Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Microbiol ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193389

RESUMO

Trypanosoma cruzi, the etiological agent of Chagas disease is a protozoan parasite that infects phagocytic and non-phagocytic mammalian cells. At early stages of infection, trypomastigotes, the infective forms of this parasite, localize in a vesicular compartment called the T. cruzi parasitophorous vacuole until the exit of parasites to the host cell cytoplasm where continue their infective cycle. Rab proteins participate in the membrane traffic's molecular machinery, functioning as central regulators of vesicle recognition and transport. In previous work, we demonstrated that endocytic Rabs are key factors of the T. cruzi infection process in non-phagocytic cells, regulating the formation and the maturation of the vacuole. In this work, we identified and characterized other molecular components of the vesicular transport pathways and their participation in the T. cruzi infection. We found that Rab9a and Rab32, two regulators of the endocytic and autophagic pathways, were actively recruited to the T. cruzi vacuoles and favored the late stages of the infective process. The recruitment was specific and dependent on T. cruzi protein synthesis. Interestingly, Rab32 association depends on the presence of Rab9a in the vacuolar membrane, while the inhibition of the cysteine-protease cruzipain, a T. cruzi virulence factor, significantly decreases both Rab9a and Rab32 association with the vacuole. In summary, this work showed for the first time that specific molecules produced and secreted by the parasite can subvert intracellular components of host cells to benefit the infection. These new data shed light on the complex map of interactions between T. cruzi and the host cell and introduce concepts that can be useful in finding new forms of intervention against this parasite in the future.

2.
Skin Res Technol ; 29(5): e13313, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37231931

RESUMO

BACKGROUND: Accumulating evidence announces that aberrantly expressed circRNAs were closely related to the development of human cancers. However, the role and mechanism of multiple circRNAs remain unclear. Our work aimed to disclose the functional role and mechanism of circ_0081054 in melanoma. METHODS: Quantitative real-time polymerase chain reaction assay was utilized to detect circ_0081054, microRNA-637 (miR-637) and RAB9A (member RAS oncogene family) mRNA expression. Cell proliferative ability was evaluated via Cell Counting Kit-8 and colony formation assay. Cell invasion was assessed by using wound healing assay. RESULTS: The significant upregulation of circ_0081054 was detected in melanoma tissues and cells. The proliferation, migration, glycolytic metabolism, and angiogenesis in melanoma cells were suppressed, while apoptosis was promoted following the silence of circ_0081054. In addition, circ_0081054 could target miR-637, and miR-637 inhibitor could reverse the effects of circ_0081054 deficiency. Furthermore, RAB9A was a target gene for miR-637 and RAB9A overexpression could reverse the effects of miR-637 overexpression. In addition, the deficiency of circ_0081054 hampered tumor growth in vivo. Moreover, circ_0081054 could regulate RAB9A expression by sponging miR-637. CONCLUSION: All results indicated that circ_0081054 promoted the malignant behaviors of melanoma cells partly by regulating the miR-637/RAB9A molecular axis.


Assuntos
Melanoma , MicroRNAs , Humanos , RNA Circular/genética , Melanoma/genética , Bandagens , Hiperplasia , Proliferação de Células/genética , MicroRNAs/genética , Proteínas rab de Ligação ao GTP/genética
3.
Exp Parasitol ; 187: 75-85, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29499180

RESUMO

Like most intracellular pathogens, the apicomplexan parasites Besnoitia besnoiti, Toxoplasma gondii and Neospora caninum scavenge metabolites from their host cells. Recruitment of the Golgi complex to the vicinity of the parasitophorous vacuole (PV) is likely to aid in this process. In this work, we comparatively assessed B. besnoiti, T. gondii and N. caninum infected human retinal pigmented epithelial (hTERT-RPE-1) cells at 24 h post-infection and used antibodies to confirm Golgi ribbon compaction in B. besnoiti, and Golgi ribbon dispersion in T. gondii, while no alteration in Golgi morphology was seen in N. caninum infected cells. In either case, the Golgi stacks of infected cells contained both cis- (GM130) and trans- (TGN46) Golgi proteins. The localization of Rab9A, an important regulator of endosomal trafficking, was also studied. GFP-tagged Rab9A was recruited to the vicinity of the PV of all three parasites. Toxoplasma-infected cells exhibited increased expression of Rab9A in comparison to non-infected cells. However, Rab9A expression levels remained unaltered upon infection with N. caninum and B. besnoiti tachyzoites. In contrast to Rab9A, a GFP-tagged dominant negative mutant form of Rab9A (Rab9A DN), was not recruited to the PV, and the expression of Rab9A DN did not affect host cell invasion nor replication by all three parasites. Thus, B. besnoiti, T. gondii and N. caninum show similarities but also differences in how they affect constituents of the endosomal/secretory pathways.


Assuntos
Coccidiose/metabolismo , Complexo de Golgi/metabolismo , Neospora , Toxoplasmose/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Autoantígenos/imunologia , Western Blotting , Linhagem Celular , Coccidiose/enzimologia , Endossomos/parasitologia , Imunofluorescência , Complexo de Golgi/imunologia , Complexo de Golgi/ultraestrutura , Humanos , Glicoproteínas de Membrana/imunologia , Proteínas de Membrana/imunologia , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microscopia de Interferência , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/parasitologia , Toxoplasmose/enzimologia , Rede trans-Golgi/imunologia , Rede trans-Golgi/metabolismo , Rede trans-Golgi/ultraestrutura
4.
Artigo em Inglês | MEDLINE | ID: mdl-37020694

RESUMO

Background: Isoliquiritigenin (ISL) presents antitumor effects against melanoma cells. It is known that various circular RNAs (circRNAs) are involved in the development of melanoma. Therefore, the present study aims to investigate the molecular mechanisms of ISL and circ_0002860. Methods: Circ_0002860, microRNA-431-5p (miR-431-5p) and member RAS oncogene family (RAB9A) were detected through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assay. Cell viability was examined via cell counting kit-8 assay. The proliferation ability was assessed using colony formation assay. Cell apoptosis and cell cycle were determined by flow cytometry. Transwell assay was used for detection of migration and invasion. Western blot was conducted for protein analysis. Target binding was confirmed via dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. In vivo research was performed through xenograft tumor assay. Results: Circ_0002860 was downregulated by ISL in melanoma cells. ISL-induced inhibitory effects on cell proliferation, cell cycle progression, migration and invasion were alleviated by circ_0002860 overexpression. MiR-431-5p was a target of circ_0002860. Circ_0002860 eliminated the ISL-induced tumor inhibition via sponging miR-431-5p in melanoma cells. Circ_0002860 elevated the RAB9A level by targeting miR-431-5p. The function of ISL was related to miR-431-5p/RAB9A axis in melanoma progression. Tumor growth was reduced by ISL in vivo through downregulating circ_0002860 to regulate miR-431-5p and RAB9A levels. Conclusion: The current data indicates that ISL suppressed cell malignant progression of melanoma via targeting the circ_0002860/miR-431-5p/RAB9A pathway.

5.
Structure ; 30(3): 386-395.e5, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34793709

RESUMO

Rab9 is mainly located on late endosomes and required for their intracellular transport to trans-Golgi network (TGN). The cytoplasmic dynein motor, together with its regulatory proteins Nde1/Ndel1 and Lis1, controls intracellular retrograde transport of membranous organelles along the microtubule network. How late endosomes are tethered to the microtubule-based motor dynein for their retrograde transport remains unclear. Here, we demonstrate that the guanosine triphosphate (GTP)-bound Rab9A/B specifically uses Nde1/Ndel1 as an effector to interact with the dynein motor complex. We determined the crystal structure of Rab9A-GTP in complex with the Rab9-binding region of Nde1. The functional roles of key residues involved in the Rab9A-Nde1 interaction are verified using biochemical and cell biology assays. Rab9A mutants unable to bind to Nde1 also failed to associate with dynein, Lis1, and dynactin. Therefore, Nde1 is a Rab9 effector that tethers Rab9-associated late endosomes to the dynein motor for their retrograde transport to the TGN.


Assuntos
Dineínas do Citoplasma , Dineínas , Dineínas do Citoplasma/metabolismo , Citoesqueleto/metabolismo , Complexo Dinactina/metabolismo , Dineínas/metabolismo , Endossomos/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
6.
Open Life Sci ; 16(1): 482-494, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34056112

RESUMO

BACKGROUND: Circular RNAs play crucial roles in tumor occurrence and progression. This research aimed to explore the role and potential mechanism of hsa_circ_0013359 (circ_0013359) in melanoma. METHODS: The levels of circ_0013359, microRNA-136-5p (miR-136-5p), and member RAS oncogene family (RAB9A) in melanoma tissues and cells were detected using quantitative reverse transcriptase-polymerase chain reaction or western blot. Cell proliferation, apoptosis, cell cycle, cell migration, and invasion were evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, colony formation assay, flow cytometry, and transwell assay. Glycolysis was determined by detecting glucose consumption, lactate production, and extracellular acidification rate. The levels of hexokinase 2 and lactate dehydrogenase A were examined by western blot. The targeting relationship between miR-136-5p and circ_0013359 or RAB9A was confirmed by dual-luciferase reporter assay. Xenograft experiments were used to analyze tumor growth in vivo. RESULTS: Circ_0013359 and RAB9A levels were increased, while the miR-136-5p level was reduced in melanoma tissues and cells. Circ_0013359 knockdown inhibited proliferation, migration, invasion, and glycolysis and promoted apoptosis and cycle arrest in A875 and SK-MEL-1 cells. Circ_0013359 sponged miR-136-5p to regulate melanoma progression. In addition, miR-136-5p suppressed melanoma progression by targeting RAB9A. Besides, circ_0013359 silencing inhibited tumor growth in vivo. CONCLUSION: Depletion of circ_0013359 hindered melanoma progression by regulating miR-136-5p/RAB9A axis.

7.
Front Cell Dev Biol ; 9: 642605, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968929

RESUMO

Recently, various studies have identified circular RNAs (circRNAs) to play a significant role in tumorigenesis, thereby showing potential as novel tumor biomarkers. circSIPA1L1 is a newly discoveredcircular RNA, which is formed by back-splicing of SIPA1L1 and is found increased in osteosarcoma (OS). Nevertheless, the specific functions of circSIPA1L1 in OS remain unknown. In the present study, circSIPA1L1 was obtained from a previously reported circRNA microarray in the GEO database (GSE96964). Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to assess the mRNA level of circSIPA1L1 in OS cell lines and tissue samples. Bioinformatics analysis, luciferase reporter assays, real-time PCR, RNA pull-down assays and RNA immunoprecipitation (RIP) were employed to verify the binding of circSIPA1L1 with miR-411-5p. Xenograft tumor models were established to identify the role of circSIPA1L1 in vivo. A series of in vitro experiments, such as western blotting, colony formation, transwell assays and anoikis assay were employed to confirm the relationship across circSIPA1L1, miR-411-5p, and RAB9A. Our study confirmed circSIPA1L1 to be upregulated in both human OS samples and OS cell lines. Mechanistically, circSIPA1L1 could serve as a miR-411-5p molecular sponge to increase RAB9A expression, which was confirmed to be a tumor promoter mediating carcinogenesis. Silencing of circSIPA1L1 attenuated the vitality, invasion, migration and proliferation of OS cell lines both in vivo and in vitro. miR-411-5p inhibition or RAB9A overexpression reversed the anti-tumor effects caused by circSIPA1L1 knockdown. Briefly, circSIPA1L1 could function as a driver gene in OS and initiate OS tumorigenesis through the miR-411-5p/RAB9A signaling pathway, which might become a potential therapeutic biomarker for OS treatment.

8.
Cell Signal ; 75: 109760, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32866627

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is a common inherited disorder characterized by kidney cyst growth often resulting in end-stage renal disease. There is growing attention on understanding the role of impaired autophagy in ADPKD. Trehalose (TRE) has been shown to increase both protein stability and aggregate clearance and induce autophagy in neurodegenerative diseases. TRE treatment in wild type mice compared to vehicle resulted in increased expression in the kidney of Atg12-5 complex and increased Rab9a, autophagy-related proteins that play a role in the formation of autophagosomes. Thus, the aim of the study was to determine the effect of TRE on cyst growth and autophagy-related proteins, in the hypomorphic Pkd1RC/RC mouse model of ADPKD. Pkd1RC/RC mice were treated 2% TRE in water from days 50 to 120 of age. TRE did not slow cyst growth or improve kidney function or affect proliferation and apoptosis in Pkd1RC/RC kidneys. In Pkd1RC/RC vs. wild type kidneys, expression of the Atg12-5 complex was inhibited by TRE resulting in increased free Atg12 and TRE was unable to rescue the deficiency of the Atg12-5 complex. Rab9a was decreased in Pkd1RC/RC vs. wild type kidneys and unaffected by TRE. The TRE-induced increase in p62, a marker of autophagic cargo, that was seen in normal kidneys was blocked in Pkd1RC/RC kidneys. In summary, the autophagy phenotype in Pkd1RC/RC kidneys was characterized by decreases in crucial autophagy-related proteins (Atg12-5 complex, Atg5, Atg16L1), decreased Rab9a and increased mTORC1 (pS6S240/244, pmTORS2448) proteins. TRE increased Atg12-5 complex, Rab9a and p62 in normal kidneys, but was unable to rescue the deficiency in autophagy proteins or suppress mTORC1 in Pkd1RC/RC kidneys and did not protect against cyst growth.


Assuntos
Rim Policístico Autossômico Dominante/tratamento farmacológico , Proteína Quinase C/metabolismo , Trealose/farmacologia , Animais , Autofagia/efeitos dos fármacos , Proteína 12 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas rab de Ligação ao GTP/metabolismo
9.
Front Cell Dev Biol ; 7: 139, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31475144

RESUMO

Papillomaviruses (PVs) were the first viruses recognized to cause tumors and cancers in mammalian hosts by Shope, nearly a century ago (Shope and Hurst, 1933). Over 40 years ago, zur Hausen (1976) first proposed that human papillomaviruses (HPVs) played a role in cervical cancer; in 2008, he shared the Nobel Prize in Medicine for his abundant contributions demonstrating the etiology of HPVs in genital cancers. Despite effective vaccines and screening, HPV infection and morbidity remain a significant worldwide burden, with HPV infections and HPV-related cancers expected increase through 2040. Although HPVs have long-recognized roles in tumorigenesis and cancers, our understanding of the molecular mechanisms by which these viruses interact with cells and usurp cellular processes to initiate infections and produce progeny virions is limited. This is due to longstanding challenges in both obtaining well-characterized infectious virus stocks and modeling tissue-based infection and the replicative cycles in vitro. In the last 20 years, the development of methods to produce virus-like particles (VLPs) and pseudovirions (PsV) along with more physiologically relevant cell- and tissue-based models has facilitated progress in this area. However, many questions regarding HPV infection remain difficult to address experimentally and are, thus, unanswered. Although an obligatory cellular uptake receptor has yet to be identified for any PV species, Rab-GTPases contribute to HPV uptake and transport of viral genomes toward the nucleus. Here, we provide a general overview of the current HPV infection paradigm, the epithelial differentiation-dependent HPV replicative cycle, and review the specifics of how HPVs usurp Rab-related functions during infectious entry. We also suggest other potential interactions based on how HPVs alter cellular activities to complete their replicative-cycle in differentiating epithelium. Understanding how HPVs interface with Rab functions during their complex replicative cycle may provide insight for the development of therapeutic interventions, as current viral counter-measures are solely prophylactic and therapies for HPV-positive individuals remain archaic and limited.

10.
Pigment Cell Melanoma Res ; 29(1): 43-59, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26527546

RESUMO

Melanosomes are a type of lysosome-related organelle that is commonly defective in Hermansky-Pudlak syndrome. Biogenesis of melanosomes is regulated by BLOC-1, -2, -3, or AP-1, -3 complexes, which mediate cargo transport from recycling endosomes to melanosomes. Although several Rab GTPases have been shown to regulate these trafficking steps, the precise role of Rab9A remains unknown. Here, we found that a cohort of Rab9A associates with the melanosomes and its knockdown in melanocytes results in hypopigmented melanosomes due to mistargeting of melanosomal proteins to lysosomes. In addition, the Rab9A-depletion phenotype resembles Rab38/32-inactivated or BLOC-3-deficient melanocytes, suggesting that Rab9A works in line with BLOC-3 and Rab38/32 during melanosome cargo transport. Furthermore, silencing of Rab9A, Rab38/32 or its effector VARP, or BLOC-3-deficiency in melanocytes decreased the length of STX13-positive recycling endosomal tubules and targeted the SNARE to lysosomes. This result indicates a defect in directing recycling endosomal tubules to melanosomes. Thus, Rab9A and its co-regulatory GTPases control STX13-mediated cargo delivery to maturing melanosomes.


Assuntos
Endocitose , Endossomos/metabolismo , Melanossomas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Técnicas de Silenciamento de Genes , Lisossomos/metabolismo , Melanócitos/metabolismo , Camundongos , Modelos Biológicos , Pigmentação , Transporte Proteico , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA