Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Anat ; 244(6): 1054-1066, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38288680

RESUMO

The mammalian placenta's interface with the parent is a richly vascularized tissue whose development relies upon communication between many different cell types within the uterine microenvironment. The uterine blood vessels of the interface are reshaped during pregnancy into wide-bore, flaccid vessels that convey parental blood to the exchange region of the placenta. Invasive trophoblast as well as parental uterine macrophages and Natural Killer cells are involved in the stepwise remodeling of these vessels and their respective contributions to this crucial process are still being delineated. However, the earliest steps in arteriole remodeling are understudied as they are difficult to study in humans, and other species lack the deep trophoblast invasion that is so prominent a feature of placentation in humans. Here, we further characterize the rat, with deep hemochorial placentation akin to humans, as a model system in which to tease apart the earliest, relatively understudied events in spiral arteriole remodeling. We show that the rat uterine-placental interface increases in size and vascularity rapidly, before trophoblast invasion. The remodeling stages in the arterioles of the rat uterine-placental interface follow a sequence of anatomical changes similar to those in humans, and there are changes to the arterioles' muscular tunica media prior to the marked influx of immune cells. The rat is a tractable model in which to better understand the cell/cell interactions occurring in vivo in an intact tissue microenvironment over time.


Assuntos
Placenta , Útero , Remodelação Vascular , Animais , Feminino , Gravidez , Arteríolas , Ratos , Útero/irrigação sanguínea , Placenta/irrigação sanguínea , Remodelação Vascular/fisiologia , Placentação/fisiologia , Modelos Animais , Ratos Sprague-Dawley
2.
FASEB J ; 35(7): e21684, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34159634

RESUMO

Adenine nucleotides represent crucial immunomodulators in the extracellular environment. The ectonucleotidases CD39 and CD73 are responsible for the sequential catabolism of ATP to adenosine via AMP, thus promoting an anti-inflammatory milieu induced by the "adenosine halo". AMPD2 intracellularly mediates AMP deamination to IMP, thereby both enhancing the degradation of inflammatory ATP and reducing the formation of anti-inflammatory adenosine. Here, we show that this enzyme is expressed on the surface of human immune cells and its predominance may modify inflammatory states by altering the extracellular milieu. Surface AMPD2 (eAMPD2) expression on monocytes was verified by immunoblot, surface biotinylation, mass spectrometry, and immunofluorescence microscopy. Flow cytometry revealed enhanced monocytic eAMPD2 expression after TLR stimulation. PBMCs from patients with rheumatoid arthritis displayed significantly higher levels of eAMPD2 expression compared with healthy controls. Furthermore, the product of AMPD2-IMP-exerted anti-inflammatory effects, while the levels of extracellular adenosine were not impaired by an increased eAMPD2 expression. In summary, our study identifies eAMPD2 as a novel regulator of the extracellular ATP-adenosine balance adding to the immunomodulatory CD39-CD73 system.


Assuntos
5'-Nucleotidase/metabolismo , AMP Desaminase/metabolismo , Adenina/metabolismo , Trifosfato de Adenosina/metabolismo , Leucócitos/metabolismo , Apirase , Células Cultivadas , Proteínas Ligadas por GPI/metabolismo , Humanos
3.
J Neurosci Res ; 96(5): 841-851, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29063641

RESUMO

Aggregation of tau into neurofibrillary tangles (NFTs) is characteristic of tauopathies, including Alzheimer's disease. Recent advances in tau imaging have attracted much attention because of its potential contributions to early diagnosis and monitoring of disease progress. Fluorine-19 magnetic resonance imaging (19 F-MRI) may be extremely useful for tau imaging once a high-quality probe has been formulated. In this investigation, a novel fluorine-19-labeling compound has been developed as a probe for tau imaging using 19 F-MRI. This compound is a buta-1,3-diene derivative with a polyethylene glycol side chain bearing a CF3 group and is known as Shiga-X35. Female rTg4510 mice (a mouse model of tauopathy) and wild-type mice were intravenously injected with Shiga-X35, and magnetic resonance imaging of each mouse's head was conducted in a 7.0-T horizontal-bore magnetic resonance scanner. The 19 F-MRI in rTg4510 mice showed an intense signal in the forebrain region. Analysis of the signal intensity in the forebrain region revealed a significant accumulation of fluorine-19 magnetic resonance signal in the rTg4510 mice compared with the wild-type mice. Histological analysis showed fluorescent signals of Shiga-X35 binding to the NFTs in the brain sections of rTg4510 mice. Data collected as part of this investigation indicate that 19 F-MRI using Shiga-X35 could be a promising tool to evaluate tau pathology in the brain.


Assuntos
Benzoxazóis/química , Butadienos/química , Imagem por Ressonância Magnética de Flúor-19/métodos , Flúor , Tauopatias/diagnóstico por imagem , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Animais , Benzoxazóis/síntese química , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Butadienos/síntese química , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Emaranhados Neurofibrilares/metabolismo , Proteínas tau/metabolismo
4.
J Neurosci Res ; 96(12): 1900-1913, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30027580

RESUMO

Traumatic brain injury (TBI) is the major cause of physical disability and emotional vulnerability. Treatment of TBI is lacking due to its multimechanistic etiology, including derailed mitochondrial and cellular energy metabolism. Previous studies from our laboratory show that an endogenous nitric oxide (NO) metabolite S-nitrosoglutathione (GSNO) provides neuroprotection and improves neurobehavioral function via anti-inflammatory and anti-neurodegenerative mechanisms. To accelerate the rate and enhance the degree of recovery, we investigated combining GSNO with caffeic acid phenethyl ester (CAPE), a potent antioxidant compound, using a male mouse model of TBI, controlled cortical impact in mice. The combination therapy accelerated improvement of cognitive and depressive-like behavior compared with GSNO or CAPE monotherapy. Separately, both GSNO and CAPE improved mitochondrial integrity/function and decreased oxidative damage; however, the combination therapy had greater effects on Drp1 and MnSOD. Additionally, while CAPE alone activated AMPK, this activation was heightened in combination with GSNO. CAPE treatment of normal animals also significantly increased the expression levels of pAMPK, pACC (activation of AMPK substrate ACC), and pLKB1 (activation of upstream to AMPK kinase LKB1), indicating that CAPE activates AMPK via LKB1. These results show that while GSNO and CAPE provide neuroprotection and improve functional recovery separately, the combination treatment invokes greater recovery by significantly improving mitochondrial functions and activating the AMPK enzyme. Both GSNO and CAPE are in human consumption without any known adverse effects; therefore, a combination therapy-based multimechanistic approach is worthy of investigation in human TBI.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Ácidos Cafeicos/farmacologia , Álcool Feniletílico/análogos & derivados , S-Nitrosoglutationa/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Aminoácido Oxirredutases/metabolismo , Animais , Antioxidantes/metabolismo , Escala de Avaliação Comportamental , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Sinergismo Farmacológico , Dinaminas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Álcool Feniletílico/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Superóxido Dismutase/metabolismo
5.
J Neurosci Res ; 96(5): 828-840, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29114922

RESUMO

According to much research, neurodegeneration and cognitive decline in Alzheimer disease (AD) are correlated with alternations of neurotrophic factors such as nerve growth factor, brain-derived neurotrophic factor, and glial cell-derived neurotrophic factor. The experimental illumination of neural stem cell (NSC) transplantation to eliminate AD symptoms is being explored frequently, and we have acknowledged that neurotrophic factors may play a pivotal role in cognitive improvement. However, the relation between the reversal of cognitive deficits after NSC transplantation and directed alternations of neurotrophic factors is not clearly expounded. Meanwhile, reduced inflammatory response, promoted vessel density, and vascular endothelial growth factor (VEGF) can be reflections of improvement in cerebrovascular function. Three weeks after NSC transplantation, spatial learning and memory function in NSC-injected (Tg-NSC) mice were significantly improved compared with vehicle-injected (Tg-Veh) mice. Meanwhile, results obtained by immunofluorescence and Western blot analyses demonstrated that the levels of neurotrophic factors, VEGF, and vessel density in the cortex of Tg-NSC mice were significantly enhanced compared with Tg-Veh mice, while the levels of proinflammatory cytokines interleukin (IL)-1ß, tumor necrosis factor-α, and IL-6 were significantly decreased. Our results suggest that elevated concentrations of neurotrophic factors probably play a critical role in rescuing cognitive dysfunction in APP/PS1 transgenic mice after NSC transplantation, and neurotrophic factors may improve cerebrovascular function by means such as reducing inflammatory response and promoting angiogenesis.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Fatores de Crescimento Neural/metabolismo , Células-Tronco Neurais/transplante , Doença de Alzheimer/patologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Interleucinas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Fator de Crescimento Neural/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
J Neurosci Res ; 95(7): 1446-1458, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27781303

RESUMO

Neurogenesis is a well-characterized phenomenon within the dentate gyrus (DG) of the adult hippocampus. Aging and chronic degenerative disorders have been shown to impair hippocampal neurogenesis, but the consequence of chronic inflammation remains controversial. In this study the chronic experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis was used to investigate the long-term effects of T cell-mediated central nervous system inflammation on hippocampal neurogenesis. 5-Bromodeoxyuridine (BrdU)-labeled subpopulations of hippocampal cells in EAE and control mice (coexpressing GFAP, doublecortin, NeuN, calretinin, and S100) were quantified at the recovery phase, 21 days after BrdU administration, to estimate alterations on the rate and differentiation pattern of the neurogenesis process. The core features of EAE mice DG are (i) elevated number of newborn (BrdU+) cells indicating vigorous proliferation, which in the long term subsided; (ii) enhanced migration of newborn cells into the granule cell layer; (iii) increased level of immature neuronal markers (including calretinin and doublecortin); (iv) trending decrease in the percentage of newborn mature neurons; and (v) augmented gliogenesis and differentiation of newborn neural precursor cells (NPCs) to mature astrocytes (BrdU+/S100+). Although the inflammatory environment in the brain of EAE mice enhances the proliferation of hippocampal NPCs, in the long term neurogenesis is progressively depleted, giving prominence to gliogenesis. The discrepancy between the high number of immature cells and the low number of mature newborn cells could be the result of a caused defect in the maturation pathway. © 2016 Wiley Periodicals, Inc.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Hipocampo/patologia , Hipocampo/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Fatores Etários , Animais , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Feminino , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo
7.
J Neurosci Res ; 93(10): 1600-10, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26031216

RESUMO

MicroRNAs (miRNAs) are modulators of gene expression that play key regulatory roles in distinct cellular processes. Methamphetamine (METH) induces various aberrant changes in the limbic system by affecting a complex gene regulatory mechanism, yet the involvement of miRNAs in the effects of METH exposure remains unclear. This study identifies METH-responsive miRNAs and their potential effects in the nucleus accumbens (NAc) of mice. Using miRNA sequencing, we examined the expression of miRNAs in the NAc of saline- and METH-treated mice and identified 45 known miRNAs to be METH responsive. Additionally, we identified two novel miRNA candidates that were METH responsive (novel-m002C and novel-m009C). Our target prediction analysis suggested that the known METH-regulated miRNAs might target genes that are involved in cellular autophagy, cellular metabolism, and immune responses and that the novel METH-regulated miRNA candidates might target genes that are related to drug addiction. We also matched the predicted targets of METH-regulated miRNAs with the NAc messenger RNA expression profile, revealing eight putative METH-regulated target genes (Arc, Capn9, Gbp5, Lefty1, Patl2, Pde4c, Strc, and Vmn1r58). Thus, METH triggers an alteration in NAc miRNA expression, which could contribute to METH-induced changes in neuron autophagy, metabolism, and immune responses. The differential expression of putative target genes suggests their involvement following exposure to METH.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Metanfetamina/farmacologia , MicroRNAs/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Animais , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Genoma/efeitos dos fármacos , Genoma/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Estatísticas não Paramétricas , Transcriptoma
8.
J Neurosci Res ; 93(9): 1378-87, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26053243

RESUMO

The present study seeks to elucidate the interactions between the "competence" growth factor basic fibroblast growth factor (bFGF) and/or estrogen 17ß-estradiol and the "progression" growth factors epidermal growth factor (EGF), insulin-like growth factor-I (IGF-I), and insulin (INS) on DNA labeling and also cyclin D1, extracellular signal-related kinase 1/2 (ERK1/2), glial fibrillary acidic protein (GFAP), and vimentin expression in astroglial cultures under different experimental conditions. Pretreatment for 24 hr with bFGF and subsequent exposure for 36 hr to estradiol (E2 ) and EGF, IGF-I, or INS stimulated DNA labeling in the last 12 hr, especially when the cultures were treated with progression growth factors. bFGF pretreatment and subsequent treatment with E2 for 36 hr stimulated DNA labeling. The 36-hr E2 treatment alone did not significantly decrease DNA labeling, but contemporary addition of E2 with two or three growth factors stimulated DNA labeling remarkably. When E2 was coadded with growth factors, a significantly increased DNA labeling was observed, demonstrating an astroglial synergistic mitogenic effect evoked by contemporary treatment with growth factors in the presence of estrogens. Cyclin D1 expression was markedly increased when astrocyte cultures were pretreated for 36 hr with E2 and subsequently treated with two or three competence and progression growth factors. A highly significant increase of ERK1/2 expression was observed after all the treatments (EGF, bFGF, INS, IGF-I alone or in combination with two or three growth factors). GFAP and vimentin expression was markedly increased when the cultures were treated with two or three growth factors. In conclusion, our data demonstrate estradiol-growth factor cross-talk during astroglial cell proliferation and differentiation in culture.


Assuntos
Astrócitos/efeitos dos fármacos , Estradiol/farmacologia , Estrogênios/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Vimentina/metabolismo , Análise de Variância , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Células Cultivadas , Interações Medicamentosas , Regulação da Expressão Gênica/efeitos dos fármacos , Insulina/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Ratos , Ratos Wistar , Timidina/metabolismo , Fatores de Tempo , Trítio/metabolismo
9.
J Comp Neurol ; 529(7): 1553-1570, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32965036

RESUMO

Dopamine serves many functions, and dopamine neurons are correspondingly diverse. We use a combination of optogenetics, behavioral experiments, and high-resolution video-tracking to probe for the functional capacities of two single, identified dopamine neurons in larval Drosophila. The DAN-f1 and the DAN-d1 neuron were recently found to carry aversive teaching signals during Pavlovian olfactory learning. We enquire into a fundamental feature of these teaching signals, namely their temporal "fingerprint". That is, receiving punishment feels bad, whereas being relieved from it feels good, and animals and humans alike learn with opposite valence about the occurrence and the termination of punishment (the same principle applies in the appetitive domain, with opposite sign). We find that DAN-f1 but not DAN-d1 can mediate such timing-dependent valence reversal: presenting an odor before DAN-f1 activation leads to learned avoidance of the odor (punishment memory), whereas presenting the odor upon termination of DAN-f1 activation leads to learned approach (relief memory). In contrast, DAN-d1 confers punishment memory only. These effects are further characterized in terms of the impact of the duration of optogenetic activation, the temporal stability of the memories thus established, and the specific microbehavioral patterns of locomotion through which they are expressed. Together with recent findings in the appetitive domain and from adult Drosophila, our results suggest that heterogeneity in the temporal fingerprint of teaching signals might be a more general principle of reinforcement processing through dopamine neurons.


Assuntos
Aprendizagem por Associação/fisiologia , Aprendizagem da Esquiva/fisiologia , Neurônios Dopaminérgicos/fisiologia , Reforço Psicológico , Animais , Comportamento Animal/fisiologia , Condicionamento Clássico , Drosophila melanogaster , Larva
10.
J Comp Neurol ; 529(7): 1703-1718, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33084025

RESUMO

The glutamate receptor delta 1 (GluD1) is strongly expressed in the striatum. Knockout of GluD1 expression in striatal neurons elicits cognitive deficits and disrupts the thalamostriatal system in mice. To understand the potential role of GluD1 in the primate striatum, we compared the cellular and subcellular localization of striatal GluD1 immunoreactivity (GluD1-IR) in mice and monkeys. In both species, striatal GluD1-IR displayed a patchy pattern of distribution in register with the striosome/matrix compartmentation, but in an opposite fashion. While GluD1 was more heavily expressed in the striosomes than the matrix in the monkey caudate nucleus, the opposite was found in the mouse striatum. At the electron microscopic level, GluD1-IR was preferentially expressed in dendritic shafts (47.9 ± 1.2%), followed by glia (37.7 ± 2.5%), and dendritic spines (14.3 ± 2.6%) in the matrix of the mouse striatum. This pattern was not statistically different from the labeling in the striosome and matrix compartments of the monkey caudate nucleus, with the exception of a small amount of GluD1-positive unmyelinated axons and axon terminals in the primate striatum. Immunogold staining revealed synaptic and perisynaptic GluD1 labeling at putative axo-dendritic and axo-spinous glutamatergic synapses, and intracellular labeling on the surface of mitochondria. Confocal microscopy showed that GluD1 is preferentially colocalized with thalamic over cortical terminals in both the striosome and matrix compartments. These data provide the anatomical substrate for a deeper understanding of GluD1 regulation of striatal glutamatergic synapses, but also suggest possible extrasynaptic, glial, and mitochondrial GluD1 functions.


Assuntos
Corpo Estriado/metabolismo , Receptores de Glutamato/metabolismo , Animais , Macaca mulatta , Masculino , Camundongos
11.
J Comp Neurol ; 529(12): 3222-3246, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33871048

RESUMO

Over the last two decades, beginning with the Avian Brain Nomenclature Forum in 2000, major revisions have been made to our understanding of the organization and nomenclature of the avian brain. However, there are still unresolved questions on avian pallial organization, particularly whether the cells above the vestigial ventricle represent distinct populations to those below it or similar populations. To test these two hypotheses, we profiled the transcriptomes of the major avian pallial subdivisions dorsal and ventral to the vestigial ventricle boundary using RNA sequencing and a new zebra finch genome assembly containing about 22,000 annotated, complete genes. We found that the transcriptomes of neural populations above and below the ventricle were remarkably similar. Each subdivision in dorsal pallium (Wulst) had a corresponding molecular counterpart in the ventral pallium (dorsal ventricular ridge). In turn, each corresponding subdivision exhibited shared gene co-expression modules that contained gene sets enriched in functional specializations, such as anatomical structure development, synaptic transmission, signaling, and neurogenesis. These findings are more in line with the continuum hypothesis of avian brain subdivision organization above and below the vestigial ventricle space, with the pallium as a whole consisting of four major cell populations (intercalated pallium, mesopallium, hyper-nidopallium, and arcopallium) instead of seven (hyperpallium apicale, interstitial hyperpallium apicale, intercalated hyperpallium, hyperpallium densocellare, mesopallium, nidopallium, and arcopallium). We suggest adopting a more streamlined hierarchical naming system that reflects the robust similarities in gene expression, neural connectivity motifs, and function. These findings have important implications for our understanding of overall vertebrate brain evolution.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Animais , Tentilhões , Masculino , Análise de Sequência de RNA/métodos , Aves Canoras
12.
J Comp Neurol ; 528(13): 2254-2268, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32080842

RESUMO

The intermediate and deep layers of the midbrain superior colliculus (SC) are a key locus for several critical functions, including spatial attention, multisensory integration, and behavioral responses. While the SC is known to integrate input from a variety of brain regions, progress in understanding how these inputs contribute to SC-dependent functions has been hindered by the paucity of data on innervation patterns to specific types of SC neurons. Here, we use G-deleted rabies virus-mediated monosynaptic tracing to identify inputs to excitatory and inhibitory neurons of the intermediate and deep SC. We observed stronger and more numerous projections to excitatory than inhibitory SC neurons. However, a subpopulation of excitatory neurons thought to mediate behavioral output received weaker inputs, from far fewer brain regions, than the overall population of excitatory neurons. Additionally, extrinsic inputs tended to target rostral excitatory and inhibitory SC neurons more strongly than their caudal counterparts, and commissural SC neurons tended to project to similar rostrocaudal positions in the other SC. Our findings support the view that active intrinsic processes are critical to SC-dependent functions, and will enable the examination of how specific inputs contribute to these functions.


Assuntos
Colículos Superiores/citologia , Colículos Superiores/fisiologia , Sinapses/fisiologia , Animais , Feminino , Masculino , Camundongos , Colículos Superiores/anatomia & histologia
13.
Transl Cancer Res ; 9(8): 4666-4675, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35117830

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is the most important cause of lung cancer death. Wnt7a is a known tumor suppressor gene which is often downregulated in NSCLC, and restoration of Wnt7a leads to decreased NSCLC cell proliferation. However, the biological role of Wnt7a in the migration and invasion in NSCLC remains unclear. METHODS: We examined whether overexpression of Wnt7a transfected by pcDNA6-Wnt7a could induce the proliferation, migration and invasion of NSCLC H1650 and A549 cell lines. Wnt7a signaling pathway, such as canonical (ß-catenin) or non-canonical (c-Jun N-terminal kinase, JNK) pathways, were also assessed. RESULTS: We found that re-expression of Wnt7a led to reduced cell growth in NSCLC cell lines. In spite of the antiproliferative effect, Wnt7a overexpression could affect the migration and invasion of NSCLC cells. In the Wnt7a signaling pathway, the phosphorylation of JNK (Thr-183/Tyr-185) and c-Jun (Ser-63) were increased by re-expression of Wnt7a in both H1650 and A549 cell lines. The phosphorylation of ß-catenin (Thr-41/Ser-45, Ser-552, Ser-675, and Ser-45) were not altered by restoration of Wnt7a. In NSCLC cells, Wnt7a overexpression was accompanied by parallel changes in the JNK pathway but not in the ß-catenin pathway. CONCLUSIONS: These results help to understand that Wnt7a may play a two-sided role in NSCLC, suggesting that restoration of Wnt7a expression is not always suitable as therapeutic strategy for NSCLC.

14.
J Comp Neurol ; 528(9): 1561-1587, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31792962

RESUMO

The pan-tropic cleaner shrimp Stenopus hispidus (Crustacea, Stenopodidea) is famous for its specific cleaning behavior in association with client fish and an exclusively monogamous life-style. Cleaner shrimps feature a broad communicative repertoire, which is considered to depend on superb motor skills and the underlying mechanosensory circuits in combination with sensory organs. Their most prominent head appendages are the two pairs of very long biramous antennules and antennae, which are used both for attracting client fish and for intraspecific communication. Here, we studied the brain anatomy of several specimens of S. hispidus using histological sections, immunohistochemical labeling as well as X-ray microtomography in combination with 3D reconstructions. Furthermore, we investigated the morphology of antennules and antennae using fluorescence and scanning electron microscopy. Our analyses show that in addition to the complex organization of the multimodal processing centers, especially chemomechanosensory neuropils associated with the antennule and antenna are markedly pronounced when compared to the other neuropils of the central brain. We suggest that in their brains, three topographic maps are present corresponding to the sensory appendages. The brain areas which provide the neuronal substrate for these maps share distinct structural similarities to a unique extent in decapods, such as size and characteristic striated and perpendicular layering. We discuss our findings with respect to the sensory landscape within animal's habitat. In an evolutionary perspective, the cleaner shrimp's brain is an excellent example of how sensory potential and functional demands shape the architecture of primary chemomechanosensory processing areas.


Assuntos
Comunicação Animal , Antenas de Artrópodes/ultraestrutura , Encéfalo/anatomia & histologia , Decápodes/anatomia & histologia , Animais , Células Quimiorreceptoras/ultraestrutura
15.
J Comp Neurol ; 528(11): 1903-1916, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31970770

RESUMO

While sensory and sympathetic neurons are known to innervate bone, previous studies have found it difficult to unequivocally identify and characterize only those that are of sensory origin. In this study, we have utilized an in vivo anterograde tracing technique to selectively label spinal afferent (sensory) nerve endings that innervate the periosteum and marrow cavity of murine long bones. Unilateral injections of dextran-biotin (anterograde tracer; 20% in saline, 50-100 nl) were made into L3-L5 dorsal root ganglia. After a 10-day recovery period to allow sufficient time for selective anterograde transport of the tracer to nerve terminal endings in bone, the periosteum (whole-mount) and underlying bone were collected, processed to reveal anterograde labeling, and immuno-labeled with antibodies directed against protein gene product (pan-neuronal marker; PGP9.5), tyrosine hydroxylase (sympathetic neuron marker; TH), calcitonin gene-related protein (peptidergic nociceptor marker; CGRP), and/or neurofilament 200 (myelinated axon marker; NF200). Anterograde-labeled nerve endings were dispersed throughout the periosteum and marrow cavity and could be identified in close apposition to blood vessels and at sites distant from them. The periosteum and the marrow cavity were each innervated by myelinated (NF200+) sensory neurons, and unmyelinated (NF200-) sensory neurons that were either peptidergic (CGRP+) or nonpeptidergic (CGRP-). Spinal afferent nerve endings did not express TH, and lacked the cylindrical morphology around blood vessels characteristic of sympathetic innervation. This approach to selective labeling of sensory nerve terminal endings will help to better identify how different sub-populations of sensory neurons, and their peripheral nerve terminal endings, interact with bone.


Assuntos
Medula Óssea/inervação , Periósteo/inervação , Células Receptoras Sensoriais/citologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
J Comp Neurol ; 528(14): 2471-2495, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32170720

RESUMO

As with other drugs or pharmaceuticals, opioids differ in their rewarding or analgesic effects depending on when they are applied. In the previous study, we have demonstrated the day/night difference in the sensitivity of the major circadian clock in the suprachiasmatic nucleus to a low dose of morphine, and showed the bidirectional effect of morphine on pERK1/2 and pGSK3ß levels in the suprachiasmatic nucleus depending on the time of administration. The main aim of this study was to identify other brain structures that respond differently to morphine depending on the time of its administration. Using immunohistochemistry, we identified 44 structures that show time-of-day specific changes in c-Fos level and activity of ERK1/2 and GSK3ß kinases in response to a single dose of 1 mg/kg morphine. Furthermore, comparison among control groups revealed the differences in the spontaneous levels of all markers with a generally higher level during the night, that is, in the active phase of the day. We thus provide further evidence for diurnal variations in the activity of brain regions outside the suprachiasmatic nucleus indicated by the temporal changes in the molecular substrate. We suggest that these changes are responsible for generating diurnal variation in the reward behavior or analgesic effect of opioid administration.


Assuntos
Analgésicos Opioides/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ritmo Circadiano/fisiologia , Morfina/farmacologia , Animais , Glicogênio Sintase Quinase 3 beta/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar
17.
J Comp Neurol ; 527(12): 1940-1965, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30761534

RESUMO

Synapses, highly specialized membrane junctions between neurons, connect presynaptic neurotransmitter release sites and postsynaptic ligand-gated channels. Neurexins (Nrxns), a family of presynaptic adhesion molecules, have been characterized as major regulators of synapse development and function. Via their extracellular domains, Nrxns bind to different postsynaptic proteins, generating highly diverse functional readouts through their postsynaptic binding partners. Not surprisingly given these versatile protein interactions, mutations and deletions of Nrxn genes have been identified in patients with autism spectrum disorders, intellectual disabilities, and schizophrenia. Therefore, elucidating the expression profiles of Nrxns in the brain is of high significance. Here, using chromogenic and fluorescent in situ hybridization, we characterize the expression patterns of Nrxn isoforms throughout the brain. We found that each Nrxn isoform displays a unique expression profile in a region-, cell type-, and sensory system-specific manner. Interestingly, we also found that αNrxn1 and αNrxn2 mRNAs are expressed in non-neuronal cells, including astrocytes and oligodendrocytes. Lastly, we found diverse expression patterns of genes that encode Nrxn binding proteins, such as Neuroligins (Nlgns), Leucine-rich repeat transmembrane neuronal protein (Lrrtms) and Latrophilins (Adgrls), suggesting that Nrxn proteins can mediate numerous combinations of trans-synaptic interactions. Together, our anatomical profiling of Nrxn gene expression reflects the diverse roles of Nrxn molecules.


Assuntos
Encéfalo/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Moléculas de Adesão de Célula Nervosa/análise , Isoformas de Proteínas , Transcriptoma
18.
J Comp Neurol ; 527(1): 159-173, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27411041

RESUMO

We determined whether the structural and functional integrity of amacrine cells (ACs), the largest cohort of neurons in the mammalian retina, are affected in glaucoma. Intraocular injection of microbeads was made in mouse eyes to elevate intraocular pressure as a model of experimental glaucoma. Specific immunocytochemical markers were used to identify AC and displaced (d)ACs subpopulations in both the inner nuclear and ganglion cell layers, respectively, and to distinguish them from retinal ganglion cells (RGCs). Calretinin- and γ-aminobutyric acid (GABA)-immunoreactive (IR) cells were highly vulnerable to glaucomatous damage, whereas choline acetyltransferase (ChAT)-positive and glycinergic AC subtypes were unaffected. The AC loss began 4 weeks after initial microbead injection, corresponding to the time course of RGC loss. Recordings of electroretinogram (ERG) oscillatory potentials and scotopic threshold responses, which reflect AC and RGC activity, were significantly attenuated in glaucomatous eyes following a time course that matched that of the AC and RGC loss. Moreover, we found that it was the ACs coupled to RGCs via gap junctions that were lost in glaucoma, whereas uncoupled ACs were largely unaffected. Our results suggest that AC loss in glaucoma occurs secondary to RGC death through the gap junction-mediated bystander effect. J. Comp. Neurol. 527:159-173, 2019. © 2016 Wiley Periodicals, Inc.


Assuntos
Células Amácrinas/patologia , Efeito Espectador/fisiologia , Junções Comunicantes , Glaucoma/patologia , Células Ganglionares da Retina/patologia , Células Amácrinas/metabolismo , Animais , Feminino , Junções Comunicantes/metabolismo , Junções Comunicantes/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Ganglionares da Retina/metabolismo
19.
J Comp Neurol ; 527(1): 187-211, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27391320

RESUMO

Ganglion cells (GCs), the retinal output neurons, receive synaptic inputs from bipolar and amacrine cells in the inner plexiform layer (IPL) and send information to the brain nuclei via the optic nerve. Although GCs constitute less than 1% of the total retinal cells, they occur in numerous types and are the first neurons formed during retinal development. Using Brn3a and Brn3b mutant mice in which the alkaline phosphatase gene was knocked-in (Badea et al. [Neuron] 2009;61:852-864; Badea and Nathans [Vision Res] 2011;51:269-279), we studied the general effects after gene removal on the retinal neuropil together with the consequences of lack of development of large numbers of GCs onto the remaining retinal neurons of the same class. We analyzed the morphology, number, and general architecture of various neuronal types presynaptic to GCs, searching for changes secondary to the decrement in the number of their postsynaptic partners, as well as the morphology and distribution of retinal astrocytes, for their strong topographical relation to GCs. We found that, despite GC losses, retinal organization in Brn3 null mice is remarkably similar to that of wild-type controls. J. Comp. Neurol. 527:187-211, 2019. © 2016 Wiley Periodicals, Inc.


Assuntos
Retina/citologia , Células Ganglionares da Retina/citologia , Fator de Transcrição Brn-3A/deficiência , Fator de Transcrição Brn-3B/deficiência , Animais , Proteínas de Homeodomínio , Camundongos , Camundongos Knockout , Retina/metabolismo , Retina/ultraestrutura , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/ultraestrutura
20.
J Comp Neurol ; 525(12): 2632-2656, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28387937

RESUMO

The habenulopeduncular pathway consists of the medial habenula (MHb), its output tract, the fasciculus retroflexus, and its principal target, the interpeduncular nucleus (IP). Several IP subnuclei have been described, but their specific projections and relationship to habenula inputs are not well understood. Here we have used viral, transgenic, and conventional anterograde and retrograde tract-tracing methods to better define the relationship between the dorsal and ventral MHb, the IP, and the secondary efferent targets of this system. Although prior studies have reported that the IP has ascending projections to ventral forebrain structures, we find that these projections originate almost entirely in the apical subnucleus, which may be more appropriately described as part of the median raphe system. The laterodorsal tegmental nucleus receives inhibitory inputs from the contralateral dorsolateral IP, and mainly excitatory inputs from the ipsilateral rostrolateral IP subnucleus. The midline central gray of the pons and nucleus incertus receive input from the rostral IP, which contains a mix of inhibitory and excitatory neurons, and the dorsomedial IP, which is exclusively inhibitory. The lateral central gray of the pons receives bilateral input from the lateral IP, which in turn receives bilateral input from the dorsal MHb. Taken together with prior studies of IP projections to the raphe, these results form an emerging map of the habenulopeduncular system that has significant implications for the proposed function of the IP in a variety of behaviors, including models of mood disorders and behavioral responses to nicotine.


Assuntos
Vias Aferentes/fisiologia , Habenula/fisiologia , Núcleo Interpeduncular/fisiologia , Neurônios/fisiologia , Animais , Mapeamento Encefálico , Toxina da Cólera/metabolismo , Colinesterases/genética , Colinesterases/metabolismo , Feminino , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Habenula/metabolismo , Núcleo Interpeduncular/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , RNA Mensageiro/metabolismo , Receptores de Dopamina D3/genética , Receptores de Dopamina D3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA