Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.600
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(7): 1328-1336.e10, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37001499

RESUMO

Stressed plants show altered phenotypes, including changes in color, smell, and shape. Yet, airborne sounds emitted by stressed plants have not been investigated before. Here we show that stressed plants emit airborne sounds that can be recorded from a distance and classified. We recorded ultrasonic sounds emitted by tomato and tobacco plants inside an acoustic chamber, and in a greenhouse, while monitoring the plant's physiological parameters. We developed machine learning models that succeeded in identifying the condition of the plants, including dehydration level and injury, based solely on the emitted sounds. These informative sounds may also be detectable by other organisms. This work opens avenues for understanding plants and their interactions with the environment and may have significant impact on agriculture.


Assuntos
Plantas , Som , Estresse Fisiológico
2.
Proc Natl Acad Sci U S A ; 121(4): e2311661121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38190515

RESUMO

Coral reefs are in decline worldwide, making it increasingly important to promote coral recruitment in new or degraded habitat. Coral reef morphology-the structural form of reef substrate-affects many aspects of reef function, yet the effect of reef morphology on coral recruitment is not well understood. We used structure-from-motion photogrammetry and airborne remote sensing to measure reef morphology (rugosity, curvature, slope, and fractal dimension) across a broad continuum of spatial scales and evaluated the effect of morphology on coral recruitment in three broadcast-spawning genera. We also measured the effect of other environmental and biotic factors such as fish density, adult coral cover, hydrodynamic larval import, and depth on coral recruitment. All variables combined explained 72% of coral recruitment in the study region. Coarse reef rugosity and curvature mapped at ≥2 m spatial resolution-such as large colonies, knolls, and boulders-were positively correlated with coral recruitment, explaining 22% of variation in recruitment. Morphology mapped at finer scales (≤32 cm resolution) was not significant. Hydrodynamic larval import was also positively related to coral recruitment in Porites and Montipora spp., and grazer fish density was linked to significantly lower recruitment in all genera. In addition, grazer density, reef morphology, and hydrodynamic import had differential effects on coral genera, reflecting genus-specific life history traits, and model performance was lower in gonochoric species. Overall, coral reef morphology is a key indicator of recruitment potential that can be detected by remote sensing, allowing potential larval sinks to be identified and factored into restoration actions.


Assuntos
Antozoários , Animais , Recifes de Corais , Fractais , Hidrodinâmica , Larva
3.
Proc Natl Acad Sci U S A ; 121(27): e2317077121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38913899

RESUMO

We show that the Landsat and Sentinel-2 satellites can detect NO2 plumes from large point sources at 10 to 60 m pixel resolution in their blue and ultrablue bands. We use the resulting NO2 plume imagery to quantify nitrogen oxides (NOx) emission rates for several power plants in Saudi Arabia and the United States, including a 13-y analysis of 132 Landsat plumes from Riyadh power plant 9 from 2009 through 2021. NO2 in the plumes initially increases with distance from the source, likely reflecting recovery from ozone titration. The fine pixel resolutions of Landsat and Sentinel-2 enable separation of individual point sources and stacks, including in urban background, and the long records enable examination of multidecadal emission trends. Our inferred NOx emission rates are consistent with previous estimates to within a precision of about 30%. Sources down to ~500 kg h-1 can be detected over bright, quasi-homogeneous surfaces. The 2009 to 2021 data for Riyadh power plant 9 show a strong summer peak in emissions, consistent with increased power demand for air conditioning, and a marginal slow decrease following the introduction of Saudi Arabia's Ambient Air Standard 2012.

4.
Proc Natl Acad Sci U S A ; 121(12): e2314600121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38470920

RESUMO

Global atmospheric methane concentrations rose by 10 to 15 ppb/y in the 1980s before abruptly slowing to 2 to 8 ppb/y in the early 1990s. This period in the 1990s is known as the "methane slowdown" and has been attributed in part to the collapse of the former Soviet Union (USSR) in December 1991, which may have decreased the methane emissions from oil and gas operations. Here, we develop a methane plume detection system based on probabilistic deep learning and human-labeled training data. We use this method to detect methane plumes from Landsat 5 satellite observations over Turkmenistan from 1986 to 2011. We focus on Turkmenistan because economic data suggest it could account for half of the decline in oil and gas emissions from the former USSR. We find an increase in both the frequency of methane plume detections and the magnitude of methane emissions following the collapse of the USSR. We estimate a national loss rate from oil and gas infrastructure in Turkmenistan of more than 10% at times, which suggests the socioeconomic turmoil led to a lack of oversight and widespread infrastructure failure in the oil and gas sector. Our finding of increased oil and gas methane emissions from Turkmenistan following the USSR's collapse casts doubt on the long-standing hypothesis regarding the methane slowdown, begging the question: "what drove the 1992 methane slowdown?"

5.
Proc Natl Acad Sci U S A ; 120(21): e2216765120, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186862

RESUMO

Urbanization extensively modifies surface roughness and properties, impacting regional climate and hydrological cycles. Urban effects on temperature and precipitation have drawn considerable attention. These associated physical processes are also closely linked to clouds' formation and dynamics. Cloud is one of the critical components in regulating urban hydrometeorological cycles but remains less understood in urban-atmospheric systems. We analyzed satellite-derived cloud patterns spanning two decades over 447 US cities and quantified the urban-influenced cloud patterns diurnally and seasonally. The systematic assessment suggests that most cities experience enhanced daytime cloud cover in both summer and winter; nocturnal cloud enhancement prevails in summer by 5.8%, while there is modest cloud suppression in winter nights. Statistically linking the cloud patterns with city properties, geographic locations, and climate backgrounds, we found that larger city size and stronger surface heating are primarily responsible for summer local cloud enhancement diurnally. Moisture and energy background control the urban cloud cover anomalies seasonally. Under strong mesoscale circulations induced by terrains and land-water contrasts, urban clouds exhibit considerable nighttime enhancement during warm seasons, which is relevant to strong urban surface heating interacting with these circulations, but other local and climate impacts remain complicated and inconclusive. Our research unveils extensive urban influences on local cloud patterns, but the effects are diverse depending on time, location, and city properties. The comprehensive observational study on urban-cloud interactions calls for more in-depth research on urban cloud life cycles and their radiative and hydrologic implications under the urban warming context.

6.
Proc Natl Acad Sci U S A ; 120(52): e2310797120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38113260

RESUMO

We demonstrate geostationary satellite monitoring of large transient methane point sources with the US Geostationary Operational Environmental Satellites (GOES). GOES provides continuous 5- to 10-min coverage of the Americas at 1 to 2 km nadir pixel resolution in two shortwave infrared spectral bands from which large methane plumes can be retrieved. We track the full evolution of an extreme methane release from the El Encino-La Laguna natural gas pipeline in Durango, Mexico on 12 May 2019. The release lasted 3 h at a variable rate of 260 to 550 metric tons of methane per hour and totaled 1,130 to 1,380 metric tons. We report several other detections of transient point sources from oil/gas infrastructure, from which we infer a detection limit of 10 to 100 t h-1. Our results show that extreme releases of methane can last less than an hour, as from deliberate venting, and would thus be difficult to identify and quantify with low-Earth orbit satellites.

7.
Proc Natl Acad Sci U S A ; 120(32): e2306584120, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37527343

RESUMO

Placed in cavity resonators with three-dimensionally confined electromagnetic wave, the interaction between quasiparticles in solids can be induced by exchanging virtual cavity photons, which can have a nonlocal characteristic. Here, we investigate the possibility of utilizing this nonlocality to realize the remote control of the topological transition in mesoscopic moiré superlattices at full filling (one electron/hole per supercell) embedded in a split-ring terahertz electromagnetic resonator. We show that gate tuning one moiré superlattice can remotely drive a topological band inversion in another moiré superlattice not in contact but embedded in the same cavity. Our study of remote on/off switching of a topological transition provides a paradigm for the control of material properties via cavity vacuum fields.

8.
Proc Natl Acad Sci U S A ; 120(20): e2220924120, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155853

RESUMO

Warming of the ocean waters surrounding Greenland plays a major role in driving glacier retreat and the contribution of glaciers to sea level rise. The melt rate at the junction of the ocean with grounded ice-or grounding line-is, however, not well known. Here, we employ a time series of satellite radar interferometry data from the German TanDEM-X mission, the Italian COSMO-SkyMed constellation, and the Finnish ICEYE constellation to document the grounding line migration and basal melt rates of Petermann Glacier, a major marine-based glacier of Northwest Greenland. We find that the grounding line migrates at tidal frequencies over a kilometer-wide (2 to 6 km) grounding zone, which is one order of magnitude larger than expected for grounding lines on a rigid bed. The highest ice shelf melt rates are recorded within the grounding zone with values from 60 ± 13 to 80 ± 15 m/y along laterally confined channels. As the grounding line retreated by 3.8 km in 2016 to 2022, it carved a cavity about 204 m in height where melt rates increased from 40 ± 11 m/y in 2016 to 2019 to 60 ± 15 m/y in 2020 to 2021. In 2022, the cavity remained open during the entire tidal cycle. Such high melt rates concentrated in kilometer-wide grounding zones contrast with the traditional plume model of grounding line melt which predicts zero melt. High rates of simulated basal melting in grounded glacier ice in numerical models will increase the glacier sensitivity to ocean warming and potentially double projections of sea level rise.

9.
Proc Natl Acad Sci U S A ; 120(49): e2306507120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37983483

RESUMO

Aerosols can affect photosynthesis through radiative perturbations such as scattering and absorbing solar radiation. This biophysical impact has been widely studied using field measurements, but the sign and magnitude at continental scales remain uncertain. Solar-induced fluorescence (SIF), emitted by chlorophyll, strongly correlates with photosynthesis. With recent advancements in Earth observation satellites, we leverage SIF observations from the Tropospheric Monitoring Instrument (TROPOMI) with unprecedented spatial resolution and near-daily global coverage, to investigate the impact of aerosols on photosynthesis. Our analysis reveals that on weekends when there is more plant-available sunlight due to less particulate pollution, 64% of regions across Europe show increased SIF, indicating more photosynthesis. Moreover, we find a widespread negative relationship between SIF and aerosol loading across Europe. This suggests the possible reduction in photosynthesis as aerosol levels increase, particularly in ecosystems limited by light availability. By considering two plausible scenarios of improved air quality-reducing aerosol levels to the weekly minimum 3-d values and levels observed during the COVID-19 period-we estimate a potential of 41 to 50 Mt net additional annual CO2 uptake by terrestrial ecosystems in Europe. This work assesses human impacts on photosynthesis via aerosol pollution at continental scales using satellite observations. Our results highlight i) the use of spatiotemporal variations in satellite SIF to estimate the human impacts on photosynthesis and ii) the potential of reducing particulate pollution to enhance ecosystem productivity.


Assuntos
Ecossistema , Aerossóis e Gotículas Respiratórios , Humanos , Aerossóis/análise , Clorofila/análise , Poeira/análise , Fluorescência , Fotossíntese
10.
Proc Natl Acad Sci U S A ; 120(39): e2304099120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722045

RESUMO

The growth in remote and hybrid work catalyzed by the COVID-19 pandemic could have significant environmental implications. We assess the greenhouse gas emissions of this transition, considering factors including information and communication technology, commuting, noncommute travel, and office and residential energy use. We find that, in the United States, switching from working onsite to working from home can reduce up to 58% of work's carbon footprint, and the impacts of IT usage are negligible, while office energy use and noncommute travel impacts are important. Our study also suggests that achieving the environmental benefits of remote work requires proper setup of people's lifestyle, including their vehicle choice, travel behavior, and the configuration of home and work environment.


Assuntos
COVID-19 , Teletrabalho , Humanos , Pandemias/prevenção & controle , COVID-19/epidemiologia , COVID-19/prevenção & controle , Local de Trabalho , Estilo de Vida
11.
Brief Bioinform ; 24(6)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37833837

RESUMO

Protein remote homology detection is essential for structure prediction, function prediction, disease mechanism understanding, etc. The remote homology relationship depends on multiple protein properties, such as structural information and local sequence patterns. Previous studies have shown the challenges for predicting remote homology relationship by protein features at sequence level (e.g. position-specific score matrix). Protein motifs have been used in structure and function analysis due to their unique sequence patterns and implied structural information. Therefore, designing a usable architecture to fuse multiple protein properties based on motifs is urgently needed to improve protein remote homology detection performance. To make full use of the characteristics of motifs, we employed the language model called the protein cubic language model (PCLM). It combines multiple properties by constructing a motif-based neural network. Based on the PCLM, we proposed a predictor called PreHom-PCLM by extracting and fusing multiple motif features for protein remote homology detection. PreHom-PCLM outperforms the other state-of-the-art methods on the test set and independent test set. Experimental results further prove the effectiveness of multiple features fused by PreHom-PCLM for remote homology detection. Furthermore, the protein features derived from the PreHom-PCLM show strong discriminative power for proteins from different structural classes in the high-dimensional space. Availability and Implementation: http://bliulab.net/PreHom-PCLM.


Assuntos
Algoritmos , Proteínas , Proteínas/química , Redes Neurais de Computação , Motivos de Aminoácidos , Idioma , Análise de Sequência de Proteína/métodos
12.
Am J Pathol ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39069170

RESUMO

Remote ischemic preconditioning (RIPC) exerts a protective role on myocardial ischemia reperfusion (I/R) injury by the release of various humoral factors. Lactate is a common metabolite in ischemic tissues. Nevertheless, little is known about the role lactate plays in myocardial I/R injury and its underlying mechanism. This investigation revealed that RIPC elevated the level of lactate in blood and myocardium. Furthermore, AZD3965, a selective monocarboxylate transporter 1 (MCT1) inhibitor and 2-Deoxy-D-glucose (2-DG), a glycolysis inhibitor, mitigated the effects of RIPC-induced elevated lactate in the myocardium and prevented RIPC against myocardial I/R injury. In an in vitro hypoxia reoxygenation (H/R) model, lactate markedly mitigated H/R-induced cell damage in H9c2 cells. Meanwhile, further studies suggested that lactate contributed to RIPC rescuing I/R-induced autophagy deficiency by promoting TFEB translocation to the nucleus through activating the AMPK-mTOR pathway without influencing the PI3K-Akt pathway, thus reducing cardiomyocytes damage. Interestingly, we also found that lactate upregulated the mRNA and protein expression of CX43 by facilitating the binding of TFEB to CX43 promoter in the myocardium. Functionally, silencing of TFEB attenuated the protective effect of lactate on cell damage, which was reversed by overexpression of CX43. Further mechanistic studies suggested lactate facilitated CX43-regulated autophagy via AMPK-mTOR-TFEB signaling pathway. Collectively, our research demonstrates that RIPC protects against myocardial I/R injury through lactate-mediated myocardial autophagy via AMPK-mTOR-TFEB-CX43 axis.

13.
Proc Natl Acad Sci U S A ; 119(37): e2116626119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067321

RESUMO

Intact tropical rainforests have been exposed to severe droughts in recent decades, which may threaten their integrity, their ability to sequester carbon, and their capacity to provide shelter for biodiversity. However, their response to droughts remains uncertain due to limited high-quality, long-term observations covering extensive areas. Here, we examined how the upper canopy of intact tropical rainforests has responded to drought events globally and during the past 3 decades. By developing a long pantropical time series (1992 to 2018) of monthly radar satellite observations, we show that repeated droughts caused a sustained decline in radar signal in 93%, 84%, and 88% of intact tropical rainforests in the Americas, Africa, and Asia, respectively. Sudden decreases in radar signal were detected around the 1997-1998, 2005, 2010, and 2015 droughts in tropical Americas; 1999-2000, 2004-2005, 2010-2011, and 2015 droughts in tropical Africa; and 1997-1998, 2006, and 2015 droughts in tropical Asia. Rainforests showed similar low resistance (the ability to maintain predrought condition when drought occurs) to severe droughts across continents, but American rainforests consistently showed the lowest resilience (the ability to return to predrought condition after the drought event). Moreover, while the resistance of intact tropical rainforests to drought is decreasing, albeit weakly in tropical Africa and Asia, forest resilience has not increased significantly. Our results therefore suggest the capacity of intact rainforests to withstand future droughts is limited. This has negative implications for climate change mitigation through forest-based climate solutions and the associated pledges made by countries under the Paris Agreement.


Assuntos
Secas , Floresta Úmida , Mudança Climática , Árvores/fisiologia , Clima Tropical
14.
Proc Natl Acad Sci U S A ; 119(29): e2207612119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858363

RESUMO

"Milky seas" are massive swaths of uniformly and steadily glowing ocean seen at night. The phenomenon is thought to be caused by luminous bacteria, but details of milky sea composition, structure, cause, and implications in nature remain largely uncertain. Between late July and early September 2019, specialized low-light satellite sensors detected a possible bioluminescent milky sea south of Java, Indonesia, spanning >100,000 km2. Upon learning of these findings, crew members of the yacht Ganesha reached out to confirm and share details of their personal encounter with this same event. Here, we document Ganesha's experience as recalled by the crew, compare their course to satellite data, and assess their photography of this milky sea.


Assuntos
Bactérias , Imagens de Satélites , Água do Mar , Navios , Indonésia , Luminescência , Oceanos e Mares , Água do Mar/microbiologia
15.
Proc Natl Acad Sci U S A ; 119(40): e2116446119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161957

RESUMO

Monitoring the status of species is crucial for biodiversity conservation and sustainable resource management in tropical forests, but conventional in situ monitoring methods are impractical over large scales. Scientists have resorted to two potentially complementary approaches: local ecological knowledge (LEK) and remote sensing. To gauge the potential of combining LEK and remote sensing for assessing species status at landscape scales, a large-scale assessment of the reliability of both measures is critical but hampered by the lack of ground-level data. We conducted a landscape-scale assessment of LEK and remote sensing, using a survey of over 900 communities (a near census in our study area) and nearly 4,000 households in 235 randomly selected communities in the Peruvian Amazon-the largest LEK survey as yet undertaken in tropical forests. The survey collected LEK data on the presence of 20 indicator species from both community leaders/elders and randomly sampled households. We assessed LEK and remotely sensed land cover-forest cover and nonmain channel open water-as proxies for species habitat, across species (game, fish, and timber), over time (current and historical), and by indigeneity (Indigenous peoples and mestizos). Overall, LEK and remotely sensed land cover corroborate each other well. Concordance is highest for the current status of game species reported by sampled households, as is the concordance of historical LEK from Indigenous community leaders/elders. The results point to the promise of combining LEK and remote sensing in monitoring the status of species in data-poor tropical forests.


Assuntos
Florestas , Tecnologia de Sensoriamento Remoto , Animais , Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Peru , Reprodutibilidade dos Testes , Clima Tropical , Água
16.
Proc Natl Acad Sci U S A ; 119(43): e2123393119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252001

RESUMO

The constant provision of plant productivity is integral to supporting the liability of ecosystems and human wellbeing in global drylands. Drylands are paradigmatic examples of systems prone to experiencing abrupt changes in their functioning. Indeed, space-for-time substitution approaches suggest that abrupt changes in plant productivity are widespread, but this evidence is less clear using observational time series or experimental data at a large scale. Studying the prevalence and, most importantly, the unknown drivers of abrupt (rather than gradual) dynamical patterns in drylands may help to unveil hotspots of current and future dynamical instabilities in drylands. Using a 20-y global satellite-derived temporal assessment of dryland Normalized Difference Vegetation Index (NDVI), we show that 50% of all dryland ecosystems exhibiting gains or losses of NDVI are characterized by abrupt positive/negative temporal dynamics. We further show that abrupt changes are more common among negative than positive NDVI trends and can be found in global regions suffering recent droughts, particularly around critical aridity thresholds. Positive abrupt dynamics are found most in ecosystems with low seasonal variability or high aridity. Our work unveils the high importance of climate variability on triggering abrupt shifts in vegetation and it provides missing evidence of increasing abruptness in systems intensively managed by humans, with low soil organic carbon contents, or around specific aridity thresholds. These results highlight that abrupt changes in dryland dynamics are very common, especially for productivity losses, pinpoint global hotspots of dryland vulnerability, and identify drivers that could be targeted for effective dryland management.


Assuntos
Ecossistema , Solo , Carbono , Mudança Climática , Humanos , Plantas , Prevalência
17.
Proc Natl Acad Sci U S A ; 119(32): e2123105119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914160

RESUMO

As the workforce shifts to being predominantly hybrid and remote, how can companies help employees-particularly early-career women in science, technology, engineering, and mathematics (STEM) fields-develop greater confidence in their soft skills, shown to improve organizational retention? We evaluate the effects of an online longitudinal intervention to develop soft skills among early-career women employees at a North American biotechnology company during the height of the COVID-19 pandemic. Controlling for baseline levels collected immediately prior to nationwide lockdowns, we find that a 6-month online intervention increased early-career women's assessments of their soft skills at work by an average of 9% (P < 0.001), compared with a decrease of about 3.5% for a matched control group (P < 0.05), resulting in an average treatment effect of nearly 13% on the treated group. Furthermore, we find evidence that the intervention led to an increase in manager-assessed performance for early-career women relative to employees not in the intervention, and that overall, increased self-assessments of soft skill competencies were associated with greater odds of retention. Results show how employee soft skill development was affected by the pandemic and provide insights for a feasible and cost-effective method to train and engage a hybrid or fully remote workforce.


Assuntos
COVID-19 , Competência Profissional , Mulheres Trabalhadoras , Engenharia , Feminino , Humanos , Matemática , Ocupações , Pandemias , Ciência , Tecnologia
18.
Proc Natl Acad Sci U S A ; 119(35): e2116413119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994657

RESUMO

Lakes are often described as sentinels of global change. Phenomena like lake eutrophication, algal blooms, or reorganization in community composition belong to the most studied ecosystem regime shifts. However, although regime shifts have been well documented in several lakes, a global assessment of the prevalence of regime shifts is still missing, and, more in general, of the factors altering stability in lake status, is missing. Here, we provide a first global assessment of regime shifts and stability in the productivity of 1,015 lakes worldwide using trophic state index (TSI) time series derived from satellite imagery. We find that 12.8% of the lakes studied show regime shifts whose signatures are compatible with tipping points, while the number of detected regime shifts from low to high TSI has increased over time. Although our results suggest an overall stable picture for global lake dynamics, the limited instability signatures do not mean that lakes are insensitive to global change. Modeling the interaction between lake climatic, geophysical, and socioeconomic features and their stability properties, we find that the probability of a lake experiencing a tipping point increases with human population density in its catchment, while it decreases as the gross domestic product of that population increases. Our results show how quantifying lake productivity dynamics at a global scale highlights socioeconomic inequalities in conserving natural environments.


Assuntos
Ecossistema , Eficiência , Eutrofização , Internacionalidade , Lagos , Produto Interno Bruto , Humanos , Densidade Demográfica , Imagens de Satélites , Fatores Socioeconômicos , Fatores de Tempo
19.
Eur Heart J ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976371

RESUMO

The advent of digital health and artificial intelligence (AI) has promised to revolutionize clinical care, but real-world patient evaluation has yet to witness transformative changes. As history taking and physical examination continue to rely on long-established practices, a growing pipeline of AI-enhanced digital tools may soon augment the traditional clinical encounter into a data-driven process. This article presents an evidence-backed vision of how promising AI applications may enhance traditional practices, streamlining tedious tasks while elevating diverse data sources, including AI-enabled stethoscopes, cameras, and wearable sensors, to platforms for personalized medicine and efficient care delivery. Through the lens of traditional patient evaluation, we illustrate how digital technologies may soon be interwoven into routine clinical workflows, introducing a novel paradigm of longitudinal monitoring. Finally, we provide a skeptic's view on the practical, ethical, and regulatory challenges that limit the uptake of such technologies.

20.
Eur Heart J ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842545

RESUMO

BACKGROUND AND AIMS: The spleen serves as an important relay organ that releases cardioprotective factor(s) upon vagal activation during remote ischaemic conditioning (RIC) in rats and pigs. The translation of these findings to humans was attempted. METHODS: Remote ischaemic conditioning or electrical auricular tragus stimulation (ATS) were performed in 10 healthy young volunteers, 10 volunteers with splenectomy, and 20 matched controls. Venous blood samples were taken before and after RIC/ATS or placebo, and a plasma dialysate was infused into isolated perfused rat hearts subjected to global ischaemia/reperfusion. RESULTS: Neither left nor right RIC or ATS altered heart rate and heart rate variability in the study cohorts. With the plasma dialysate prepared before RIC or ATS, respectively, infarct size (% ventricular mass) in the recipient rat heart was 36 ± 6% (left RIC), 34 ± 3% (right RIC) or 31 ± 5% (left ATS), 35 ± 5% (right ATS), and decreased with the plasma dialysate from healthy volunteers after RIC or ATS to 20 ± 4% (left RIC), 23 ± 6% (right RIC) or to 19 ± 4% (left ATS), 26 ± 9% (right ATS); infarct size was still reduced with plasma dialysate 4 days after ATS and 9 days after RIC. In a subgroup of six healthy volunteers, such infarct size reduction was abrogated by intravenous atropine. Infarct size reduction by RIC or ATS was also abrogated in 10 volunteers with splenectomy, but not in their 20 matched controls. CONCLUSIONS: In humans, vagal innervation and the spleen as a relay organ are decisive for the cardioprotective signal transduction of RIC and ATS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA