Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39366381

RESUMO

Viruses encode strategies to degrade cellular proteins to promote infection and pathogenesis. Here, we revealed that the non-structural protein NSs of Rift Valley fever virus forms a filamentous E3 ligase to trigger efficient degradation of targeted proteins. Reconstitution in vitro and cryoelectron microscopy analysis with the 2.9-Å resolution revealed that NSs forms right-handed helical fibrils. The NSs filamentous oligomers associate with the cellular FBXO3 to form a remodeled E3 ligase. The NSs-FBXO3 E3 ligase targets the cellular TFIIH complex through the NSs-P62 interaction, leading to ubiquitination and proteasome-dependent degradation of the TFIIH complex. NSs-FBXO3-triggered TFIIH complex degradation resulted in robust inhibition of antiviral immunity and promoted viral pathogenesis in vivo. Furthermore, it is demonstrated that NSs can be programmed to target additional proteins for proteasome-dependent degradation, serving as a versatile targeted protein degrader. These results showed that a virulence factor forms a filamentous and programmable degradation machinery to induce organized degradation of cellular proteins to promote viral infection.

2.
Mol Pharm ; 21(3): 1342-1352, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38295278

RESUMO

Rift Valley fever virus (RVFV) could cause an emergency illness characterized by fever, muscle pain, and even death in humans or ruminants. However, there are no approved antiviral drugs that prevent or treat RVFV infection. While therapeutic antibodies have shown promising potential for prevention or treatment in several studies, many studies are ongoing, especially in the field of infectious diseases. Among these studies, the mRNA-LNP platform shows great potential for application, following the COVID-19 pandemic. Previously, we have obtained a neutralizing antibody against RVFV, which was named A38 protein and verified to have a high binding and neutralization ability. In this study, we aimed to identify an effectively optimized sequence and expressed the prioritized mRNA-encoded antibody in vitro. Notably, we effectively expressed mRNA-encoded protein and used the mRNA-LNP platform to generate A38-mRNA-LNP. Pharmacokinetic experiments were conducted in vivo and set up in two groups of mRNA-A38 group and A38 protein group, which were derived from mRNA-LNP and plasmid DNA-expressed proteins, respectively. A38-mRNA-LNPs were administrated by intramuscular injection, A38 proteins were administrated by intravenous administration, and their unique ability to maintain long-lasting protein concentrations by mRNA-encoded protein was demonstrated with the mRNA-encoded protein providing a longer circulating half-life compared to injection of the free A38 protein. These preclinical data on the mRNA-encoded antibody highlighted its potential to prevent infectious diseases in the future.


Assuntos
Doenças Transmissíveis , Lipossomos , Nanopartículas , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Humanos , Vírus da Febre do Vale do Rift/genética , Febre do Vale de Rift/prevenção & controle , Pandemias , Anticorpos Antivirais
3.
Mol Biol Rep ; 50(7): 5837-5848, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37231214

RESUMO

BACKGROUND: Rift Valley Fever Virus (RVFV) is an arbovirus, a zoonotic disease that resurfaces as a potential hazard beyond geographic boundaries. Fever that can proceed to encephalitis, retinitis, hemorrhagic fever, and death is the main manifestation observed in human infections. RVFV has no authorized medication. The RNA interference (RNAi) gene silencing pathway is extremely well conserved. By targeting specific genes, small interfering RNA (siRNA) can be used to suppress viral replication. The aim of this study was to design specific siRNAs against RVFV and evaluate their prophylactic and antiviral effects on the Vero cells. METHODS AND RESULTS: Various siRNAs were designed using different bioinformatics tools. Three unique candidates were tested against an Egyptian sheep cell culture-adapted strain BSL-2 that suppressed RVFV N mRNA expression. SiRNAs were transfected a day before RVFV infection (pre-transfection), and 1 h after the viral infection (post-transfection), and were evaluated to detect the silencing activity and gene expression decrease using real-time PCR and a TCID50 endpoint test. The degree of N protein expression was determined by western blot 48 h after viral infection. D2 which targets the (488-506 nucleotides), the middle region of RVFV N mRNA was the most effective siRNA at 30 nM concentration, it almost eliminates N mRNA expression when utilized as antiviral or preventive therapy. siRNAs had a stronger antiviral silencing impact when they were post-transfected into Vero cells. CONCLUSION: Pre and post-transfection of siRNAs significantly reduced RVFV titer in cell lines, offering novel and potentially effective anti-RVFV epidemics and epizootics therapy.


Assuntos
Antivirais , Vírus da Febre do Vale do Rift , Chlorocebus aethiops , Humanos , Animais , Ovinos , RNA Interferente Pequeno/genética , Antivirais/farmacologia , Vírus da Febre do Vale do Rift/genética , Células Vero , Interferência de RNA
4.
BMC Genomics ; 23(1): 520, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35850574

RESUMO

Genetic evolution of Rift Valley fever virus (RVFV) in Africa has been shaped mainly by environmental changes such as abnormal rainfall patterns and climate change that has occurred over the last few decades. These gradual environmental changes are believed to have effected gene migration from macro (geographical) to micro (reassortment) levels. Presently, 15 lineages of RVFV have been identified to be circulating within the Sub-Saharan Africa. International trade in livestock and movement of mosquitoes are thought to be responsible for the outbreaks occurring outside endemic or enzootic regions. Virus spillover events contribute to outbreaks as was demonstrated by the largest epidemic of 1977 in Egypt. Genomic surveillance of the virus evolution is crucial in developing intervention strategies. Therefore, we have developed a computational tool for rapidly classifying and assigning lineages of the RVFV isolates. The computational method is presented both as a command line tool and a web application hosted at https://www.genomedetective.com/app/typingtool/rvfv/ . Validation of the tool has been performed on a large dataset using glycoprotein gene (Gn) and whole genome sequences of the Large (L), Medium (M) and Small (S) segments of the RVFV retrieved from the National Center for Biotechnology Information (NCBI) GenBank database. Using the Gn nucleotide sequences, the RVFV typing tool was able to correctly classify all 234 RVFV sequences at species level with 100% specificity, sensitivity and accuracy. All the sequences in lineages A (n = 10), B (n = 1), C (n = 88), D (n = 1), E (n = 3), F (n = 2), G (n = 2), H (n = 105), I (n = 2), J (n = 1), K (n = 4), L (n = 8), M (n = 1), N (n = 5) and O (n = 1) were also correctly classified at phylogenetic level. Lineage assignment using whole RVFV genome sequences (L, M and S-segments) did not achieve 100% specificity, sensitivity and accuracy for all the sequences analyzed. We further tested our tool using genomic data that we generated by sequencing 5 samples collected following a recent RVF outbreak in Kenya. All the 5 samples were assigned lineage C by both the partial (Gn) and whole genome sequence classifiers. The tool is useful in tracing the origin of outbreaks and supporting surveillance efforts.Availability: https://github.com/ajodeh-juma/rvfvtyping.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Comércio , Genômica , Internacionalidade , Quênia , Filogenia , Febre do Vale de Rift/epidemiologia , Vírus da Febre do Vale do Rift/genética
5.
J Virol ; 95(23): e0150621, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34495703

RESUMO

Rift Valley fever virus (RVFV) is an arbovirus found throughout Africa. It causes disease that is typically mild and self-limiting; however, some infected individuals experience severe manifestations, including hepatitis, encephalitis, or even death. Reports of RVFV encephalitis are notable among immunosuppressed individuals, suggesting a role for adaptive immunity in preventing this severe complication. This phenomenon has been modeled in C57BL/6 mice depleted of CD4 T cells prior to infection with DelNSs RVFV (RVFV containing a deletion of nonstructural protein NSs), resulting in late-onset encephalitis accompanied by high levels of viral RNA in the brain in 30% of animals. In this study, we sought to define the specific type(s) of CD4 T cells that mediate protection from RVFV encephalitis. The viral epitopes targeted by CD4 and CD8 T cells were defined in C57BL/6 mice, and tetramers for both CD4 and CD8 T cells were generated. RVFV-specific CD8 T cells were expanded and of a cytotoxic and proliferating phenotype in the liver following infection. RVFV-specific CD4 T cells were identified in the liver and spleen following infection and phenotyped as largely Th1 or Tfh subtypes. Knockout mice lacking various aspects of pathways important in Th1 and Tfh development and function were used to demonstrate that T-bet, CD40, CD40L, and major histocompatibility complex class II (MHC-II) mediated protection from RVFV encephalitis, while gamma interferon (IFN-γ) and interleukin-12 (IL-12) were dispensable. Virus-specific antibody responses correlated with protection from encephalitis in all mouse strains, suggesting that Tfh/B cell interactions modulate clinical outcome in this model. IMPORTANCE The prevention of RVFV encephalitis requires intact adaptive immunity. In this study, we developed reagents to detect RVFV-specific T cells and provide evidence for Tfh cells and CD40/CD40L interactions as critical mediators of this protection.


Assuntos
Antígenos CD40 , Ligante de CD40 , Encefalite Viral/prevenção & controle , Febre do Vale de Rift/imunologia , Vírus da Febre do Vale do Rift/imunologia , Vírus da Febre do Vale do Rift/fisiologia , Linfócitos T/imunologia , África , Animais , Formação de Anticorpos , Linfócitos B/imunologia , Encéfalo/virologia , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Encefalite Viral/imunologia , Encefalite Viral/virologia , Epitopos , Feminino , Fígado/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
Virol J ; 18(1): 116, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34088327

RESUMO

INTRODUCTION: Rift Valley fever virus (RVFV) is a zoonotic life-threatening viral infection endemic across sub-Saharan African countries and the Arabian Peninsula; however, there is a growing panic of its spread to non-endemic regions. This viral infection triggers a wide spectrum of symptoms that span from fibril illnesses to more severe symptoms such as haemorrhagic fever and encephalitis. These severe symptoms have been associated with dysregulated immune response propagated by the virulence factor, non-structural protein (NSs). Thus, this study investigates the effects of lithium on NF-κB translocation and RFVF-induced inflammation in Raw 264.7 macrophages. METHODS: The supernatant from RVFV-infected Raw 264.7 cells, treated with lithium, was examined using an ELISA assay kit to measure levels of cytokines and chemokines. The H2DCF-DA and DAF-2 DA florigenic assays were used to determine the levels of ROS and RNS by measuring the cellular fluorescence intensity post RVFV-infection and lithium treatment. Western blot and immunocytochemistry assays were used to measure expression levels of the inflammatory proteins and cellular location of the NF-κB, respectively. RESULTS: Lithium was shown to stimulate interferon-gamma (IFN-γ) production as early as 3 h pi. Production of the secondary pro-inflammatory cytokine and chemokine, interleukin-6 (IL-6) and regulated on activation, normal T cell expressed and secreted (RANTES), were elevated as early as 12 h pi. Treatment with lithium stimulated increase of production of tumor necrosis factor-alpha (TNF-α) and Interleukin-10 (IL-10) in RVFV-infected and uninfected macrophages as early as 3 h pi. The RVFV-infected cells treated with lithium displayed lower ROS and RNS production as opposed to lithium-free RVFV-infected control cells. Western blot analyses demonstrated that lithium inhibited iNOS expression while stimulating expression of heme oxygenase (HO) and IκB in RVFV-infected Raw 264.7 macrophages. Results from immunocytochemistry and Western blot assays revealed that lithium inhibits NF-κB nuclear translocation in RVFV-infected cells compared to lithium-free RVFV-infected cells and 5 mg/mL LPS controls. CONCLUSION: This study demonstrates that lithium inhibits NF-kB nuclear translocation and modulate inflammation profiles in RVFV-infected Raw 264.7 macrophage cells.


Assuntos
Lítio/farmacologia , Macrófagos/virologia , NF-kappa B/metabolismo , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Quimiocinas , Citocinas , Inflamação , Lipopolissacarídeos , Camundongos , Células RAW 264.7 , Espécies Reativas de Oxigênio
7.
Genes Dev ; 27(13): 1511-25, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23824541

RESUMO

Bunyaviruses are an emerging group of medically important viruses, many of which are transmitted from insects to mammals. To identify host factors that impact infection, we performed a genome-wide RNAi screen in Drosophila and identified 131 genes that impacted infection of the mosquito-transmitted bunyavirus Rift Valley fever virus (RVFV). Dcp2, the catalytic component of the mRNA decapping machinery, and two decapping activators, DDX6 and LSM7, were antiviral against disparate bunyaviruses in both insect cells and adult flies. Bunyaviruses 5' cap their mRNAs by "cap-snatching" the 5' ends of poorly defined host mRNAs. We found that RVFV cap-snatches the 5' ends of Dcp2 targeted mRNAs, including cell cycle-related genes. Loss of Dcp2 allows increased viral transcription without impacting viral mRNA stability, while ectopic expression of Dcp2 impedes viral transcription. Furthermore, arresting cells in late S/early G2 led to increased Dcp2 mRNA targets and increased RVFV replication. Therefore, RVFV competes for the Dcp2-accessible mRNA pool, which is dynamically regulated and can present a bottleneck for viral replication.


Assuntos
Drosophila melanogaster/genética , Drosophila melanogaster/virologia , Genoma de Inseto/genética , Orthobunyavirus/fisiologia , Capuzes de RNA/metabolismo , Fatores de Transcrição , Replicação Viral/fisiologia , Aedes/virologia , Animais , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Capuzes de RNA/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Proc Natl Acad Sci U S A ; 114(36): E7564-E7573, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28827346

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) and Rift Valley fever virus (RVFV) are two arthropod-borne phleboviruses in the Bunyaviridae family, which cause severe illness in humans and animals. Glycoprotein N (Gn) is one of the envelope proteins on the virus surface and is a major antigenic component. Despite its importance for virus entry and fusion, the molecular features of the phleboviruse Gn were unknown. Here, we present the crystal structures of the Gn head domain from both SFTSV and RVFV, which display a similar compact triangular shape overall, while the three subdomains (domains I, II, and III) making up the Gn head display different arrangements. Ten cysteines in the Gn stem region are conserved among phleboviruses, four of which are responsible for Gn dimerization, as revealed in this study, and they are highly conserved for all members in Bunyaviridae Therefore, we propose an anchoring mode on the viral surface. The complex structure of the SFTSV Gn head and human neutralizing antibody MAb 4-5 reveals that helices α6 in subdomain III is the key component for neutralization. Importantly, the structure indicates that domain III is an ideal region recognized by specific neutralizing antibodies, while domain II is probably recognized by broadly neutralizing antibodies. Collectively, Gn is a desirable vaccine target, and our data provide a molecular basis for the rational design of vaccines against the diseases caused by phleboviruses and a model for bunyavirus Gn embedding on the viral surface.


Assuntos
Anticorpos Neutralizantes/metabolismo , Epitopos/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Phlebovirus/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Animais , Infecções por Bunyaviridae/virologia , Linhagem Celular , Cristalografia por Raios X , Epitopos/química , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/metabolismo , Células Sf9 , Internalização do Vírus
9.
Emerg Infect Dis ; 25(10): 1979-1981, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31538932

RESUMO

An isolated Rift Valley fever (RVF) outbreak was reported in 2018 in Free State Province, South Africa. Phylogenetic analyses based on complete genome sequences of 3 RVF viruses from blood and tissue samples indicated that they were related to a virus isolated in 2016 from a man returning to China from Angola.


Assuntos
Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/genética , Surtos de Doenças , Genoma Viral/genética , Humanos , Filogenia , Febre do Vale de Rift/epidemiologia , África do Sul/epidemiologia
10.
Emerg Infect Dis ; 24(9): 1717-1719, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30124402

RESUMO

Rift Valley fever virus, a zoonotic arbovirus, poses major health threats to livestock and humans if introduced into the United States. White-tailed deer, which are abundant throughout the country, might be sentinel animals for arboviruses. We determined the susceptibility of these deer to this virus and provide evidence for a potentially major epidemiologic role.


Assuntos
Cervos , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/patogenicidade , Animais , Animais Selvagens , Masculino , Virulência , Zoonoses/prevenção & controle
11.
Virol J ; 15(1): 178, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30466469

RESUMO

BACKGROUND: Rift Valley Fever (RVF) is a mosquito-borne viral zoonosis. To detect RVF virus (RVFV) infection, indirect immunoglobulin G (IgG) and immunoglobulin M (IgM) enzyme linked immunosorbent assays (ELISAs) which utilize recombinant RVFV nucleocapsid (RVFV-N) protein as assay antigen, have reportedly been used, however, there is still a need to develop more sensitive and specific methods of detection. METHODS: RVFV-N protein was expressed in Escherichia coli (E. coli) and purified by histidine-tag based affinity chromatography. This recombinant RVFV-N (rRVFV-N) protein was then used as antigen to develop an IgG sandwich ELISA and IgM capture ELISAs for human sera. Ninety six serum samples collected from healthy volunteers during the RVF surveillance programme in Kenya in 2013, and 93 serum samples collected from RVF-suspected patients during the 2006-2007 RVF outbreak in Kenya were used respectively, to evaluate the newly established rRVFV-N protein-based IgG sandwich ELISA and IgM capture ELISA systems in comparison with the inactivated virus-based ELISA systems. RESULTS: rRVFV-N protein-based-IgG sandwich ELISA and IgM capture ELISA for human sera were established. Both the new ELISA systems were in 100% concordance with the inactivated virus-based ELISA systems, with a sensitivity and specificity of 100%. CONCLUSIONS: Recombinant RVFV-N is a safe and affordable antigen for RVF diagnosis. Our rRVFV-N-based ELISA systems are safe and reliable tools for diagnosis of RVFV infection in humans and especially useful in large-scale epidemiological investigation and for application in developing countries.


Assuntos
Antígenos Virais/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Proteínas do Nucleocapsídeo/imunologia , Febre do Vale de Rift/diagnóstico , Vírus da Febre do Vale do Rift/imunologia , Inativação de Vírus , Animais , Anticorpos Antivirais/sangue , Antígenos Virais/isolamento & purificação , Escherichia coli/genética , Voluntários Saudáveis , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Coelhos , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Febre do Vale de Rift/imunologia , Sensibilidade e Especificidade , Zoonoses/diagnóstico , Zoonoses/imunologia , Zoonoses/virologia
13.
Emerg Microbes Infect ; 13(1): 2373313, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38946528

RESUMO

Rift Valley fever (RVF) is a mosquito-borne zoonotic disease caused by RVF virus (RVFV). RVFV infections in humans are usually asymptomatic or associated with mild febrile illness, although more severe cases of haemorrhagic disease and encephalitis with high mortality also occur. Currently, there are no licensed human vaccines available. The safety and efficacy of a genetically engineered four-segmented RVFV variant (hRVFV-4s) as a potential live-attenuated human vaccine has been tested successfully in mice, ruminants, and marmosets though the correlates of protection of this vaccine are still largely unknown. In the present study, we have assessed hRVFV-4s-induced humoral and cellular immunity in a mouse model of RVFV infection. Our results confirm that a single dose of hRVFV-4s is highly efficient in protecting naïve mice from developing severe disease following intraperitoneal challenge with a highly virulent RVFV strain and data show that virus neutralizing (VN) serum antibody titres in a prime-boost regimen are significantly higher compared to the single dose. Subsequently, VN antibodies from prime-boost-vaccinated recipients were shown to be protective when transferred to naïve mice. In addition, hRVFV-4s vaccination induced a significant virus-specific T cell response as shown by IFN-γ ELISpot assay, though these T cells did not provide significant protection upon passive transfer to naïve recipient mice. Collectively, this study highlights hRVFV-4s-induced VN antibodies as a major correlate of protection against lethal RVFV infection.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Vacinas Atenuadas , Vacinas Virais , Animais , Vírus da Febre do Vale do Rift/imunologia , Vírus da Febre do Vale do Rift/genética , Febre do Vale de Rift/prevenção & controle , Febre do Vale de Rift/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Camundongos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Feminino , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , Modelos Animais de Doenças , Imunidade Celular , Linfócitos T/imunologia , Imunidade Humoral , Camundongos Endogâmicos BALB C , Interferon gama/imunologia , Vacinação
14.
Viruses ; 16(7)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39066310

RESUMO

Rift Valley fever (RVF), a mosquito-borne transboundary zoonosis, was first confirmed in Rwanda's livestock in 2012 and since then sporadic cases have been reported almost every year. In 2018, the country experienced its first large outbreak, which was followed by a second one in 2022. To determine the circulating virus lineages and their ancestral origin, two genome sequences from the 2018 outbreak, and thirty-six, forty-one, and thirty-eight sequences of small (S), medium (M), and large (L) genome segments, respectively, from the 2022 outbreak were generated. All of the samples from the 2022 outbreak were collected from slaughterhouses. Both maximum likelihood and Bayesian-based phylogenetic analyses were performed. The findings showed that RVF viruses belonging to a single lineage, C, were circulating during the two outbreaks, and shared a recent common ancestor with RVF viruses isolated in Uganda between 2016 and 2019, and were also linked to the 2006/2007 largest East Africa RVF outbreak reported in Kenya, Tanzania, and Somalia. Alongside the wild-type viruses, genetic evidence of the RVFV Clone 13 vaccine strain was found in slaughterhouse animals, demonstrating a possible occupational risk of exposure with unknown outcome for people working in meat-related industry. These results provide additional evidence of the ongoing wide spread of RVFV lineage C in Africa and emphasize the need for an effective national and international One Health-based collaborative approach in responding to RVF emergencies.


Assuntos
Surtos de Doenças , Genoma Viral , Gado , Filogenia , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Ruanda/epidemiologia , Febre do Vale de Rift/epidemiologia , Febre do Vale de Rift/virologia , Febre do Vale de Rift/transmissão , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/classificação , Vírus da Febre do Vale do Rift/isolamento & purificação , Gado/virologia , Bovinos , Matadouros , Genômica/métodos
15.
Virulence ; 15(1): 2384563, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39072499

RESUMO

Phenuiviruses are a class of segmented negative-sense single-stranded RNA viruses, typically consisting of three RNA segments that encode four distinct proteins. The emergence of pathogenic phenuivirus strains, such as Rift Valley fever phlebovirus (RVFV) in sub-Saharan Africa, Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) in East and Southeast Asia, and Heartland Virus (HRTV) in the United States has presented considerable challenges to global public health in recent years. The innate immune system plays a crucial role as the initial defense mechanism of the host against invading pathogens. In addition to continued research aimed at elucidating the epidemiological characteristics of phenuivirus, significant advancements have been made in investigating its viral virulence factors (glycoprotein, non-structural protein, and nucleoprotein) and potential host-pathogen interactions. Specifically, efforts have focused on understanding mechanisms of viral immune evasion, viral assembly and egress, and host immune networks involving immune cells, programmed cell death, inflammation, nucleic acid receptors, etc. Furthermore, a plethora of technological advancements, including metagenomics, metabolomics, single-cell transcriptomics, proteomics, gene editing, monoclonal antibodies, and vaccines, have been utilized to further our understanding of phenuivirus pathogenesis and host immune responses. Hence, this review aims to provide a comprehensive overview of the current understanding of the mechanisms of host recognition, viral immune evasion, and potential therapeutic approaches during human pathogenic phenuivirus infections focusing particularly on RVFV and SFTSV.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Inata , Humanos , Interações Hospedeiro-Patógeno/imunologia , Phlebovirus/imunologia , Phlebovirus/genética , Phlebovirus/patogenicidade , Evasão da Resposta Imune , Fatores de Virulência/genética , Fatores de Virulência/imunologia , Vírus da Febre do Vale do Rift/imunologia , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/patogenicidade , Sistema Imunitário/virologia , Sistema Imunitário/imunologia
16.
Methods Mol Biol ; 2824: 385-395, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039425

RESUMO

Rift Valley fever (RVF) caused by Rift Valley fever virus (RVFV) is a major health concern for both domesticated animals and humans in certain endemic areas of Africa. With changing environmental conditions and identification of vectors capable of transmitting the virus, there is high risk of RVFV spreading into other parts of the world. Furthermore, unavailability of effective vaccines in the event of an outbreak can be a major challenge as witnessed recently in case of SARS-CoV2 pandemic. Hence, identifying potential vaccines and testing their protective efficacy in preclinical models before clinical testing is the absolute need of the hour. Here, we describe methods used to quantify virus-specific T cell responses in mice that were immunized with RVFV strains or antigens.


Assuntos
Vírus da Febre do Vale do Rift , Linfócitos T , Vacinas Virais , Animais , Camundongos , Linfócitos T/imunologia , Vírus da Febre do Vale do Rift/imunologia , Vacinas Virais/imunologia , Febre do Vale de Rift/imunologia , Febre do Vale de Rift/prevenção & controle , Imunização/métodos , Vacinação/métodos , Antígenos Virais/imunologia
17.
Bioinformation ; 20(2): 91-102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38497067

RESUMO

Rift Valley Fever (RVF) is a mosquito-borne viral zoonosis caused by RVFV in humans and livestock. Currently, there are no approved vaccines or antiviral therapies available. Additionally, in Saudi Arabia, there is a lack of a routine screening system to monitor RVFV in humans and animals which hinders to design and develop the preventive measures as well as the prediction of future outbreaks and the potential re-emergence of RVFV. Hence, we have performed the cloning, sequencing, and phylogenetic analysis, of nucleocapsid (N) protein gene. The sequence analysis showed high similarities with RVFV isolates reported from humans and animals. The highest similarity (99.5%) was observed with an isolate from Saudi Arabia (KU978775-Human) followed by 99.1% with four RVFV isolates (Human and Bovine) from other locations. A total of 51 nucleotides and 31 amino acid variations were observed throughout the N protein gene sequences. The phylogenetic relationship formed closed clusters with other isolates collected from Saudi Arabia. Thus, we report of the cloning, sequencing, and phylogenetic analysis of the RVFV-N protein gene from Saudi Arabia.

18.
J Infect Dev Ctries ; 18(7): 1090-1099, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39078795

RESUMO

INTRODUCTION: This immunoinformatic study identified potential epitopes from the envelopment polyprotein (Gn/Gc) of Rift Valley fever virus (RVFV), a pathogenic virus causing severe fever in humans and livestock. Effective vaccination is crucial for controlling RVFV outbreaks. The identification of suitable epitopes is crucial for the development of safe and effective vaccines. METHODOLOGY: Protein sequences were obtained from the UniProt database, and evaluated through VaxiJen v2.0 to predict the B and T-cell epitopes within the RVFV glycoprotein. Gn/Gc protein sequences were analyzed with bioinformatics tools and algorithms. The predicted T-cell and B-cell epitopes were evaluated for antigenicity, allergenicity, and toxicity by the VaxiJen v2.0 system, AllerTop v2.0, and ToxinPred server, respectively. RESULTS: We employed computational methods to screen the RVFV envelopment polyprotein encompassing N-terminal and C-terminal glycoprotein segments, to discover antigenic T- and B-cell epitopes. Our analysis unveiled multiple potential epitopes within the RVFV glycoprotein, specifically within the Gn/Gc protein sequences. Subsequently, we selected eleven cytotoxic T-lymphocytes (CTL) and four helper T-lymphocytes (HTL) for population coverage analysis, which collectively extended to cover 97.04% of the world's population, representing diverse ethnicities and regions. Notably, the CTL epitope VQADLTLMF exhibited binding affinity to numerous human leukocyte antigen (HLA) alleles. The identification of glycoprotein (Gn/Gc) epitopes through this immunoinformatic study bears significant implications for advancing the development of an effective RVFV vaccine. CONCLUSIONS: These findings provide valuable insights into the immunological aspects of the disease and may contribute towards the development of broad-spectrum antiviral therapies targeting other RNA viruses with similar polymerase enzymes.


Assuntos
Biologia Computacional , Epitopos de Linfócito B , Epitopos de Linfócito T , Vírus da Febre do Vale do Rift , Vírus da Febre do Vale do Rift/imunologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito B/imunologia , Humanos , Vacinas Virais/imunologia , Febre do Vale de Rift/prevenção & controle , Febre do Vale de Rift/imunologia , Animais
19.
Methods Mol Biol ; 2824: 15-25, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039403

RESUMO

Vector competence assays allow to measure, in the laboratory, the ability of a mosquito to get infected and then retransmit an arbovirus while mimicking natural vector infection route. Aedes aegypti is a major vector of arboviruses worldwide and thus a reference species used in vector competence assays. Rift Valley fever virus (RVFV) is a major public health threat, mostly in Africa, that infects humans and animals through the bite of mosquito vectors. Here, we describe vector competence assay of Aedes aegypti mosquitoes for RVFV, from mosquito exposure to the virus through an infectious artificial blood meal to the measurement of virus prevalence in the mosquito's body, head, and saliva.


Assuntos
Aedes , Mosquitos Vetores , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Aedes/virologia , Vírus da Febre do Vale do Rift/fisiologia , Vírus da Febre do Vale do Rift/isolamento & purificação , Mosquitos Vetores/virologia , Febre do Vale de Rift/transmissão , Febre do Vale de Rift/virologia , Saliva/virologia , Humanos
20.
Methods Mol Biol ; 2824: 91-104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039408

RESUMO

Rift Valley fever virus (RVFV) is an arthropod-borne virus (arbovirus) responsible for a severe zoonotic disease affecting a wide range of domestic and wild ruminants as well as humans. RVFV is endemic in many African countries and has also caused outbreaks in Madagascar and Arabian Peninsula. With regard to its wide geographical distribution, its potential to emerge in a new area, and its capability to trigger major health and economic crisis, it is essential to study and better understand several aspects of its life cycle and, in particular, its interactions with mammalian hosts and arthropod vectors. To do so, it is key for researchers to be able to amplify in vitro viral strains isolated from the field and determine accurately the viral titers of RVFV stocks. In this chapter, we present protocols that can be easily implemented to produce and titrate RVFV stocks in your laboratory.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Vírus da Febre do Vale do Rift/isolamento & purificação , Animais , Febre do Vale de Rift/virologia , Humanos , Carga Viral , Chlorocebus aethiops , Células Vero , Cultura de Vírus/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA