Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biol Pharm Bull ; 46(10): 1394-1402, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779040

RESUMO

Dimenhydrinate, an H1 receptor antagonist, is generally used for the prevention and treatment of nausea and vomiting. However, cardiac arrhythmias have been reported to be associated with the overdose of histamine H1 receptor antagonists, indicating the probable effect of antihistamines on ion channels. By using a two-microelectrode voltage clamp, we have herein studied the electrophysiological effects of dimenhydrinate on the human Kv1.5 channel in the Xenopus oocyte expression system. Dimenhydrinate acutely and reversibly suppressed the amplitudes of the peak and the steady-state current, within 6 min. The inhibitory effect of dimenhydrinate on the peak and the steady-state Kv1.5 currents increased progressively from -10 to +50 mV. At each test voltage, the drug suppressed both the peak and the steady-state currents to a similar extent. When the oocytes were stimulated at the rates of 5- and 30-s intervals, dimenhydrinate-induced a use-dependent blockade of the human Kv1.5 channel. Dimenhydrinate expedited the timecourse of the Kv1.5 channel activation more effectively than the timecourse of its inactivation. However, the activation and inactivation curves of the channel were not altered by the H1 receptor antagonist. In conclusion, we found that dimenhydrinate inhibits the human Kv1.5 channel by changing the channel's activation mode, thereby possibly increasing the possibility of triggering cardiac arrhythmias and affecting atrial fibrillation.


Assuntos
Dimenidrinato , Humanos , Dimenidrinato/metabolismo , Dimenidrinato/farmacologia , Fenômenos Eletrofisiológicos , Antagonistas dos Receptores Histamínicos H1/farmacologia , Oócitos/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia
2.
Biochem Biophys Res Commun ; 596: 49-55, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35114584

RESUMO

The T618I KCNH2-encoded hERG mutation is the most frequently observed mutation in genotyped cases of the congenital short QT syndrome (SQTS), a cardiac condition associated with ventricular fibrillation and sudden death. Most T618I hERG carriers exhibit a pronounced U wave on the electrocardiogram and appear vulnerable to ventricular, but not atrial fibrillation (AF). The basis for these effects is unclear. This study used the action potential (AP) voltage clamp technique to determine effects of the T618I mutation on hERG current (IhERG) elicited by APs from different cardiac regions. Whole-cell patch-clamp recordings were made at 37 °C of IhERG from hERG-transfected HEK-293 cells. Maximal IhERG during a ventricular AP command was increased ∼4-fold for T618I IhERG and occurred much earlier during AP repolarization. The mutation also increased peak repolarizing currents elicited by Purkinje fibre (PF) APs. Maximal wild-type (WT) IhERG current during the PF waveform was 87.2 ± 4.5% of maximal ventricular repolarizing current whilst for the T618I mutant, the comparable value was 47.7 ± 2.7%. Thus, the T618I mutation exacerbated differences in repolarizing IhERG between PF and ventricular APs; this could contribute to heterogeneity of ventricular-PF repolarization and consequently to the U waves seen in T618I carriers. The comparatively shorter duration and lack of pronounced plateau of the atrial AP led to a smaller effect of the T618I mutation during the atrial AP, which may help account for the lack of reported AF in T618I carriers. Use of a paired ventricular AP protocol revealed an alteration to protective IhERG transients that affect susceptibility to premature excitation late in AP repolarization/early in diastole. These observations may help explain altered arrhythmia susceptibility in this form of the SQTS.


Assuntos
Potenciais de Ação/genética , Arritmias Cardíacas/genética , Canal de Potássio ERG1/genética , Mutação , Técnicas de Patch-Clamp/métodos , Eletrocardiografia/métodos , Células HEK293 , Átrios do Coração/metabolismo , Ventrículos do Coração/metabolismo , Humanos , Ramos Subendocárdicos/metabolismo
3.
Can J Physiol Pharmacol ; 99(7): 729-736, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33175603

RESUMO

Most sudden cardiac death in chronic heart failure (CHF) is caused by malignant ventricular arrhythmia (VA); however, the molecular mechanism remains unclear. This study aims to explore the effect of exchange proteins directly activated by cAMP (Epac) on VA in CHF and the potential molecular mechanism. Transaortic constriction was performed to prepare CHF guinea pigs. Epac activation model was obtained with 8-pCPT administration. Programmed electrical stimulation (PES) was performed to detect effective refractory period (ERP) or induce VA. Isolated adult cardiomyocytes were treated with 8-pCPT and (or) the Epac inhibitor. Cellular electrophysiology was examined by whole-cell patch clamp. With Epac activation, corrected QT duration was lengthened by 12.6%. The 8-pCPT increased action potential duration (APD) (APD50: 236.9 ± 18.07 ms vs. 328.8 ± 11.27 ms, p < 0.05; APD90: 264.6 ± 18.22 ms vs. 388.6 ± 6.47 ms, p < 0.05) and decreased rapid delayed rectifier potassium (IKr) current (tail current density: 1.1 ± 0.08 pA/pF vs. 0.7 ± 0.03 pA/pF, p < 0.05). PES induced more malignant arrhythmias in the 8-pCPT group than in the control group (3/4 vs. 0/8, p < 0.05). The selective Epac1 inhibitor CE3F4 rescued the drop in IKr after 8-pCPT stimulation (tail current density: 0.5 ± 0.02 pA/pF vs. 0.6 ± 0.03 pA/pF, p < 0.05). In conclusion, Epac1 regulates IKr, APD, and ERP in guinea pigs, which could contribute to the proarrhythmic effect of Epac1 in CHF.


Assuntos
Insuficiência Cardíaca , Potenciais de Ação , Animais , Arritmias Cardíacas , Cobaias , Miócitos Cardíacos
4.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946248

RESUMO

Robust, spontaneous pacemaker activity originating in the sinoatrial node (SAN) of the heart is essential for cardiovascular function. Anatomical, electrophysiological, and molecular methods as well as mathematical modeling approaches have quite thoroughly characterized the transmembrane fluxes of Na+, K+ and Ca2+ that produce SAN action potentials (AP) and 'pacemaker depolarizations' in a number of different in vitro adult mammalian heart preparations. Possible ionic mechanisms that are responsible for SAN primary pacemaker activity are described in terms of: (i) a Ca2+-regulated mechanism based on a requirement for phasic release of Ca2+ from intracellular stores and activation of an inward current-mediated by Na+/Ca2+ exchange; (ii) time- and voltage-dependent activation of Na+ or Ca2+ currents, as well as a cyclic nucleotide-activated current, If; and/or (iii) a combination of (i) and (ii). Electrophysiological studies of single spontaneously active SAN myocytes in both adult mouse and rabbit hearts consistently reveal significant expression of a rapidly activating time- and voltage-dependent K+ current, often denoted IKr, that is selectively expressed in the leading or primary pacemaker region of the adult mouse SAN. The main goal of the present study was to examine by combined experimental and simulation approaches the functional or physiological roles of this K+ current in the pacemaker activity. Our patch clamp data of mouse SAN myocytes on the effects of a pharmacological blocker, E4031, revealed that a rapidly activating K+ current is essential for action potential (AP) repolarization, and its deactivation during the pacemaker potential contributes a small but significant component to the pacemaker depolarization. Mathematical simulations using a murine SAN AP model confirm that well known biophysical properties of a delayed rectifier K+ current can contribute to its role in generating spontaneous myogenic activity.


Assuntos
Canais de Potássio de Retificação Tardia/metabolismo , Miócitos Cardíacos/fisiologia , Potássio/metabolismo , Potenciais de Ação , Animais , Cátions Monovalentes/metabolismo , Células Cultivadas , Coração/fisiologia , Transporte de Íons , Camundongos , Modelos Cardiovasculares , Marca-Passo Artificial , Coelhos , Trocador de Sódio e Cálcio/metabolismo
5.
Biochem Biophys Res Commun ; 526(4): 1085-1091, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32321643

RESUMO

The human Ether-à-go-go Related Gene (hERG) encodes a potassium channel responsible for the cardiac rapid delayed rectifier K+ current, IKr, which regulates ventricular repolarization. Loss-of-function hERG mutations underpin the LQT2 form of congenital long QT syndrome. This study was undertaken to elucidate the functional consequences of a variant of uncertain significance, T634S, located at a highly conserved position at the top of the S6 helix of the hERG channel. Whole-cell patch-clamp recordings were made at 37 °C of hERG current (IhERG) from HEK 293 cells expressing wild-type (WT) hERG, WT+T634S and hERG-T634S alone. When the T634S mutation was expressed alone little or no IhERG could be recorded. Co-expressing WT and hERG-T634S suppressed IhERG tails by ∼57% compared to WT alone, without significant alteration of voltage dependent activation of IhERG. A similar suppression of IhERG was observed under action potential voltage clamp. Comparable reduction of IKr in a ventricular AP model delayed repolarization and led to action potential prolongation. A LI-COR® based On/In-Cell Western assay showed that cell surface expression of hERG channels in HEK 293 cells was markedly reduced by the T634S mutation, whilst total cellular hERG expression was unaffected, demonstrating impaired trafficking of the hERG-T634S mutant. Incubation with E-4031, but not lumacaftor, rescued defective hERG-T634S channel trafficking and IhERG density. In conclusion, these data identify hERG-T634S as a rescuable trafficking defective mutation that reduces IKr sufficiently to delay repolarization and, thereby, potentially produce a LQT2 phenotype.


Assuntos
Sequência Conservada , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Mutação com Perda de Função/genética , Serina/genética , Treonina/genética , Potenciais de Ação , Sequência de Aminoácidos , Canal de Potássio ERG1/química , Humanos , Ativação do Canal Iônico , Transporte Proteico
6.
J Mol Cell Cardiol ; 79: 187-94, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25446181

RESUMO

In the present work Action-Potential clamp (APC) and Dynamic clamp (DC) were used in combination in order to optimize the Luo-Rudy (LRd) mathematical formulation of the guinea-pig rapid delayed rectifier K(+) current (IKr), and to validate the optimized model. To this end, IKr model parameters were adjusted to fit the experimental E4031-sensitive current (IE4031) recorded under APC in guinea-pig myocytes. Currents generated by LRd model (ILRd) and the optimized one (IOpt) were then compared by testing their suitability to replace IE4031 under DC. Under APC, ILRd was significantly larger than IE4031 (mean current densities 0.51±0.01 vs 0.21±0.05pA/pF; p<0.001), mainly because of different rectification. IOpt mean density (0.17±0.01pA/pF) was similar to the IE4031 one (NS); moreover, IOpt accurately reproduced IE4031 distribution along the different AP phases. Models were then compared under DC by blocking native IKr (5µM E4031) and replacing it with ILRd or IOpt. Whereas injection of ILRd overshortened AP duration (APD90) (by 25% of its pre-block value), IOpt injection restored AP morphology and duration to overlap pre-block values. This study highlights the power of APC and DC for the identification of reliable formulations of ionic current models. An optimized model of IKr has been obtained which fully reversed E4031 effects on the AP. The model strongly diverged from the widely used Luo-Rudy formulation; this can be particularly relevant to the in silico analysis of AP prolongation caused by IKr blocking or alterations.


Assuntos
Potenciais de Ação/fisiologia , Simulação por Computador , Canais de Potássio de Retificação Tardia/metabolismo , Coração/fisiologia , Ativação do Canal Iônico , Modelos Biológicos , Técnicas de Patch-Clamp , Animais , Cobaias , Cinética , Reprodutibilidade dos Testes
7.
J Mol Cell Cardiol ; 67: 12-25, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24370890

RESUMO

The ability of human pluripotent stem cells (hPSCs) to differentiate into any cell type of the three germ layers makes them a very promising cell source for multiple purposes, including regenerative medicine, drug discovery, and as a model to study disease mechanisms and progression. One of the first specialized cell types to be generated from hPSC was cardiomyocytes (CM), and differentiation protocols have evolved over the years and now allow for robust and large-scale production of hPSC-CM. Still, scientists are struggling to achieve the same, mainly ventricular, phenotype of the hPSC-CM in vitro as their adult counterpart in vivo. In vitro generated cardiomyocytes are generally described as fetal-like rather than adult. In this review, we compare the in vivo development of cardiomyocytes to the in vitro differentiation of hPSC into CM with focus on electrophysiology, structure and contractility. Furthermore, known epigenetic changes underlying the differences between adult human CM and CM differentiated from pluripotent stem cells are described. This should provide the reader with an extensive overview of the current status of human stem cell-derived cardiomyocyte phenotype and function. Additionally, the reader will gain insight into the underlying signaling pathways and mechanisms responsible for cardiomyocyte development.


Assuntos
Diferenciação Celular , Fenômenos Eletrofisiológicos , Miócitos Cardíacos/citologia , Técnicas de Cultura , Epigenômica , Coração/embriologia , Coração/crescimento & desenvolvimento , Humanos , Células-Tronco Pluripotentes/citologia , Transdução de Sinais
8.
J Mol Cell Cardiol ; 64: 90-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24051368

RESUMO

Protein phosphorylation is a major control mechanism of a wide range of physiological processes and plays an important role in cardiac pathophysiology. Serine/threonine protein phosphatases control the dephosphorylation of a variety of cardiac proteins, thereby fine-tuning cardiac electrophysiology and function. Specificity of protein phosphatases type-1 and type-2A is achieved by multiprotein complexes that target the catalytic subunits to specific subcellular domains. Here, we describe the composition, regulation and target substrates of serine/threonine phosphatases in the heart. In addition, we provide an overview of pharmacological tools and genetic models to study the role of cardiac phosphatases. Finally, we review the role of protein phosphatases in the diseased heart, particularly in ventricular arrhythmias and atrial fibrillation and discuss their role as potential therapeutic targets.


Assuntos
Cardiopatias/metabolismo , Cardiopatias/fisiopatologia , Coração/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Animais , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Ativação Enzimática , Regulação da Expressão Gênica , Cardiopatias/tratamento farmacológico , Cardiopatias/genética , Humanos , Contração Miocárdica/fisiologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/genética , Fosforilação
9.
Naunyn Schmiedebergs Arch Pharmacol ; 396(11): 3149-3161, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37166464

RESUMO

Ifenprodil has been known to reduce cardiac contractility and cerebral vasodilation by antagonizing α1-adrenergic and N-methyl D-aspartate receptor-mediated intracellular signals. This study aimed to investigate the direct effect of ifenprodil on the human voltage-gated Kv1.5 channel (hKv1.5) by using a Xenopus oocyte expression system and a two-microelectrode voltage clamp technique. The amplitudes of hKv1.5 currents, including peak and steady state, were suppressed in a concentration-dependent manner (IC50; 43.1 and 35.5 µM, respectively) after 6 min of ifenprodil treatment. However, these effects were ~ 80% reversed by washout, suggesting that ifenprodil directly inhibited the hKv1.5 independent of membrane receptors or intracellular signals. The inhibition rate of steady state showed voltage dependence, wherein the rates increased according to test voltage depolarization. Ifenprodil reduced the time constants of hKv1.5 inactivation but has higher effects on activation. hKv1.5 inhibition by ifenprodil showed use dependency because the drug more rapidly reduced the current at the higher activation frequencies, and subsequent reduction in frequency after high activation frequency caused a partial channel block relief. Therefore, ifenprodil directly blocked the hKv1.5 in an open state and accelerated the time course of the channel inactivation, which provided a biophysical mechanism for the hKv1.5 blocking effects of ifenprodil.


Assuntos
N-Metilaspartato , Piperidinas , Humanos , Piperidinas/farmacologia , Receptores de N-Metil-D-Aspartato , Antagonistas de Receptores Adrenérgicos alfa 1 , Canal de Potássio Kv1.5 , Bloqueadores dos Canais de Potássio/farmacologia
10.
Front Pharmacol ; 13: 942769, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059970

RESUMO

The human ether-á-go-go-related gene (hERG) encodes the pore-forming subunit (Kv11.1), conducting a rapidly delayed rectifier K+ current (I Kr). Reduction of I Kr in pathological cardiac hypertrophy (pCH) contributes to increased susceptibility to arrhythmias. However, practical approaches to prevent I Kr deficiency are lacking. Our study investigated the involvement of ubiquitin ligase Nedd4-2-dependent ubiquitination in I Kr reduction and sought an intervening approach in pCH. Angiotensin II (Ang II) induced a pCH phenotype in guinea pig, accompanied by increased incidences of sudden death and higher susceptibility to arrhythmias. Patch-clamp recordings revealed a significant I Kr reduction in pCH cardiomyocytes. Kv11.1 protein expression was decreased whereas its mRNA level did not change. In addition, Nedd4-2 protein expression was increased in pCH, accompanied by an enhanced Nedd4-2 and Kv11.1 binding detected by immunoprecipitation analysis. Cardiac-specific overexpression of inactive form of Nedd4-2 shortened the prolonged QT interval, reversed I Kr reduction, and decreased susceptibility to arrhythmias. A synthesized peptide containing the PY motif in Kv11.1 C-terminus binding to Nedd4-2 and a cell-penetrating sequence antagonized Nedd4-2-dependent degradation of the channel and increased the surface abundance and function of hERG channel in HEK cells. In addition, in vivo administration of the PY peptide shortened QT interval and action potential duration, and enhanced I Kr in pCH. We conclude that Nedd4-2-dependent ubiquitination is critically involved in I Kr deficiency in pCH. Pharmacological suppression of Nedd4-2 represents a novel approach for antiarrhythmic therapy in pCH.

11.
Physiol Rep ; 8(20): e14568, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33091232

RESUMO

The voltage-gated hERG (human-Ether-à-go-go Related Gene) K+ channel plays a fundamental role in cardiac action potential repolarization. Loss-of-function mutations or pharmacological inhibition of hERG leads to long QT syndrome, whilst gain-of-function mutations lead to short QT syndrome. A recent open channel cryo-EM structure of hERG represents a significant advance in the ability to interrogate hERG channel structure-function. In order to suppress protein aggregation, a truncated channel construct of hERG (hERGT ) was used to obtain this structure. In hERGT cytoplasmic domain residues 141 to 350 and 871 to 1,005 were removed from the full-length channel protein. There are limited data on the electrophysiological properties of hERGT channels. Therefore, this study was undertaken to determine how hERGT influences channel function at physiological temperature. Whole-cell measurements of hERG current (IhERG ) were made at 37°C from HEK 293 cells expressing wild-type (WT) or hERGT channels. With a standard +20 mV activating command protocol, neither end-pulse nor tail IhERG density significantly differed between WT and hERGT . However, the IhERG deactivation rate was significantly slower for hERGT . Half-maximal activation voltage (V0.5 ) was positively shifted for hERGT by ~+8 mV (p < .05 versus WT), without significant change to the activation relation slope factor. Neither the voltage dependence of inactivation, nor time course of development of inactivation significantly differed between WT and hERGT , but recovery of IhERG from inactivation was accelerated for hERGT (p < .05 versus WT). Steady-state "window" current was positively shifted for hERGT with a modest increase in the window current peak. Under action potential (AP) voltage clamp, hERGT IhERG showed modestly increased current throughout the AP plateau phase with a significant increase in current integral during the AP. The observed consequences for hERGT IhERG of deletion of the two cytoplasmic regions may reflect changes to electrostatic interactions influencing the voltage sensor domain.


Assuntos
Potenciais de Ação , Canal de Potássio ERG1/metabolismo , Microscopia Crioeletrônica , Canal de Potássio ERG1/química , Canal de Potássio ERG1/genética , Deleção de Genes , Células HEK293 , Humanos , Ativação do Canal Iônico , Domínios Proteicos
12.
Res Vet Sci ; 123: 239-246, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30685649

RESUMO

BACKGROUND: The voltage-gated K+-channel Kv11.1 has a central role in cardiac repolarization. Blockage of Kv11.1 has been linked to severe cardiovascular side effects, such as acquired long QT syndrome (aLQTS), torsade de pointes arrhythmia and sudden cardiac death (SCD). Kv11.1 is susceptible to unspecific drug interactions due to the presence of two aromatic amino acids residing in the inner vestibule of the pore. These aromatic residues are also present in the equine orthologue of Kv11.1. This suggests that equine Kv11.1 may also be prone to high-affinity block by a range of different chemical entities, which potentially could cause severe cardiac side effects and SCD in horses. AIM: To screen a series of commonly used drugs in equine medicine for interaction with Kv11.1. METHODS: High-throughput screening of selected compounds on human Kv11.1 expressed in a mammalian cell line was performed using an automated patch clamp system, the SyncroPatch 384PE (Nanion Technologies, Munich, Germany). Results were validated on equine Kv11.1 expressed in CHO-K1 cells by manual patch clamp. RESULTS: Acepromazine maleat (IC50 = 0.5 µM) trimethoprim (IC50 = 100 µM), diphenhydramine hydrochloride (IC50 = 2 µM) and cyproheptadine hydrochloride (IC50 = 1.84 µM) inhibited equine Kv11.1 current at clinically relevant drug concentrations. CONCLUSION: The results suggest that drug interaction with Kv11.1 can occur in horses and that some drugs potentially may induce repolarization disorders in horses.


Assuntos
Canal de Potássio ERG1/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Cavalos , Preparações Farmacêuticas/classificação , Animais , Células CHO , Cricetinae , Cricetulus , Humanos
13.
Front Pharmacol ; 8: 799, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163179

RESUMO

Current pharmacological therapy against atrial fibrillation (AF), the most common cardiac arrhythmia, is limited by moderate efficacy and adverse side effects including ventricular proarrhythmia and organ toxicity. One way to circumvent the former is to target ion channels that are predominantly expressed in atria vs. ventricles, such as KV1.5, carrying the ultra-rapid delayed-rectifier K+ current (IKur). Recently, we used an in silico strategy to define optimal KV1.5-targeting drug characteristics, including kinetics and state-dependent binding, that maximize AF-selectivity in human atrial cardiomyocytes in normal sinus rhythm (nSR). However, because of evidence for IKur being strongly diminished in long-standing persistent (chronic) AF (cAF), the therapeutic potential of drugs targeting IKur may be limited in cAF patients. Here, we sought to simulate the efficacy (and safety) of IKur inhibitors in cAF conditions. To this end, we utilized sensitivity analysis of our human atrial cardiomyocyte model to assess the importance of IKur for atrial cardiomyocyte electrophysiological properties, simulated hundreds of theoretical drugs to reveal those exhibiting anti-AF selectivity, and compared the results obtained in cAF with those in nSR. We found that despite being downregulated, IKur contributes more prominently to action potential (AP) and effective refractory period (ERP) duration in cAF vs. nSR, with ideal drugs improving atrial electrophysiology (e.g., ERP prolongation) more in cAF than in nSR. Notably, the trajectory of the AP during cAF is such that more IKur is available during the more depolarized plateau potential. Furthermore, IKur block in cAF has less cardiotoxic effects (e.g., AP duration not exceeding nSR values) and can increase Ca2+ transient amplitude thereby enhancing atrial contractility. We propose that in silico strategies such as that presented here should be combined with in vitro and in vivo assays to validate model predictions and facilitate the ongoing search for novel agents against AF.

14.
15.
Front Physiol ; 8: 616, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28878692

RESUMO

Drug-induced Torsade-de-Pointes (TdP) has been responsible for the withdrawal of many drugs from the market and is therefore of major concern to global regulatory agencies and the pharmaceutical industry. The Comprehensive in vitro Proarrhythmia Assay (CiPA) was proposed to improve prediction of TdP risk, using in silico models and in vitro multi-channel pharmacology data as integral parts of this initiative. Previously, we reported that combining dynamic interactions between drugs and the rapid delayed rectifier potassium current (IKr) with multi-channel pharmacology is important for TdP risk classification, and we modified the original O'Hara Rudy ventricular cell mathematical model to include a Markov model of IKr to represent dynamic drug-IKr interactions (IKr-dynamic ORd model). We also developed a novel metric that could separate drugs with different TdP liabilities at high concentrations based on total electronic charge carried by the major inward ionic currents during the action potential. In this study, we further optimized the IKr-dynamic ORd model by refining model parameters using published human cardiomyocyte experimental data under control and drug block conditions. Using this optimized model and manual patch clamp data, we developed an updated version of the metric that quantifies the net electronic charge carried by major inward and outward ionic currents during the steady state action potential, which could classify the level of drug-induced TdP risk across a wide range of concentrations and pacing rates. We also established a framework to quantitatively evaluate a system's robustness against the induction of early afterdepolarizations (EADs), and demonstrated that the new metric is correlated with the cell's robustness to the pro-EAD perturbation of IKr conductance reduction. In summary, in this work we present an optimized model that is more consistent with experimental data, an improved metric that can classify drugs at concentrations both near and higher than clinical exposure, and a physiological framework to check the relationship between a metric and EAD. These findings provide a solid foundation for using in silico models for the regulatory assessment of TdP risk under the CiPA paradigm.

16.
Curr Top Med Chem ; 17(23): 2681-2702, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28413954

RESUMO

The rapid delayed rectifier current IKr is one of the major K+ currents involved in repolarization of the human cardiac action potential. Various inherited or drug-induced forms of the long QT syndrome (LQTS) in humans are linked to functional and structural modifications in the IKr conducting channels. IKr is carried by the potassium channel Kv11.1 encoded by the gene KCNH2 (commonly referred to as human ether-a-go-go-related gene or hERG) [1, 2]. The first necessary step for predicting emergent drug effects on the heart is determining and modeling the binding thermodynamics and kinetics of primary and major off-target drug interactions with subcellular targets. The bulk of drugs that target hERG channels are known to have complex interactions at the atomic scale. Accordingly, one of the goals for this review is to provide comprehensive guide in the universe of computational models aiming to refine our understanding of structure-function relations in Kv11.1 and its isoforms. The special emphasis is placed on the mapping of drug binding sites and tentative mechanisms of channel inhibition and activation by drugs. An overview over recent structural models and mapping of binding sites for blockers and activators of IKr current along with the discussion on agreements and discrepancies among different models is presented. There is an apparent reciprocity or feedback loop between drug binding and action potential of the cardiac myocytes. Thus one has to connect drug binding to a particular receptor so that its functional consequences impact on the action potential duration. The natural pathway is to develop multi-scale models that connect between receptor and cellular scales. The potential for such multi-scale model development is discussed through the lens of common gating models. Accordingly, the second part of this review covers an ongoing development of the kinetic models of gating transitions and cardiac ion currents carried by hERG channels with and without drug bound.


Assuntos
Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/metabolismo , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Coração/efeitos dos fármacos , Humanos , Modelos Moleculares
17.
Physiol Rep ; 4(11)2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27288059

RESUMO

The atrioventricular node (AVN) of the cardiac conduction system coordinates atrial-ventricular excitation and can act as a subsidiary pacemaker. Recent evidence suggests that an inward background sodium current, IB,Na, carried by nonselective cation channels (NSCCs), contributes to AVN cell pacemaking. The study of the physiological contribution of IB,Na has been hampered, however, by a lack of selective pharmacological antagonists. This study investigated effects of the NSCC inhibitor SKF-96365 on spontaneous activity, IB,Na, and other ionic currents in AVN cells isolated from the rabbit. Whole-cell patch-clamp recordings of action potentials (APs) and ionic currents were made at 35-37°C. A concentration of 10 µmol/L SKF-96365 slowed spontaneous action potential rate by 13.9 ± 5.3% (n = 8) and slope of the diastolic depolarization from 158.1 ± 30.5 to 86.8 ± 30.5 mV sec(-1) (P < 0.01; n = 8). Action potential upstroke velocity and maximum diastolic potential were also reduced. Under IB,Na-selective conditions, 10 µmol/L SKF-96365 inhibited IB,Na at -50 mV by 36.1 ± 6.8% (n = 8); however, effects on additional channel currents were also observed. Thus, the peak l-type calcium current (ICa,L) at +10 mV was inhibited by 38.6 ± 8.1% (n = 8), while the rapid delayed rectifier current, IKr, tails at -40 mV following depolarization to +20 mV were inhibited by 55.6 ± 4.6% (n = 8). The hyperpolarization-activated current, If, was unaffected by SKF-96365. Collectively, these results indicate that SKF-96365 exerts a moderate inhibitory effect on IB,Na and slows AVN cell pacemaking. However, additional effects of the compound on ICa,L and IKr confound the use of SKF-96365 to dissect out selectively the physiological role of IB,Na in the AVN.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Nó Atrioventricular/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/farmacologia , Imidazóis/farmacologia , Transporte de Íons/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Animais , Nó Atrioventricular/citologia , Masculino , Miócitos Cardíacos/citologia , Técnicas de Patch-Clamp , Coelhos
18.
Eur J Pharmacol ; 789: 98-108, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27397430

RESUMO

In the present study, the inhibitory effects of hesperetin (HSP) on human cardiac Kv1.5 channels expressed in HEK 293 cells and the ultra-rapid delayed rectifier K(+) current (Ikur) in human atrial myocytes were examined by using the whole-cell configuration of the patch-clamp techniques. We found that hesperetin rapidly and reversibly suppressed human Kv1.5 current in a concentration dependent manner with a half-maximal inhibition (IC50) of 23.15 µΜ with a Hill coefficient of 0.89. The current was maximally diminished about 71.36% at a concentration of 300µM hesperetin. Hesperetin significantly positive shifted the steady-state activation curve of Kv1.5, while negative shifted the steady-state inactivation curve. Hesperetin also accelerated the inactivation and markedly slowed the recovery from the inactivation of Kv1.5 currents. Block of Kv1.5 currents by hesperetin was in a frequency dependent manner. However, inclusion of 30µM hesperetin in pipette solution produced no effect on Kv1.5 channel current, while the current were remarkable and reversibly inhibited by extracellular application of 30µM hesperetin. We also found that hesperetin potently and reversibly inhibited the ultra-repaid delayed K(+) current (Ikur) in human atrial myocytes, which is in consistent with the effects of hesperetin on Kv1.5 currents in HEK 293 cells. In conclusion, hesperetin is a potent inhibitor of Ikur (which is encoded by Kv1.5), with blockade probably due to blocking of both open state and inactivated state channels from outside of the cell.


Assuntos
Fenômenos Eletrofisiológicos/efeitos dos fármacos , Átrios do Coração/citologia , Hesperidina/farmacologia , Canal de Potássio Kv1.5/antagonistas & inibidores , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Potássio/metabolismo , Relação Dose-Resposta a Droga , Expressão Gênica , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Cinética , Canal de Potássio Kv1.5/genética , Canal de Potássio Kv1.5/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia
19.
Physiol Rep ; 3(11)2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26607172

RESUMO

The atrioventricular node (AVN) is a key component of the cardiac pacemaker-conduction system. This study investigated the electrophysiology of cells isolated from the AVN region of adult mouse hearts, and compared murine ionic current magnitude with that of cells from the more extensively studied rabbit AVN. Whole-cell patch-clamp recordings of ionic currents, and perforated-patch recordings of action potentials (APs), were made at 35-37°C. Hyperpolarizing voltage commands from -40 mV elicited a Ba(2+)-sensitive inward rectifier current that was small at diastolic potentials. Some cells (Type 1; 33.4 ± 2.2 pF; n = 19) lacked the pacemaker current, If, whilst others (Type 2; 34.2 ± 1.5 pF; n = 21) exhibited a clear If, which was larger than in rabbit AVN cells. On depolarization from -40 mV L-type Ca(2+) current, IC a,L, was elicited with a half maximal activation voltage (V0.5) of -7.6 ± 1.2 mV (n = 24). IC a,L density was smaller than in rabbit AVN cells. Rapid delayed rectifier (IK r) tail currents sensitive to E-4031 (5 µmol/L) were observed on repolarization to -40 mV, with an activation V0.5 of -10.7 ± 4.7 mV (n = 8). The IK r magnitude was similar in mouse and rabbit AVN. Under Na-Ca exchange selective conditions, mouse AVN cells exhibited 5 mmol/L Ni-sensitive exchange current that was inwardly directed negative to the holding potential (-40 mV). Spontaneous APs (5.2 ± 0.5 sec(-1); n = 6) exhibited an upstroke velocity of 37.7 ± 16.2 V/s and ceased following inhibition of sarcoplasmic reticulum Ca(2+) release by 1 µmol/L ryanodine, implicating intracellular Ca(2+) cycling in murine AVN cell electrogenesis.

20.
Gene ; 536(2): 348-56, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24334129

RESUMO

BACKGROUND: A variant of the ether-à-go-go related channel (hERG), p.Arg148Trp (R148W) was found at heterozygous state in two infants who died from sudden infant death syndrome (SIDS), one with documented prolonged QTc and Torsade de Pointes (TdP), and in an adult woman with QTc >500 ms, atrioventricular block and TdP. This variant was previously reported in cases of severe ventricular arrhythmia but very rarely in control subjects. Its classification as mutation or polymorphism awaited electrophysiological characterization. METHODS: The properties of this N-terminal, proximal domain, hERG variant were explored in Xenopus oocytes injected with the same amount of RNA encoding for either hERG/WT or hERG/R148W or their equimolar mixture. The human ventricular cell (TNNP) model was used to test the effects of changes in hERG current. RESULTS: R148W alone produced a current similar to the WT (369 ± 76 nA (mean ± SEM), n=13 versus 342 ± 55 nA in WT, n=13), while the co-expression of 1/2 WT+1/2 R148W lowered the current by 29% versus WT (243 ± 35 nA, n=13, p<0.05). The voltage dependencies of steady-state activation and inactivation were not changed in the variant alone or in co-expression with the WT. The time constants of fast recovery from inactivation and of fast and slow deactivation analyzed between -120 and +20 mV were not changed. The voltage-dependent distribution of the current amplitudes among fast-, slow- and non-deactivating fractions was unaltered. A 6.6% increase in APD90 from 323.5 ms to 345 ms was observed using the human cardiac ventricular myocyte model. CONCLUSIONS: Such a decrease in hERG current as evidenced here when co-expressing the hERG/R148W variant with the WT may have predisposed to the observed long QT syndrome and associated TdP. Therefore, the heterozygous carriers of hERG/R148W may be at risk of cardiac sudden death.


Assuntos
Arritmias Cardíacas/genética , Sistema de Condução Cardíaco/anormalidades , Síndrome do QT Longo/genética , Mutação/genética , Transativadores/genética , Adulto , Animais , Arritmias Cardíacas/metabolismo , Síndrome de Brugada , Doença do Sistema de Condução Cardíaco , Linhagem Celular , Morte Súbita Cardíaca , Feminino , Células HEK293 , Coração/fisiopatologia , Sistema de Condução Cardíaco/metabolismo , Heterozigoto , Humanos , Lactente , Síndrome do QT Longo/metabolismo , Masculino , Miócitos Cardíacos/metabolismo , Oocistos/metabolismo , Transativadores/metabolismo , Regulador Transcricional ERG , Xenopus/genética , Xenopus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA