Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193389

RESUMO

Trypanosoma cruzi, the etiological agent of Chagas disease is a protozoan parasite that infects phagocytic and non-phagocytic mammalian cells. At early stages of infection, trypomastigotes, the infective forms of this parasite, localize in a vesicular compartment called the T. cruzi parasitophorous vacuole until the exit of parasites to the host cell cytoplasm where continue their infective cycle. Rab proteins participate in the membrane traffic's molecular machinery, functioning as central regulators of vesicle recognition and transport. In previous work, we demonstrated that endocytic Rabs are key factors of the T. cruzi infection process in non-phagocytic cells, regulating the formation and the maturation of the vacuole. In this work, we identified and characterized other molecular components of the vesicular transport pathways and their participation in the T. cruzi infection. We found that Rab9a and Rab32, two regulators of the endocytic and autophagic pathways, were actively recruited to the T. cruzi vacuoles and favored the late stages of the infective process. The recruitment was specific and dependent on T. cruzi protein synthesis. Interestingly, Rab32 association depends on the presence of Rab9a in the vacuolar membrane, while the inhibition of the cysteine-protease cruzipain, a T. cruzi virulence factor, significantly decreases both Rab9a and Rab32 association with the vacuole. In summary, this work showed for the first time that specific molecules produced and secreted by the parasite can subvert intracellular components of host cells to benefit the infection. These new data shed light on the complex map of interactions between T. cruzi and the host cell and introduce concepts that can be useful in finding new forms of intervention against this parasite in the future.

2.
Cell Mol Life Sci ; 81(1): 322, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078420

RESUMO

Transmembrane protein 9 (TMEM9) is a transmembrane protein that regulates lysosomal acidification by interacting with the v-type ATPase complex. However, the role of TMEM9 in the lysosome-dependent autophagy machinery has yet to be identified. In this study, we demonstrate that the lysosomal protein TMEM9, which is involved in vesicle acidification, regulates Rab9-dependent alternative autophagy through its interaction with Beclin1. The cytosolic domain of TMEM9 interacts with Beclin1 via its Bcl-2-binding domain. This interaction between TMEM9 and Beclin1 dissociates Bcl-2, an autophagy-inhibiting partner, from Beclin1, thereby activating LC3-independent and Rab9-dependent alternative autophagy. Late endosomal and lysosomal TMEM9 apparently colocalizes with Rab9 but not with LC3. Furthermore, we show that multiple glycosylation of TMEM9, essential for lysosomal localization, is essential for its interaction with Beclin1 and the activation of Rab9-dependent alternative autophagy. These findings reveal that TMEM9 recruits and activates the Beclin1 complex at the site of Rab9-dependent autophagosome to induce alternative autophagy.


Assuntos
Autofagia , Proteína Beclina-1 , Lisossomos , Proteínas de Membrana , Proteínas rab de Ligação ao GTP , Proteína Beclina-1/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas rab de Ligação ao GTP/metabolismo , Lisossomos/metabolismo , Células HEK293 , Ligação Proteica , Células HeLa , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Autofagossomos/metabolismo
3.
Cell Mol Life Sci ; 81(1): 103, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409392

RESUMO

VPS35 plays a key role in neurodegenerative processes in Alzheimer's disease and Parkinson's disease (PD). Many genetic studies have shown a close relationship between autophagy and PD pathophysiology, and specifically, the PD-causing D620N mutation in VPS35 has been shown to impair autophagy. However, the molecular mechanisms underlying neuronal cell death and impaired autophagy in PD are debated. Notably, increasing evidence suggests that Rab9-dependent "alternative" autophagy, which is driven by a different molecular mechanism that driving ATG5-dependent "conventional" autophagy, also contributes to neurodegenerative process. In this study, we investigated the relationship between alternative autophagy and VPS35 D620N mutant-related PD pathogenesis. We isolated iPSCs from the blood mononuclear cell population of two PD patients carrying the VPS35 D620N mutant. In addition, we used CRISPR-Cas9 to generate SH-SY5Y cells carrying the D620N variant of VPS35. We first revealed that the number of autophagic vacuoles was significantly decreased in ATG5-knockout Mouse Embryonic Fibroblast or ATG5-knockdown patient-derived dopaminergic neurons carrying the VPS35 D620N mutant compared with that of the wild type VPS35 control cells. Furthermore, estrogen, which activates alternative autophagy pathways, increased the number of autophagic vacuoles in ATG5-knockdown VPS35 D620N mutant dopaminergic neurons. Estrogen induces Rab9 phosphorylation, mediated through Ulk1 phosphorylation, ultimately regulating alternative autophagy. Moreover, estrogen reduced the apoptosis rate of VPS35 D620N neurons, and this effect of estrogen was diminished under alternative autophagy knockdown conditions. In conclusion, alternative autophagy might be important for maintaining neuronal homeostasis and may be associated with the neuroprotective effect of estrogen in PD with VPS35 D620N.


Assuntos
Neuroblastoma , Doença de Parkinson , Animais , Humanos , Camundongos , Autofagia/genética , Neurônios Dopaminérgicos/metabolismo , Estrogênios/farmacologia , Estrogênios/metabolismo , Fibroblastos/metabolismo , Mutação/genética , Neuroblastoma/metabolismo , Doença de Parkinson/patologia , Transporte Proteico , Proteínas de Transporte Vesicular/metabolismo
4.
Biochem Biophys Res Commun ; 736: 150506, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39121672

RESUMO

In confluent v-Ha-ras-transformed NIH 3T3 fibroblasts (Ras-NIH 3T3), LC3 downregulation may precede a decrease in canonical autophagy, thus contributing to cell survival. Herein, we aimed to investigate the role of alternative autophagy in the viability of long-term cultures of Ras-NIH 3T3 cells and their parental NIH 3T3 cells. As cell confluence increased with the culture period, the level of alternative autophagy, as assessed through Lamp2-Rab9 co-localization, gradually decreased in both cell lines. However, Ras-NIH 3T3 cells maintained higher levels of alternative autophagy than the parental cells did. Rab9 knockdown minimally affected NIH 3T3 cells while drastically reducing the viability of Ras-NIH 3T3 cells, which suggested that alternative autophagy plays a critical role in Ras-NIH 3T3 cells. In contrast, reactive oxygen species (ROS) production in Ras-NIH 3T3 cells was higher than that in NIH 3T3 cells during long-term culture. Moreover, NIH 3T3 cells exhibited a continual decrease in mitochondrial mass, whereas Ras-NIH 3T3 cells maintained high mitochondrial mass. Immunofluorescence analysis of mitochondrial membrane marker proteins and mitochondrial membrane potential (MMP) also demonstrated a temporal pattern of changes similar to those of mitochondrial mass. This finding could be attributed to the relatively higher level of alternative autophagy in Ras-NIH 3T3 cells facilitating the removal of damaged mitochondria. Paclitaxel treatment in Ras-NIH 3T3 cells induced an increase in canonical autophagy rates along with suppression of alternative autophagy. Ras-NIH 3T3 cells showed high sensitivity to paclitaxel at the early stage of culture, but as cell confluence increased, resistance to paclitaxel increased, showing a similar level of cell viability to the vehicle control group. The study findings suggest that alternative autophagy is more important than canonical autophagy for maintaining cell survival in response to an unfavorable environment, such as during high cell confluence and exposure to anticancer agents.

5.
Skin Res Technol ; 29(5): e13313, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37231931

RESUMO

BACKGROUND: Accumulating evidence announces that aberrantly expressed circRNAs were closely related to the development of human cancers. However, the role and mechanism of multiple circRNAs remain unclear. Our work aimed to disclose the functional role and mechanism of circ_0081054 in melanoma. METHODS: Quantitative real-time polymerase chain reaction assay was utilized to detect circ_0081054, microRNA-637 (miR-637) and RAB9A (member RAS oncogene family) mRNA expression. Cell proliferative ability was evaluated via Cell Counting Kit-8 and colony formation assay. Cell invasion was assessed by using wound healing assay. RESULTS: The significant upregulation of circ_0081054 was detected in melanoma tissues and cells. The proliferation, migration, glycolytic metabolism, and angiogenesis in melanoma cells were suppressed, while apoptosis was promoted following the silence of circ_0081054. In addition, circ_0081054 could target miR-637, and miR-637 inhibitor could reverse the effects of circ_0081054 deficiency. Furthermore, RAB9A was a target gene for miR-637 and RAB9A overexpression could reverse the effects of miR-637 overexpression. In addition, the deficiency of circ_0081054 hampered tumor growth in vivo. Moreover, circ_0081054 could regulate RAB9A expression by sponging miR-637. CONCLUSION: All results indicated that circ_0081054 promoted the malignant behaviors of melanoma cells partly by regulating the miR-637/RAB9A molecular axis.


Assuntos
Melanoma , MicroRNAs , Humanos , RNA Circular/genética , Melanoma/genética , Bandagens , Hiperplasia , Proliferação de Células/genética , MicroRNAs/genética , Proteínas rab de Ligação ao GTP/genética
6.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047336

RESUMO

Autophagy is essential for maintaining cellular homeostasis through bulk degradation of subcellular constituents, including misfolded proteins and dysfunctional organelles. It is generally governed by the proteins Atg5 and Atg7, which are critical regulators of the conventional autophagy pathway. However, recent studies have identified an alternative Atg5/Atg7-independent pathway, i.e., Ulk1- and Rab9-mediated alternative autophagy. More intensive studies have identified its essential role in stress-induced mitochondrial autophagy, also known as mitophagy. Alternative mitophagy plays pathophysiological roles in heart diseases such as myocardial ischemia and pressure overload. Here, this review discusses the established and emerging mechanisms of alternative autophagy/mitophagy that can be applied in therapeutic interventions for heart disorders.


Assuntos
Mitofagia , Isquemia Miocárdica , Humanos , Autofagia/fisiologia , Isquemia Miocárdica/metabolismo , Mitocôndrias/metabolismo
7.
Int J Mol Sci ; 23(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35628504

RESUMO

Mutations in profilin 1 (PFN1) have been identified in rare familial cases of Amyotrophic Lateral Sclerosis (ALS). PFN1 is involved in multiple pathways that could intervene in ALS pathology. However, the specific pathogenic role of PFN1 mutations in ALS is still not fully understood. We hypothesized that PFN1 could play a role in regulating autophagy pathways and that PFN1 mutations could disrupt this function. We used patient cells (lymphoblasts) or tissue (post-mortem) carrying PFN1 mutations (M114T and E117G), and designed experimental models expressing wild-type or mutant PFN1 (cell lines and novel PFN1 mice established by lentiviral transgenesis) to study the effects of PFN1 mutations on autophagic pathway markers. We observed no accumulation of PFN1 in the spinal cord of one E117G mutation carrier. Moreover, in patient lymphoblasts and transfected cell lines, the M114T mutant PFN1 protein was unstable and deregulated the RAB9-mediated alternative autophagy pathway involved in the clearance of damaged mitochondria. In vivo, motor neurons expressing M114T mutant PFN1 showed mitochondrial abnormalities. Our results demonstrate that the M114T PFN1 mutation is more deleterious than the E117G variant in patient cells and experimental models and suggest a role for the RAB9-dependent autophagic pathway in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Profilinas , Proteínas rab de Ligação ao GTP , Esclerose Lateral Amiotrófica/metabolismo , Animais , Autofagia/genética , Homeostase , Humanos , Camundongos , Mitocôndrias/metabolismo , Mutação , Profilinas/genética , Profilinas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
8.
J Biol Chem ; 294(17): 6912-6922, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30837268

RESUMO

HPS4 biogenesis of lysosome-related organelles complex 3 subunit 2 (HPS4) is one of the genes whose mutations have been associated with Hermansky-Pudlak syndrome (HPS), characterized by ocular albinism and susceptibility to bleeding because of defects in the biogenesis of lysosome-related organelles such as melanosomes. HPS4 protein forms a BLOC-3 complex with HPS1, another HPS gene product, and the complex has been proposed to function as a guanine nucleotide exchange factor (GEF) for RAB32, a member of the Rab small GTPase family (Rab32), and Rab38 (Rab32/38-GEF) and also as a Rab9 effector. Although both Rab32/38 and Rab9 have been shown previously to be involved in melanogenesis in mammalian epidermal melanocytes, the functional relationships of these small GTPases with BLOC-3 remain unknown. In this study, we used site-directed mutagenesis to generate HPS4 mutants that specifically lack either Rab32/38-GEF activity or Rab9-binding activity and investigated their involvement in melanogenesis of melan-le cells (an HPS4-deficient melanocyte cell line derived from light ear mice). Melan-le cells exhibit a clear hypopigmentation phenotype, i.e. reduced expression and abnormal distribution of tyrosinase and reduced melanin content. Although re-expression of WT HPS4 completely rescued this phenotype, the Rab32/38-GEF activity-deficient HPS4 mutant failed to restore melanin content and tyrosinase trafficking in these cells. Unexpectedly, as WT HPS4, the Rab9 binding-deficient HPS4 mutant completely rescued the phenotype. These results indicate that activation of Rab32/38 by HPS4 (or BLOC-3) is essential for melanogenesis of cultured melanocytes and that Rab9 likely regulates melanogenesis independently of HPS4.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/fisiologia , Melaninas/biossíntese , Proteínas rab de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Linhagem Celular Transformada , Chlorocebus aethiops , Ativação Enzimática , Fatores de Troca do Nucleotídeo Guanina/química , Camundongos , Mutagênese Sítio-Dirigida , Ligação Proteica
9.
Fish Shellfish Immunol ; 104: 245-251, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32526284

RESUMO

White spot syndrome virus (WSSV) is the main pathogen of shrimp and has led to considerable economic losses to the shrimp industry around the world. However, so far there are still no effective strategies to address this problem. In this paper, the tissue distribution of Rab9 as well as its defense mechanism against WSSV in Japanese shrimp (Marsupenaeus japonicas) was investigated. The results revealed that Rab9 had a higher expression in hemocyte and gill while expression was lower in heart, muscle, intestine, liver, indicating Rab9 was involved in the innate immune process. The results showed that the Rab9 expression increased when shrimp was challenged with WSSV compared with that of control, while the silence of Rab9 led to the increase of WSSV copies. In order to explore the antiviral mechanism of Rab9, it was demonstrated that the expression level of Rab9 changed during autophagy process, which indicated that Rab9 is participated in the autophagy procedure of shrimp. The fact that autophagy decreased after Rab9 silenced, may also suggest that Rab9 protein could affect autophagy. In short, the results showed Rab9 played a key role in antivirus through regulating autophagy. The results not only enlarge the limited views about molecular mechanism of Rab in invertebrate, but also help to enrich the immunological content in marine invertebrate.


Assuntos
Proteínas de Artrópodes/imunologia , Autofagia , Infecções por Vírus de DNA/imunologia , Penaeidae/imunologia , Penaeidae/virologia , Vírus da Síndrome da Mancha Branca 1 , Proteínas rab de Ligação ao GTP/imunologia , Animais , Proteínas de Artrópodes/genética , Infecções por Vírus de DNA/veterinária , Proteínas rab de Ligação ao GTP/genética
10.
Cell Mol Life Sci ; 75(12): 2257-2271, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29288293

RESUMO

Soon after internalization delta opioid receptors (DOPrs) are committed to the degradation path by G protein-coupled receptor (GPCR)-associated binding protein. Here we provide evidence that this classical post-endocytic itinerary may be rectified by downstream sorting decisions which allow DOPrs to regain to the membrane after having reached late endosomes (LE). The LE sorting mechanism involved ESCRT accessory protein Alix and the TIP47/Rab9 retrieval complex which supported translocation of the receptor to the TGN, from where it subsequently regained the cell membrane. Preventing DOPrs from completing this itinerary precipitated acute analgesic tolerance to the agonist DPDPE, supporting the relevance of this recycling path in maintaining the analgesic response by this receptor. Taken together, these findings reveal a post-endocytic itinerary where GPCRs that have been sorted for degradation can still recycle to the membrane.


Assuntos
Membrana Celular/metabolismo , Receptores Opioides delta/metabolismo , Animais , Células Cultivadas , Células HEK293 , Humanos , Masculino , Camundongos , Neurônios/metabolismo , Transporte Proteico , Proteólise , Ratos , Ratos Sprague-Dawley
11.
Traffic ; 17(3): 211-29, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26663757

RESUMO

Rab9 is a small GTPase that localizes to the trans-Golgi Network (TGN) and late endosomes. Its main function has long been connected to the recycling of mannose-6-phosphate receptors (MPRs). However, recent studies link Rab9 also to autophagy and lysosome biogenesis. In this paper, using confocal imaging, we characterize for the first time the live dynamics of the Rab9 constitutively active mutant, Rab9Q66L. We find that it localizes predominantly to late endosomes and that its expression in HeLa cells disperses TGN46 and cation-independent (CI-MPR) away from the Golgi yet, has no effect on the retrograde transport of CI-MPR. We also show that CI-MPR and Rab9 enter the endosomal pathway together at the transition stage between early, Rab5-positive, and late, Rab7a-positive, endosomes. CI-MPR localizes transiently to separate domains on these endosomes, where vesicles carrying CI-MPR attach and detach within seconds. Taken together, our results demonstrate that Rab9 mediates the delivery of CI-MPR to the endosomal pathway, entering the maturing endosome at the early-to-late transition.


Assuntos
Endossomos/metabolismo , Receptor IGF Tipo 2/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Cães , Endocitose , Células HeLa , Humanos , Células Madin Darby de Rim Canino , Glicoproteínas de Membrana/metabolismo , Mutação de Sentido Incorreto , Transporte Proteico , Proteínas rab de Ligação ao GTP/genética , Rede trans-Golgi/metabolismo
12.
J Mol Cell Cardiol ; 122: 58-68, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30098987

RESUMO

Mitochondrial dysfunction is a major contributor to myocyte loss and the development of heart failure. Myocytes have quality control mechanisms to retain functional mitochondria by removing damaged mitochondria via specialized autophagy, i.e., mitophagy. The underlying mechanisms of fission affect the survival of cardiomyocytes, and left ventricular function in the heart is poorly understood. Here, we demonstrated the direct effect and potential mechanisms of mitochondrial functional defects associated with abnormal mitochondrial dynamics in heart failure. We observed that IGF-IIR signaling produced significant changes in mitochondrial morphology and function; such changes were associated with the altered expression and distribution of dynamin-related protein (Drp1) and mitofusin (Mfn2). IGF-IIR signaled extracellular signal-regulated kinase (ERK) activation to promote Drp1 phosphorylation and translocation to mitochondria for mitochondrial fission and mitochondrial dysfunction. Moreover, IGF-IIR signaling triggered Rab9-dependent autophagosome formation by the JNK-mediated phosphorylation of Bcl-2 at serine 87 and promoted ULK1/Beclin 1-dependent autophagic membrane formation. Excessive mitochondrial fission by Drp1 enhanced the Rab9-dependent autophagosome recognition and engulfing of damaged mitochondria and eventually decreased cardiomyocyte viability. Therefore, these results demonstrated the connection between Rab9-dependent autophagosomes and mitochondrial fission in cardiac myocytes, which provides a potential therapeutic strategy for treating heart disease.


Assuntos
Dinaminas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Insuficiência Cardíaca/metabolismo , Mitocôndrias Cardíacas/metabolismo , Receptor IGF Tipo 2/metabolismo , Análise de Variância , Animais , Autofagossomos/metabolismo , Autofagia , Linhagem Celular , Feminino , Sistema de Sinalização das MAP Quinases , Dinâmica Mitocondrial , Mitofagia , Miócitos Cardíacos/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas rab de Ligação ao GTP/metabolismo
13.
J Cell Physiol ; 233(9): 7080-7091, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29574782

RESUMO

Mitochondria dysfunction is the major characteristic of mitophagy, which is essential in mitochondrial quality control. However, excessive mitophagy contributes to cell death in a number of diseases, including ischemic stroke and hepatotoxicity. Insulin-like growth factor II (IGF-II) and its receptor (IGF-IIR) play vital roles in the development of heart failure during hypertension. We found that IGF-II triggers IGF-IIR receptor activation, causing mitochondria dysfunction, resulting in mitophagy, and cardiomyocyte cell death. These results indicated that IGF-IIR activation triggers mitochondria fragmentation, leading to autophagosome formation, and loss of mitochondria content. These results are associated with Parkin-dependent mitophagy. Additionally, autophagic proteins Atg5, and Atg7 deficiency did not suppress IGF-IIR-induced mitophagy. However, Rab9 knockdown reduced mitophagy and maintained mitochondrial function. These constitutive mitophagies through IGF-IIR activation trigger mitochondria loss and mitochondrial ROS accumulation for cardiomyocyte viability decrease. Together, our results indicate that IGF-IIR predominantly induces mitophagy through the Rab9-dependent alternative autophagy.


Assuntos
Autofagia , Mitocôndrias/metabolismo , Mitofagia , Receptor IGF Tipo 2/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Animais Recém-Nascidos , Comunicação Autócrina , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Dependovirus/metabolismo , Feminino , Coração/fisiopatologia , Humanos , Fator de Crescimento Insulin-Like II/metabolismo , Mitocôndrias/ultraestrutura , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Especificidade de Órgãos , Comunicação Parácrina , Ratos Sprague-Dawley , Ubiquitina-Proteína Ligases/metabolismo
14.
Exp Parasitol ; 187: 75-85, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29499180

RESUMO

Like most intracellular pathogens, the apicomplexan parasites Besnoitia besnoiti, Toxoplasma gondii and Neospora caninum scavenge metabolites from their host cells. Recruitment of the Golgi complex to the vicinity of the parasitophorous vacuole (PV) is likely to aid in this process. In this work, we comparatively assessed B. besnoiti, T. gondii and N. caninum infected human retinal pigmented epithelial (hTERT-RPE-1) cells at 24 h post-infection and used antibodies to confirm Golgi ribbon compaction in B. besnoiti, and Golgi ribbon dispersion in T. gondii, while no alteration in Golgi morphology was seen in N. caninum infected cells. In either case, the Golgi stacks of infected cells contained both cis- (GM130) and trans- (TGN46) Golgi proteins. The localization of Rab9A, an important regulator of endosomal trafficking, was also studied. GFP-tagged Rab9A was recruited to the vicinity of the PV of all three parasites. Toxoplasma-infected cells exhibited increased expression of Rab9A in comparison to non-infected cells. However, Rab9A expression levels remained unaltered upon infection with N. caninum and B. besnoiti tachyzoites. In contrast to Rab9A, a GFP-tagged dominant negative mutant form of Rab9A (Rab9A DN), was not recruited to the PV, and the expression of Rab9A DN did not affect host cell invasion nor replication by all three parasites. Thus, B. besnoiti, T. gondii and N. caninum show similarities but also differences in how they affect constituents of the endosomal/secretory pathways.


Assuntos
Coccidiose/metabolismo , Complexo de Golgi/metabolismo , Neospora , Toxoplasmose/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Autoantígenos/imunologia , Western Blotting , Linhagem Celular , Coccidiose/enzimologia , Endossomos/parasitologia , Imunofluorescência , Complexo de Golgi/imunologia , Complexo de Golgi/ultraestrutura , Humanos , Glicoproteínas de Membrana/imunologia , Proteínas de Membrana/imunologia , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microscopia de Interferência , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/parasitologia , Toxoplasmose/enzimologia , Rede trans-Golgi/imunologia , Rede trans-Golgi/metabolismo , Rede trans-Golgi/ultraestrutura
15.
J Biol Chem ; 288(25): 18077-92, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23658055

RESUMO

Cardiac autophagy is inhibited in type 1 diabetes. However, it remains unknown if the reduced autophagy contributes to the pathogenesis of diabetic cardiomyopathy. We addressed this question using mouse models with gain- and loss-of-autophagy. Autophagic flux was inhibited in diabetic hearts when measured at multiple time points after diabetes induction by streptozotocin as assessed by protein levels of microtubule-associated protein light chain 3 form 2 (LC3-II) or GFP-LC3 puncta in the absence and presence of the lysosome inhibitor bafilomycin A1. Autophagy in diabetic hearts was further reduced in beclin 1- or Atg16-deficient mice but was restored partially or completely by overexpression of beclin 1 to different levels. Surprisingly, diabetes-induced cardiac damage was substantially attenuated in beclin 1- and Atg16-deficient mice as shown by improved cardiac function as well as reduced levels of oxidative stress, interstitial fibrosis, and myocyte apoptosis. In contrast, diabetic cardiac damage was dose-dependently exacerbated by beclin 1 overexpression. The cardioprotective effects of autophagy deficiency were reproduced in OVE26 diabetic mice. These effects were associated with partially restored mitophagy and increased expression and mitochondrial localization of Rab9, an essential regulator of a non-canonical alternative autophagic pathway. Together, these findings demonstrate that the diminished autophagy is an adaptive response that limits cardiac dysfunction in type 1 diabetes, presumably through up-regulation of alternative autophagy and mitophagy.


Assuntos
Autofagia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Miocárdio/metabolismo , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Relacionadas à Autofagia , Proteína Beclina-1 , Western Blotting , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Miocárdio/patologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
16.
Theranostics ; 14(1): 56-74, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164158

RESUMO

Rationale: Promotion of mitophagy is considered a promising strategy for the treatment of neurodegenerative diseases including Alzheimer's disease (AD). The development of mitophagy-specific inducers with low toxicity and defined molecular mechanisms is essential for the clinical application of mitophagy-based therapy. The aim of this study was to investigate the potential of a novel small-molecule mitophagy inducer, ALT001, as a treatment for AD. Methods: ALT001 was developed through chemical optimization of an isoquinolium scaffold, which was identified from a chemical library screening using a mitophagy reporter system. In vitro and in vivo experiments were conducted to evaluate the potential of ALT001 as a mitophagy-targeting therapeutic agent and to investigate the molecular mechanisms underlying ALT001-induced mitophagy. The therapeutic effect of ALT001 was assessed in SH-SY5Y cells expressing mutant APP and mouse models of AD (5×FAD and PS2APP) by analyzing mitochondrial dysfunction and cognitive defects. Results: ALT001 specifically induces mitophagy both in vitro and in vivo but is nontoxic to mitochondria. Interestingly, we found that ALT001 induces mitophagy through the ULK1-Rab9-dependent alternative mitophagy pathway independent of canonical mitophagy pathway regulators such as ATG7 and PINK1. Importantly, ALT001 reverses mitochondrial dysfunction in SH-SY5Y cells expressing mutant APP in a mitophagy-dependent manner. ALT001 induces alternative mitophagy in mice and restores the decreased mitophagy level in a 5×FAD AD model mouse. In addition, ALT001 reverses mitochondrial dysfunction and cognitive defects in the PS2APP and 5×FAD AD mouse models. AAV-mediated silencing of Rab9 in the hippocampus further confirmed that ALT001 exerts its therapeutic effect through alternative mitophagy. Conclusion: Our results highlight the therapeutic potential of ALT001 for AD via alleviation of mitochondrial dysfunction and indicate the usefulness of the ULK1-Rab9 alternative mitophagy pathway as a therapeutic target.


Assuntos
Doença de Alzheimer , Doenças Mitocondriais , Neuroblastoma , Humanos , Camundongos , Animais , Doença de Alzheimer/metabolismo , Mitofagia , Modelos Animais de Doenças , Isoquinolinas/farmacologia , Cognição
17.
Autophagy ; 20(9): 2109-2111, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38752371

RESUMO

CALCOCO2/NDP52 recognizes LGALS8 (galectin 8)-coated invading bacteria and initiates anti-bacterial autophagy by recruiting RB1CC1/FIP200 and TBKBP1/SINTBAD-AZI2/NAP1. Whether CALCOCO2 exerts similar functions against viral infection is unknown. In our recent study we show that CALCOCO2 targets envelope proteins of hepatitis B virus (HBV) to the lysosome for degradation, resulting in inhibition of viral replication. In contrast to anti-bacterial autophagy, lysosomal degradation of HBV does not require either LGALS8 or ATG5, and CALCOCO2 mutants abolishing the formation of the RB1CC1-CALCOCO2-TBKBP1-AZI2 complex maintain their inhibitory function on the virus. CALCOCO2-mediated inhibition depends on RAB9, which is a key factor in the alternative autophagy pathway. CALCOCO2 forms a complex with RAB9 only in the presence of viral envelope proteins and links HBV to the RAB9-dependent lysosomal degradation pathway. These findings reveal a new mechanism by which CALCOCO2 triggers antiviral responses against HBV infection and suggest direct roles for autophagy receptors in other lysosomal degradation pathways than canonical autophagy.


Assuntos
Autofagia , Vírus da Hepatite B , Hepatite B , Lisossomos , Proteínas rab de Ligação ao GTP , Lisossomos/metabolismo , Humanos , Vírus da Hepatite B/fisiologia , Vírus da Hepatite B/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Hepatite B/virologia , Hepatite B/metabolismo , Antivirais/farmacologia , Antivirais/metabolismo , Proteínas Nucleares/metabolismo
18.
Redox Biol ; 71: 103090, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38373380

RESUMO

During asthma, there is an intensification of pulmonary epithelial inflammation, mitochondrial oxidative stress, and Golgi apparatus fragmentation. However, the underlying mechanism remains largely unknown. Therefore, this study investigated the roles of ULK1, Atg9a, and Rab9 in epithelial inflammation, mitochondrial oxidative stress, and Golgi apparatus fragmentation. We found that ULK1 gene knockout reduced the infiltration of inflammatory cells, restored the imbalance of the Th1/Th2 ratio, and inhibited the formation of inflammatory bodies in the lung tissue of house dust mite-induced asthma mice. Moreover, we demonstrated that Atg9a interacted with ULK1 at S467. ULK1 phosphorylated Atg9a at S14. Treatment with ULK1 activator (LYN-1604) and ULK1 inhibitor (ULK-101) respectively promoted and inhibited inflammasome activation, indicating that the activation of inflammasome induced by house dust mite in asthma mice is dependent on ULK1. For validation of the in vivo results, we then used a lentivirus containing ULK1 wild type and ULK1-S467A genes to infect Beas-2b-ULK1-knockout cells and establish a stable cell line. The results suggest that the ULK1 S467 site is crucial for IL-4-induced inflammation and oxidative stress. Experimental verification confirmed that Atg9a was the superior signaling pathway of Rab9. Interestingly, we found for the first time that Rab9 played a very important role in inflammation-induced fragmentation of the Golgi apparatus. Inhibiting the activation of the ULK1/Atg9a/Rab9 signaling pathways can inhibit Golgi apparatus fragmentation and mitochondrial oxidative stress in asthma while reducing the production of NLRP3-mediated pulmonary epithelial inflammation.


Assuntos
Asma , Pneumonia , Animais , Camundongos , Asma/genética , Asma/metabolismo , Autofagia , Complexo de Golgi/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , Pneumonia/metabolismo
19.
Front Cell Dev Biol ; 11: 1140605, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895788

RESUMO

Retrograde transport from endosomes to the trans-Golgi network is essential for recycling of protein and lipid cargoes to counterbalance anterograde membrane traffic. Protein cargo subjected to retrograde traffic include lysosomal acid-hydrolase receptors, SNARE proteins, processing enzymes, nutrient transporters, a variety of other transmembrane proteins, and some extracellular non-host proteins such as viral, plant, and bacterial toxins. Efficient delivery of these protein cargo molecules depends on sorting machineries selectively recognizing and concentrating them for their directed retrograde transport from endosomal compartments. In this review, we outline the different retrograde transport pathways governed by various sorting machineries involved in endosome-to-TGN transport. In addition, we discuss how this transport route can be analyzed experimentally.

20.
Artigo em Inglês | MEDLINE | ID: mdl-37020694

RESUMO

Background: Isoliquiritigenin (ISL) presents antitumor effects against melanoma cells. It is known that various circular RNAs (circRNAs) are involved in the development of melanoma. Therefore, the present study aims to investigate the molecular mechanisms of ISL and circ_0002860. Methods: Circ_0002860, microRNA-431-5p (miR-431-5p) and member RAS oncogene family (RAB9A) were detected through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assay. Cell viability was examined via cell counting kit-8 assay. The proliferation ability was assessed using colony formation assay. Cell apoptosis and cell cycle were determined by flow cytometry. Transwell assay was used for detection of migration and invasion. Western blot was conducted for protein analysis. Target binding was confirmed via dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. In vivo research was performed through xenograft tumor assay. Results: Circ_0002860 was downregulated by ISL in melanoma cells. ISL-induced inhibitory effects on cell proliferation, cell cycle progression, migration and invasion were alleviated by circ_0002860 overexpression. MiR-431-5p was a target of circ_0002860. Circ_0002860 eliminated the ISL-induced tumor inhibition via sponging miR-431-5p in melanoma cells. Circ_0002860 elevated the RAB9A level by targeting miR-431-5p. The function of ISL was related to miR-431-5p/RAB9A axis in melanoma progression. Tumor growth was reduced by ISL in vivo through downregulating circ_0002860 to regulate miR-431-5p and RAB9A levels. Conclusion: The current data indicates that ISL suppressed cell malignant progression of melanoma via targeting the circ_0002860/miR-431-5p/RAB9A pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA