Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
New Phytol ; 243(1): 330-344, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38742296

RESUMO

Arabidopsis Col-0 RPP2A and RPP2B confer recognition of Arabidopsis downy mildew (Hyaloperonospora arabidopsidis [Hpa]) isolate Cala2, but the identity of the recognized ATR2Cala2 effector was unknown. To reveal ATR2Cala2, an F2 population was generated from a cross between Hpa-Cala2 and Hpa-Noks1. We identified ATR2Cala2 as a non-canonical RxLR-type effector that carries a signal peptide, a dEER motif, and WY domains but no RxLR motif. Recognition of ATR2Cala2 and its effector function were verified by biolistic bombardment, ectopic expression and Hpa infection. ATR2Cala2 is recognized in accession Col-0 but not in Ler-0 in which RPP2A and RPP2B are absent. In ATR2Emoy2 and ATR2Noks1 alleles, a frameshift results in an early stop codon. RPP2A and RPP2B are essential for the recognition of ATR2Cala2. Stable and transient expression of ATR2Cala2 under 35S promoter in Arabidopsis and Nicotiana benthamiana enhances disease susceptibility. Two additional Col-0 TIR-NLR (TNL) genes (RPP2C and RPP2D) adjacent to RPP2A and RPP2B are quantitatively required for full resistance to Hpa-Cala2. We compared RPP2 haplotypes in multiple Arabidopsis accessions and showed that all four genes are present in all ATR2Cala2-recognizing accessions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oomicetos , Doenças das Plantas , Arabidopsis/genética , Arabidopsis/microbiologia , Arabidopsis/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Oomicetos/patogenicidade , Proteínas NLR/metabolismo , Proteínas NLR/genética , Nicotiana/genética , Nicotiana/microbiologia , Nicotiana/imunologia , Sequência de Aminoácidos , Alelos
2.
New Phytol ; 243(4): 1472-1489, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38877698

RESUMO

Phytophthora parasitica causes diseases on a broad range of host plants. It secretes numerous effectors to suppress plant immunity. However, only a few virulence effectors in P. parasitica have been characterized. Here, we highlight that PpE18, a conserved RXLR effector in P. parasitica, was a virulence factor and suppresses Nicotiana benthamiana immunity. Utilizing luciferase complementation, co-immunoprecipitation, and GST pull-down assays, we determined that PpE18 targeted NbAPX3-1, a peroxisome membrane-associated ascorbate peroxidase with reactive oxygen species (ROS)-scavenging activity and positively regulates plant immunity in N. benthamiana. We show that the ROS-scavenging activity of NbAPX3-1 was critical for its immune function and was hindered by the binding of PpE18. The interaction between PpE18 and NbAPX3-1 resulted in an elevation of ROS levels in the peroxisome. Moreover, we discovered that the ankyrin repeat-containing protein NbANKr2 acted as a positive immune regulator, interacting with both NbAPX3-1 and PpE18. NbANKr2 was required for NbAPX3-1-mediated disease resistance. PpE18 competitively interfered with the interaction between NbAPX3-1 and NbANKr2, thereby weakening plant resistance. Our results reveal an effective counter-defense mechanism by which P. parasitica employed effector PpE18 to suppress host cellular defense, by suppressing biochemical activity and disturbing immune function of NbAPX3-1 during infection.


Assuntos
Ascorbato Peroxidases , Nicotiana , Peroxissomos , Phytophthora , Imunidade Vegetal , Espécies Reativas de Oxigênio , Fatores de Virulência , Phytophthora/patogenicidade , Phytophthora/fisiologia , Nicotiana/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Ascorbato Peroxidases/metabolismo , Fatores de Virulência/metabolismo , Peroxissomos/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Ligação Proteica , Resistência à Doença , Repetição de Anquirina
3.
Mol Plant Microbe Interact ; 36(3): 150-158, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36413345

RESUMO

Pathogens often induce cell death for their successful proliferation in the host plant. Plasma membrane H+-ATPases (PMAs) are targeted by either pathogens or plant immune receptors in immune response regulation. Although PMAs play pivotal roles in host cell death, the molecular mechanism of effector-mediated regulation of PMA activity has not been described. Here, we report that the Phytophthora infestans RxLR effector PITG06478 can induce cell death in Nicotiana benthamiana but the induced cell death is inhibited by fusicoccin (FC), an irreversible PMA activator. PITG06478, which is localized at the plasma membrane, is not directly associated with the PMA but is associated with Nb14-3-3s, a PMA activator. Immunoblot analyses revealed that the interaction between PITG06478 and Nb14-3-3s was disrupted by FC. PMA activity in PITG06478-expressing plants was eventually inhibited, and cell death likely occurred because the 14-3-3 protein was hijacked. Our results further confirm the significance of PMA activity in host cell death and provide new insight into how pathogens utilize essential host components to sustain their life cycle. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Phytophthora infestans , Phytophthora infestans/fisiologia , Morte Celular , Plantas , Nicotiana , Doenças das Plantas
4.
J Exp Bot ; 74(5): 1675-1689, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36571808

RESUMO

Pathogen effectors can suppress various plant immune responses, suggesting that they have multiple targets in the host. To understand the mechanisms underlying plasma membrane-associated and effector-mediated immunity, we screened the Phytophthora capsici RxLR cell death-inducer suppressing immune system (CRISIS). We found that the cell death induced by the CRISIS2 effector in Nicotiana benthamiana was inhibited by the irreversible plasma membrane H+-ATPase (PMA) activator fusicoccin. Biochemical and gene-silencing analyses revealed that CRISIS2 physically and functionally associated with PMAs and induced host cell death independent of immune receptors. CRISIS2 induced apoplastic alkalization by suppressing PMA activity via its association with the C-terminal regulatory domain. In planta expression of CRISIS2 significantly enhanced the virulence of P. capsici, whereas host-induced gene-silencing of CRISIS2 compromised the disease symptoms and the biomass of the pathogen. Thus, our study has identified a novel RxLR effector that plays multiple roles in the suppression of plant defense and in the induction of cell death to support the pathogen hemibiotrophic life cycle in the host plant.


Assuntos
Phytophthora infestans , Morte Celular , Virulência , Nicotiana/genética , Membrana Celular , Adenosina Trifosfatases , Doenças das Plantas , Imunidade Vegetal/fisiologia
5.
J Exp Bot ; 74(6): 2047-2066, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36622787

RESUMO

Grapevine downy mildew, caused by the oomycete Plasmopara viticola, is one of the most significant production challenges for the grape and wine industry. P. viticola injects a plethora of effectors into its host cells to disrupt immune processes, but the mechanisms by which these effectors act at the molecular level have not been well characterized. Herein, we show that a candidate P. viticola avirulence homolog (Avh) RxLR effector gene, designated PvAvh77, was strongly up-regulated during the initial stages of P. viticola infection in Vitis vinifera. Further experiments demonstrated that PvAvh77 could trigger non-specific cell death when expressed in the wild grapevine Vitis riparia and in tobacco (Nicotiana benthamiana and Nicotiana tabacum). In addition, a truncated form of PvAvh77, designated PvAvh77-M2, was more active in inducing cell death in N. benthamiana and V. riparia than full-length PvAvh77. Ectopic expression of PvAvh77 in V. vinifera 'Thompson Seedless' leaves neutralized host immunity and enhanced colonization by P. viticola, and the immune-inhibiting activity of PvAvh77 on susceptible Eurasian grapevine depended on its nuclear localization. Using a yeast signal sequence trap approach, we showed that the signal peptide of PvAvh77 is functional in yeast. Moreover, PvAvh77 with a signal peptide stimulated plant immune responses in the apoplast. Notably, application of exogenous purified PvAvh77-M2 effectively initiated defence responses in grapevine extracellularly, as evidenced by increased accumulation of salicylic acid and H2O2, and reduced infection of inoculated P. viticola. In summary, we identified a novel effector, PvAvh77, from P. viticola, which has the potential to serve as an inducer of plant immunity.


Assuntos
Oomicetos , Phytophthora infestans , Vitis , Saccharomyces cerevisiae , Peróxido de Hidrogênio/metabolismo , Doenças das Plantas , Nicotiana/genética , Vitis/genética , Vitis/metabolismo , Morte Celular , Sinais Direcionadores de Proteínas , Resistência à Doença
6.
Transgenic Res ; 32(1-2): 95-107, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870023

RESUMO

Phytophthora infestans, the etiologic agent of late blight, is a threat to potato production in areas with high humidity during the growing season. The oomycete pathogen is hemi-biotrophic, it establishes infection on living plant cells and then spreads, kills, and feeds off the necrotized plant tissue material. The interaction between host and pathogen is complex with dynamic pathogen RXLR effectors and potato NB-LRR resistance proteins actively competing for dominance and survival. Late blight protection was brought to several cultivars of potato through insertion of the wild potato (Solanum venturii) NB-LRR resistance gene Rpi-vnt1.1. We have established that the late blight protection trait, mediated by Rpi-vnt1.1, is effective despite low expression of RNA. The RNA expression dynamics of Rpi-vnt1.1 and the cognate pathogen RXLR effector, Avr-vnt1, were evaluated following spray inoculation with up to five different contemporary late blight isolates from North America and South America. Following inoculations, RXLR effector transcript profiles provided insight into interaction compatibility in relation to markers of the late blight hemi-biotrophic lifecycle.


Assuntos
Phytophthora infestans , Solanum tuberosum , Solanum tuberosum/genética , Proteínas de Plantas/genética , Phytophthora infestans/genética , Fenótipo , Doenças das Plantas/genética
7.
Plant J ; 106(6): 1557-1570, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33783031

RESUMO

Pathogens secrete a large number of effectors that manipulate host processes to create an environment conducive to pathogen colonization. However, the underlying mechanisms by which Plasmopara viticola effectors manipulate host plant cells remain largely unclear. In this study, we reported that RXLR31154, a P. viticola RXLR effector, was highly expressed during the early stages of P. viticola infection. In our study, stable expression of RXLR31154 in grapevine (Vitis vinifera) and Nicotiana benthamiana promoted leaf colonization by P. viticola and Phytophthora capsici, respectively. By yeast two-hybrid screening, the 23-kDa oxygen-evolving enhancer 2 (VpOEE2 or VpPsbP), encoded by the PsbP gene, in Vitis piasezkii accession Liuba-8 was identified as a host target of RXLR31154. Overexpression of VpPsbP enhanced susceptibility to P. viticola in grapevine and P. capsici in N. benthamiana, and silencing of NbPsbPs, the homologs of PsbP in N. benthamiana, reduced P. capcisi colonization, indicating that PsbP is a susceptibility factor. RXLR31154 and VpPsbP protein were co-localized in the chloroplast. Moreover, VpPsbP reduced H2 O2 accumulation and activated the 1 O2 signaling pathway in grapevine. RXLR31154 could stabilize PsbP. Together, our data revealed that RXLR31154 reduces H2 O2 accumulation and activates the 1 O2 signaling pathway through stabilizing PsbP, thereby promoting disease.


Assuntos
Cloroplastos/parasitologia , Oomicetos/metabolismo , Doenças das Plantas/parasitologia , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vitis/parasitologia , Clorofila/química , Clorofila/metabolismo , Fluorescência , Peróxido de Hidrogênio , Nicotiana/parasitologia
8.
Plant J ; 107(1): 182-197, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33882622

RESUMO

Phytophthora infestans is a pathogenic oomycete that causes the infamous potato late blight disease. Resistance (R) genes from diverse Solanum species encode intracellular receptors that trigger effective defense responses upon the recognition of cognate RXLR avirulence (Avr) effector proteins. To deploy these R genes in a durable fashion in agriculture, we need to understand the mechanism of effector recognition and the way the pathogen evades recognition. In this study, we cloned 16 allelic variants of the Rpi-chc1 gene from Solanum chacoense and other Solanum species, and identified the cognate P. infestans RXLR effectors. These tools were used to study effector recognition and co-evolution. Functional and non-functional alleles of Rpi-chc1 encode coiled-coil nucleotide-binding leucine-rich repeat (CNL) proteins, being the first described representatives of the CNL16 family. These alleles have distinct patterns of RXLR effector recognition. While Rpi-chc1.1 recognized multiple PexRD12 (Avrchc1.1) proteins, Rpi-chc1.2 recognized multiple PexRD31 (Avrchc1.2) proteins, both belonging to the PexRD12/31 effector superfamily. Domain swaps between Rpi-chc1.1 and Rpi-chc1.2 revealed that overlapping subdomains in the leucine-rich repeat (LRR) domain are responsible for the difference in effector recognition. This study showed that Rpi-chc1.1 and Rpi-chc1.2 evolved to recognize distinct members of the same PexRD12/31 effector family via the LRR domain. The biased distribution of polymorphisms suggests that exchange of LRRs during host-pathogen co-evolution can lead to novel recognition specificities. These insights will guide future strategies to breed durable resistant varieties.


Assuntos
Proteínas NLR/metabolismo , Phytophthora infestans/patogenicidade , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Solanum/genética , Clonagem Molecular , Resistência à Doença/genética , Variação Genética , Interações Hospedeiro-Patógeno/fisiologia , Proteínas NLR/química , Proteínas NLR/genética , Filogenia , Phytophthora infestans/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Domínios Proteicos , Solanum/microbiologia
9.
Mol Plant Microbe Interact ; 35(11): 1018-1033, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35914305

RESUMO

The development of pepper cultivars with durable resistance to the oomycete Phytophthora capsici has been challenging due to differential interactions between the species that allow certain pathogen isolates to cause disease on otherwise resistant host genotypes. Currently, little is known about the pathogen genes involved in these interactions. To investigate the genetic basis of P. capsici virulence on individual pepper genotypes, we inoculated sixteen pepper accessions, representing commercial varieties, sources of resistance, and host differentials, with 117 isolates of P. capsici, for a total of 1,864 host-pathogen combinations. Analysis of disease outcomes revealed a significant effect of inter-species genotype-by-genotype interactions, although these interactions were quantitative rather than qualitative in scale. Isolates were classified into five pathogen subpopulations, as determined by their genotypes at over 60,000 single-nucleotide polymorphisms (SNPs). While absolute virulence levels on certain pepper accessions significantly differed between subpopulations, a multivariate phenotype reflecting relative virulence levels on certain pepper genotypes compared with others showed the strongest association with pathogen subpopulation. A genome-wide association study (GWAS) identified four pathogen loci significantly associated with virulence, two of which colocalized with putative RXLR effector genes and another with a polygalacturonase gene cluster. All four loci appeared to represent broad-spectrum virulence genes, as significant SNPs demonstrated consistent effects regardless of the host genotype tested. Host genotype-specific virulence variants in P. capsici may be difficult to map via GWAS with all but excessively large sample sizes, perhaps controlled by genes of small effect or by multiple allelic variants that have arisen independently. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Capsicum , Phytophthora , Phytophthora/genética , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Capsicum/genética
10.
New Phytol ; 230(4): 1562-1577, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33586184

RESUMO

The oomycete pathogen Hyaloperonospora arabidopsidis delivers diverse effector proteins into host plant cells to suppress the plant's innate immunity. In this study, we investigate the mechanism of action of a conserved RxLR effector, HaRxLL470, in suppressing plant immunity. Genomic, molecular and biochemical analyses were performed to investigate the function of HaRxLL470 and the mechanism of the interaction between HaRxLL470 and the target host protein during H. arabidopsidis infection. We report that HaRxLL470 enhances plant susceptibility to H. arabidopsidis isolate Noco2 by interacting with the host photomorphogenesis regulator protein HY5. Our results demonstrate that HY5 is not only an important component in the regulation of light signalling, but also positively regulates host plant immunity against H. arabidopsidis by transcriptional activation of defense-related genes. We show that the interaction between HaRxLL470 and HY5 compromises the function of HY5 as a transcription factor by attenuating its DNA-binding activity. The present study demonstrates that HY5 positively regulates host plant defense against H. arabidopsidis whereas HaRxLL470, a conserved RxLR effector across oomycete pathogens, enhances pathogenicity by interacting with HY5 and suppressing transcriptional activation of defense-related genes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oomicetos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica , DNA , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Oomicetos/metabolismo , Doenças das Plantas , Imunidade Vegetal
11.
J Integr Plant Biol ; 63(7): 1382-1396, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33586843

RESUMO

Plant pathogens rely on effector proteins to suppress host innate immune responses and facilitate colonization. Although the Phytophthora sojae RxLR effector Avh241 promotes Phytophthora infection, the molecular basis of Avh241 virulence remains poorly understood. Here we identified non-race specific disease resistance 1 (NDR1)-like proteins, the critical components in plant effector-triggered immunity (ETI) responses, as host targets of Avh241. Avh241 interacts with NDR1 in the plasma membrane and suppresses NDR1-participated ETI responses. Silencing of GmNDR1s increases the susceptibility of soybean to P. sojae infection, and overexpression of GmNDR1s reduces infection, which supports its positive role in plant immunity against P. sojae. Furthermore, we demonstrate that GmNDR1 interacts with itself, and Avh241 probably disrupts the self-association of GmNDR1. These data highlight an effective counter-defense mechanism by which a Phytophthora effector suppresses plant immune responses, likely by disturbing the function of NDR1 during infection.


Assuntos
Proteínas de Arabidopsis/metabolismo , Phytophthora/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Doenças das Plantas/parasitologia , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia , Glycine max/parasitologia , Fatores de Transcrição/genética , Virulência/fisiologia
12.
Plant J ; 97(4): 730-748, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30422341

RESUMO

Over the last 40 years, new sunflower downy mildew isolates (Plasmopara halstedii) have overcome major gene resistances in sunflower, requiring the identification of additional and possibly more durable broad-spectrum resistances. Here, 354 RXLR effectors defined in silico from our new genomic data were classified in a network of 40 connected components sharing conserved protein domains. Among 205 RXLR effector genes encoding conserved proteins in 17 P. halstedii pathotypes of varying virulence, we selected 30 effectors that were expressed during plant infection as potentially essential genes to target broad-spectrum resistance in sunflower. The transient expression of the 30 core effectors in sunflower and in Nicotiana benthamiana leaves revealed a wide diversity of targeted subcellular compartments, including organelles not so far shown to be targeted by oomycete effectors such as chloroplasts and processing bodies. More than half of the 30 core effectors were able to suppress pattern-triggered immunity in N. benthamiana, and five of these induced hypersensitive responses (HR) in sunflower broad-spectrum resistant lines. HR triggered by PhRXLRC01 co-segregated with Pl22 resistance in F3 populations and both traits localized in 1.7 Mb on chromosome 13 of the sunflower genome. Pl22 resistance was physically mapped on the sunflower genome recently sequenced, unlike all the other downy mildew resistances published so far. PhRXLRC01 and Pl22 are proposed as an avirulence/resistance gene couple not previously described in sunflower. Core effector recognition is a successful strategy to accelerate broad-spectrum resistance gene identification in complex crop genomes such as sunflower.


Assuntos
Helianthus/metabolismo , Helianthus/microbiologia , Oomicetos/patogenicidade , Doenças das Plantas/microbiologia , Mapeamento Cromossômico , Resistência à Doença/genética , Resistência à Doença/fisiologia , Genótipo , Virulência/genética , Virulência/fisiologia
13.
Mol Plant Microbe Interact ; 33(8): 1046-1058, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32330072

RESUMO

RXLR effectors, a class of secreted proteins that are transferred into host cells to manipulate host immunity, have been reported to widely exist in oomycetes, including those from genera Phytophthora, Hyaloperonospora, Albugo, and Saprolegnia. However, in Pythium species, no RXLR effector has yet been characterized, and the origin and evolution of such virulent effectors are still unknown. Here, we developed a modified regular expression method for de novo identification of RXLRs and characterized 359 putative RXLR effectors in nine Pythium species. Phylogenetic analysis revealed that all oomycetous RXLRs formed a single superfamily, suggesting that they might have a common ancestor. RXLR effectors from Pythium and Phytophthora species exhibited similar sequence features, protein structures, and genome locations. In particular, there were significantly more RXLR proteins in the mosquito biological control agent P. guiyangense than in the other eight Pythium species, and P. guiyangense RXLRs might be the result of gene duplication and genome rearrangement events, as indicated by synteny analysis. Expression pattern analysis of RXLR-encoding genes in the plant pathogen P. ultimum detected transcripts of the majority of the predicted RXLR genes, with some RXLR effectors induced in infection stages and one RXLR showing necrosis-inducing activity. Furthermore, all predicted RXLR genes were cloned from two biocontrol agents, P. oligandrum and P. periplocum, and three of the RXLR genes were found to induce a defense response in Nicotiana benthamiana. Taken together, our findings represent the first evidence of RXLR effectors in Pythium species, providing valuable information on their evolutionary patterns and the mechanisms of their interactions with diverse hosts.


Assuntos
Família Multigênica , Pythium/genética , Genoma , Filogenia , Phytophthora , Pythium/patogenicidade , Sintenia
14.
New Phytol ; 227(5): 1467-1478, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32396661

RESUMO

Pathogen effectors act as disease promoting factors that target specific host proteins with roles in plant immunity. Here, we investigated the function of the RxLR3 effector of the plant-pathogen Phytophthora brassicae. Arabidopsis plants expressing a FLAG-RxLR3 fusion protein were used for co-immunoprecipitation followed by liquid chromatography-tandem mass spectrometry to identify host targets of RxLR3. Fluorescently labelled fusion proteins were used for analysis of subcellular localisation and function of RxLR3. Three closely related members of the callose synthase family, CalS1, CalS2 and CalS3, were identified as targets of RxLR3. RxLR3 co-localised with the plasmodesmal marker protein PDLP5 (PLASMODESMATA-LOCALISED PROTEIN 5) and with plasmodesmata-associated deposits of the ß-1,3-glucan polymer callose. In line with a function as an inhibitor of plasmodesmal callose synthases (CalS) enzymes, callose depositions were reduced and cell-to-cell trafficking was promoted in the presence of RxLR3. Plasmodesmal callose deposition in response to infection was compared with wild-type suppressed in RxLR3-expressing Arabidopsis lines. Our results implied a virulence function of the RxLR3 effector as a positive regulator of plasmodesmata transport and provided evidence for competition between P. brassicae and Arabidopsis for control of cell-to-cell trafficking.


Assuntos
Phytophthora , Plasmodesmos , Glucanos , Glucosiltransferases/genética
15.
Plant J ; 95(2): 187-203, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29671919

RESUMO

Plant pathogens of the oomycete genus Phytophthora produce virulence factors, known as RxLR effector proteins that are transferred into host cells to suppress disease resistance. Here, we analyse the function of the highly conserved RxLR24 effector of Phytophthora brassicae. RxLR24 was expressed early in the interaction with Arabidopsis plants and ectopic expression in the host enhanced leaf colonization and zoosporangia formation. Co-immunoprecipitation (Co-IP) experiments followed by mass spectrometry identified different members of the RABA GTPase family as putative RxLR24 targets. Physical interaction of RxLR24 or its homologue from the potato pathogen Phytophthora infestans with different RABA GTPases of Arabidopsis or potato, respectively, was confirmed by reciprocal Co-IP. In line with the function of RABA GTPases in vesicular secretion, RxLR24 co-localized with RABA1a to vesicles and the plasma membrane. The effect of RxLR24 on the secretory process was analysed with fusion constructs of secreted antimicrobial proteins with a pH-sensitive GFP tag. PATHOGENESIS RELATED PROTEIN 1 (PR-1) and DEFENSIN (PDF1.2) were efficiently exported in control tissue, whereas in the presence of RxLR24 they both accumulated in the endoplasmic reticulum. Together our results imply a virulence function of RxLR24 effectors as inhibitors of RABA GTPase-mediated vesicular secretion of antimicrobial PR-1, PDF1.2 and possibly other defence-related compounds.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Arabidopsis/microbiologia , Vesículas Extracelulares/metabolismo , Proteínas Fúngicas/fisiologia , Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Fatores de Virulência/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Arabidopsis/imunologia , Arabidopsis/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Imunoprecipitação , Phytophthora/genética , Phytophthora/metabolismo , Doenças das Plantas/imunologia , Folhas de Planta/microbiologia , Solanum tuberosum/imunologia , Solanum tuberosum/fisiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
16.
Mol Plant Microbe Interact ; 32(8): 986-1000, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30811314

RESUMO

Plant pathogens employ diverse secreted effector proteins to manipulate host physiology and defense in order to foster diseases. The destructive Phytophthora pathogens encode hundreds of cytoplasmic effectors, which are believed to function inside the plant cells. Many of these cytoplasmic effectors contain the conserved N-terminal RXLR motif. Understanding the virulence function of RXLR effectors will provide important knowledge of Phytophthora pathogenesis. Here, we report the characterization of RXLR effector PcAvh1 from the broad-host range pathogen Phytophthora capsici. Only expressed during infection, PcAvh1 is quickly induced at the early infection stages. CRISPR/Cas9-knockout of PcAvh1 in P. capsici severely impairs virulence while overexpression enhances disease development in Nicotiana benthamiana and bell pepper, demonstrating that PcAvh1 is an essential virulence factor. Ectopic expression of PcAvh1 induces cell death in N. benthamiana, tomato, and bell pepper. Using yeast two-hybrid screening, we found that PcAvh1 interacts with the scaffolding subunit of the protein phosphatase 2A (PP2Aa) in plant cells. Virus-induced gene silencing of PP2Aa in N. benthamiana attenuates resistance to P. capsici and results in dwarfism, suggesting that PP2Aa regulates plant immunity and growth. Collectively, these results suggest that PcAvh1 contributes to P. capsici infection, probably through its interaction with host PP2Aa.


Assuntos
Phytophthora , Doenças das Plantas , Proteínas de Protozoários , Virulência , Motivos de Aminoácidos , Capsicum/parasitologia , Phytophthora/genética , Phytophthora/patogenicidade , Doenças das Plantas/parasitologia , Imunidade Vegetal , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Nicotiana/parasitologia , Virulência/genética
17.
New Phytol ; 222(1): 425-437, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30394556

RESUMO

Phytophthora pathogens secrete many effector proteins to manipulate host innate immunity. PsAvh238 is a Phytophthora sojae N-terminal Arg-X-Leu-Arg (RXLR) effector, which evolved to escape host recognition by mutating one nucleotide while retaining plant immunity-suppressing activity to enhance infection. However, the molecular basis of the PsAvh238 virulence function remains largely enigmatic. By using coimmunoprecipitation and liquid chromatography-tandem mass spectrometry analysis, we identified the 1-aminocyclopropane-1-carboxylate synthase (ACS) isoforms, the key enzymes in ethylene (ET) biosynthesis, as a host target of PsAvh238. We show that PsAvh238 interacts with soybean ACSs (GmACSs) in vivo and in vitro. By destabilizing Type2 GmACSs, PsAvh238 suppresses Type2 ACS-catalyzed ET biosynthesis and facilitates Phytophthora infection. Silencing of Type2 GmACSs, and inhibition of ET biosynthesis or signaling, increase soybean susceptibility to P. sojae infection, supporting a role for Type2 GmACSs and ET in plant immunity against P. sojae. Moreover, wild-type P. sojae but not the PsAvh238-disrupted mutants, inhibits ET induction and promotes P. sojae infection in soybean. Our results highlight the ET biosynthesis pathway as an essential part in plant immunity against P. sojae and a direct effector target.


Assuntos
Etilenos/metabolismo , Glycine max/metabolismo , Glycine max/microbiologia , Liases/metabolismo , Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Proteínas/metabolismo , Resistência à Doença , Estabilidade Enzimática , Inativação Gênica , Mutação/genética , Plantas Geneticamente Modificadas , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Glycine max/imunologia , Nicotiana/genética , Nicotiana/microbiologia
18.
New Phytol ; 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31436314

RESUMO

Oomycete pathogens secrete numerous effectors to manipulate host immunity. While some effectors share a conserved structural fold, it remains unclear if any have conserved host targets. Avr3a-like family effectors, which are related to Phytophthora infestans effector PiAvr3a and are widely distributed across diverse clades of Phytophthora species, were used to study this question. By using yeast-two-hybrid, bimolecular fluorescence complementation and co-immunoprecipitation assays, we identified members of the plant cinnamyl alcohol dehydrogenase 7 (CAD7) subfamily as targets of multiple Avr3a-like effectors from Phytophthora pathogens. The CAD7 subfamily has expanded in plant genomes but lost the lignin biosynthetic activity of canonical CAD subfamilies. In turn, we identified CAD7s as negative regulators of plant immunity that are induced by Phytophthora infection. Moreover, AtCAD7 was stabilized by Avr3a-like effectors and involved in suppression of pathogen-associated molecular pattern-triggered immunity, including callose deposition, reactive oxygen species burst and WRKY33 expression. Our results reveal CAD7 subfamily proteins as negative regulators of plant immunity that are exploited by multiple Avr3a-like effectors to promote infection in different host plants.

19.
New Phytol ; 223(2): 839-852, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30963588

RESUMO

Phytophthora pathogens manipulate host innate immunity by secreting numerous RxLR effectors, thereby facilitating pathogen colonization. Predicted single and tandem repeats of WY domains are the most prominent C-terminal motifs conserved across the Phytophthora RxLR superfamily. However, the functions of individual WY domains in effectors remain poorly understood. The Phytophthora sojae effector PSR1 promotes infection by suppressing small RNA biogenesis in plant hosts. We identified one single WY domain following the RxLR motif in PSR1. This domain was required for RNA silencing suppression activity and infection in Nicotiana benthamiana, Arabidopsis and soybean. Mutations of the conserved residues in the WY domain did not affect the subcellular localization of PSR1 but abolished its effect on plant development and resistance to viral and Phytophthora pathogens. This is at least in part due to decreased protein stability of the PSR1 mutants in planta. The identification of the WY domain in PSR1 allows predicts that a family of PSR1-like effectors also possess RNA silencing suppression activity. Mutation of the conserved residues in two members of this family, PpPSR1L from P. parasitica and PcPSR1L from P. capsici, perturbed their biological functions, indicating that the WY domain is critical in Phytophthora PSR1 and PSR1-like effectors.


Assuntos
Phytophthora/metabolismo , Proteínas/química , Proteínas/metabolismo , Interferência de RNA , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Sequência Conservada , Mutação/genética , Fenótipo , Phytophthora/patogenicidade , Raízes de Plantas/microbiologia , Ligação Proteica , Domínios Proteicos , Proteínas/genética , Glycine max/microbiologia
20.
New Phytol ; 219(4): 1433-1446, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29932222

RESUMO

Pathogens secrete effector proteins to interfere with plant innate immunity, in which Ca2+ /calmodulin (CaM) signalling plays key roles. Thus far, few effectors have been identified that directly interact with CaM for defence suppression. Here, we report that SFI5, an RXLR effector from Phytophthora infestans, suppresses microbe-associated molecular pattern (MAMP)-triggered immunity (MTI) by interacting with host CaMs. We predicted the CaM-binding site in SFI5 using in silico analysis. The interaction between SFI5 and CaM was tested by both in vitro and in vivo assays. MTI suppression by SFI5 and truncated variants were performed in a tomato protoplast system. We found that both the predicted CaM-binding site and the full-length SFI5 protein interact with CaM in the presence of Ca2+ . MTI responses, such as FRK1 upregulation, reactive oxygen species accumulation, and mitogen-activated protein kinase activation were suppressed by truncated SFI5 proteins containing the C-terminal CaM-binding site but not by those without it. The plasma membrane localization of SFI5 and its ability to enhance infection were also perturbed by loss of the CaM-binding site. We conclude that CaM-binding is required for localization and activity of SFI5. We propose that SFI5 suppresses plant immunity by interfering with immune signalling components after activation by CaMs.


Assuntos
Calmodulina/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Phytophthora infestans/metabolismo , Imunidade Vegetal , Proteínas/química , Proteínas/metabolismo , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Cálcio/farmacologia , Membrana Celular/metabolismo , Solanum lycopersicum/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Phytophthora infestans/efeitos dos fármacos , Imunidade Vegetal/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA