RESUMO
Radiation accounts for a significant fraction of the human body and environment heat exchange and strongly impacts thermal comfort and safety. The direct radiative exchange between an individual and a source or sink can be quantified using the effective (feff) and projected radiation area factors (fp). However, these factors have not been quantified for half of the population of the USA with an above-average body mass index (BMI). Here, we address this gap by developing thirty male and thirty female computational manikin models that cover the 1 to 99 percentile variation in height and BMI of adults in the USA. The radiative simulations reveal that the feff and the fp angular distributions are nearly independent of gender, height, and BMI. Appreciable relative differences from the average models only emerge for manikins with BMI above 80th percentile. However, these differences only occur at low zenith angles and, in absolute terms, are small as compared to variations induced by, for example, the zenith angle increase. We also use the manikin set to evaluate whether the body shape impacts the quality of human representation with several levels of geometrical simplification. We find that the "box/peg" body representation, which is based on the hemispherical fp average, is independent of the body shape. In turn, the fp distributions averaged over the azimuth angle range, representing the rotationally symmetric humans, are only impacted to the same degree as for the anatomical manikins. We also show that the anatomical manikins can be closely approximated by the multi-cylinder and sphere representation, at least from a radiation perspective. The developed anatomical manikin set is freely available and can be used to compute how body shape impacts a variety of external heat transport processes.
Assuntos
Corpo Humano , Manequins , Adulto , Humanos , Masculino , Feminino , Temperatura AltaRESUMO
Thermal comfort research has utilized various sensors and models to estimate the mean radiant temperature (MRT) experienced by a human, including the standard black globe thermometer (SGT), acrylic globe thermometers (AGT), and cylindrical radiation thermometers (CRT). Rather than directly measuring radiation, a temperature is measured in the center of these low-cost sensors that can be related to MRT after theoretically accounting for convection. However, these sensors have not been systematically tested under long-term hot and clear conditions. Further, under variable weather conditions, many issues can arise due to slow response times, shape, inaccuracies in material properties and assumptions, and color (albedo, emissivity) inconsistencies. Here, we assess the performance of MRT produced by various heat transfer models, with and without new average surface temperature ([Formula: see text]) correction factors, using five instruments-the SGT (15 cm, black), tan and black CRTs, gray and black 38 mm AGTs-compared to 3D integral radiation measurements. Measurements were taken on an unobscured roof throughout summer-to-early-fall months in Tempe, Arizona, examining 58 full-sun days. Deviations without correcting for asymmetrical surface heating-found to be the main cause of errors-reached ± 15-20 °C MRT. By accounting for asymmetric heating through [Formula: see text] calculations, new corrective algorithms were derived for the low-cost sensor models. Results show significant improvements in the estimated MRT error for each sensor (i.e., ∆MRTmodel - IRM) when applying the [Formula: see text] corrections. The tan MRTCRT improved from 1.9 ± 6.2 to -0.1 ± 4.4 °C, while the gray AGT and SGT showed improvements from -1.6 ± 7.2 to -0.4 ± 6.3 °C and - 6.6 ± 6.4 to - 0.03 ± 5.7 °C, respectively. The new corrections also eliminated dependence on other meteorological factors (zenith, wind speed). From these results, we provide three simple equations for CRT, AGT, and SGT correction for future research use under warm-hot and clear conditions. This study is the most comprehensive empirical assessment of various low-cost instruments with broad applicability in urban climate and biometeorological research.