defense has not been evaluated via a genetic approach without affecting other trafficking pathways. Here, we report that expression of EHM-oriented, nonfunctional RPW8.2 chimeric proteins exerts dominant negative effect over functional RPW8.2 and potentially over other EHM-localized defense proteins, thereby compromising both RPW8.2-mediated and basal resistance to powdery mildew. Thus, our results highlight the importance of the EHM-oriented protein/membrane trafficking pathway for host resistance against haustorium-forming pathogens such as powdery mildew fungi.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ascomicetos , Resistência à Doença , Estruturas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Folhas de Planta , Plantas Geneticamente Modificadas , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA