Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 937
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37948670

RESUMO

OBJECTIVE: To compare the effects of peritoneal dialysis and hemodialysis on spontaneous brain activity in patients with end-stage renal disease. METHODS: A total of 52 dialysis patients with end-stage renal disease, including 25 patients with chronic kidney disease undergoing hemodialysis (HD-CKD) and 27 patients with chronic kidney disease undergoing peritoneal dialysis (PD-CKD), and 49 healthy controls (normal control) were included. All participants underwent neuropsychological testing (Mini-Mental State Examination and Montreal cognitive assessment) and resting-state functional magnetic resonance imaging. Fractional amplitude of low frequency fluctuations and Regional Homogeneity algorithms were employed to evaluate spontaneous brain activity. Statistical analysis was performed to discern differences between the groups. RESULTS: When compared with the normal control group, the PD-CKD group exhibited significant alterations in fractional amplitude of low frequency fluctuations in various cerebellum regions and other brain areas, while the HD-CKD group showed decreased fractional amplitude of low frequency fluctuations in the bilateral pericalcarine cortex. The Regional Homogeneity values in the PD-CKD group were notably different than those in the normal control group, particularly in regions such as the bilateral caudate nucleus and the right putamen. CONCLUSION: Both peritoneal dialysis and hemodialysis modalities impact brain activity, but manifest differently in end-stage renal disease patients. Understanding these differences is crucial for optimizing patient care.


Assuntos
Falência Renal Crônica , Diálise Peritoneal , Insuficiência Renal Crônica , Humanos , Imageamento por Ressonância Magnética/métodos , Diálise Renal , Encéfalo , Insuficiência Renal Crônica/diagnóstico por imagem , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/patologia , Falência Renal Crônica/terapia , Falência Renal Crônica/patologia
2.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37981661

RESUMO

Functional constipation, a highly prevalent functional gastrointestinal disorder, often accompanies by mental and psychological disorders. Previous neuroimaging studies have demonstrated brain functional and structural alterations in patients with functional constipation. However, little is known about whether and how regional homogeneity is altered in these patients. Moreover, the potential genetic mechanisms associated with these alterations remain largely unknown. The study included 73 patients with functional constipation and 68 healthy controls, and regional homogeneity comparison was conducted to identify the abnormal spontaneous brain activities in patients with functional constipation. Using Allen Human Brain Atlas, we further investigated gene expression profiles associated with regional homogeneity alterations in functional constipation patients with partial least squares regression analysis applied. Compared with healthy controls, functional constipation patients demonstrated significantly decreased regional homogeneity in both bilateral caudate nucleus, putamen, anterior insula, thalamus and right middle cingulate cortex, supplementary motor area, and increased regional homogeneity in the bilateral orbitofrontal cortex. Genes related to synaptic signaling, central nervous system development, fatty acid metabolism, and immunity were spatially correlated with abnormal regional homogeneity patterns. Our findings showed significant regional homogeneity alterations in functional constipation patients, and the changes may be caused by complex polygenetic and poly-pathway mechanisms, which provides a new perspective on functional constipation's pathophysiology.


Assuntos
Imageamento por Ressonância Magnética , Transcriptoma , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo , Mapeamento Encefálico , Constipação Intestinal/diagnóstico por imagem , Constipação Intestinal/genética
3.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37991321

RESUMO

Uncovering the neural mechanisms of ostracism experience (including its subclasses of excluded and ignored experiences) is important. However, the resting-state functional brain substrates responsible for individual differences in ostracism experience and its negative effects remain largely undefined. This study explored these issues in a sample of 198 Chinese college students by assessing the amplitude of low-frequency fluctuations and functional connectivity. The findings indicated a positive correlation between ignored experience and the amplitude of low-frequency fluctuations in the right superior frontal gyrus and the functional connectivity between the right superior frontal gyrus and left cerebellum posterior lobe. Additionally, a negative correlation was found between ignored experience and the functional connectivity between the right superior frontal gyrus and the bilateral insula as well as the bilateral inferior parietal lobule. Moreover, the mediation analysis demonstrated that the effects of the functional connectivities of right superior frontal gyrus-left cerebellum posterior lobe and right superior frontal gyrus-right inferior parietal lobule on revenge intention were mediated by ignored experience. Our study offers novel insights into the neural correlates of both individual variations in ignored experience and its typical deleterious effect. These results could deepen our understanding of individual differences in negative experiences and inspire the development of targeted interventions for social stress from the perspective of the brain.


Assuntos
Individualidade , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Lobo Parietal/diagnóstico por imagem
4.
Cereb Cortex ; 34(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39077917

RESUMO

Trauma exposure may precipitate a cascade of plastic modifications within the intrinsic activity of brain regions, but it remains unclear which regions could be responsible for the development of post-traumatic stress disorder based on intrinsic activity. To elucidate trauma-related and post-traumatic stress disorder-related alterations in cortical intrinsic activity at the whole-brain level, we recruited 47 survivors diagnosed with post-traumatic stress disorder, 64 trauma-exposed controls from a major earthquake, and 46 age- and sex-matched healthy controls. All subjects were scanned with an echo-planar imaging sequence, and 5 parameters including the amplitude of low-frequency fluctuations, fractional amplitude of low-frequency fluctuations, regional homogeneity, degree centrality, and voxel-mirrored homotopic connectivity were calculated. We found both post-traumatic stress disorder patients and trauma-exposed controls exhibited decreased amplitude of low-frequency fluctuations in the bilateral posterior cerebellum and inferior temporal gyrus, decreased fractional amplitude of low-frequency fluctuation and regional homogeneity in the bilateral anterior cerebellum, and decreased fractional amplitude of low-frequency fluctuation in the middle occipital gyrus and cuneus compared to healthy controls, and these impairments were more severe in post-traumatic stress disorder patients than in trauma-exposed controls. Additionally, fractional amplitude of low-frequency fluctuation in left cerebellum was positively correlated with Clinician-Administered PTSD Scale scores in post-traumatic stress disorder patients. We identified brain regions that might be responsible for the emergence of post-traumatic stress disorder, providing important information for the treatment of this disorder.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Transtornos de Estresse Pós-Traumáticos/psicologia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Córtex Cerebral/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Imagem Ecoplanar , Terremotos , Imageamento por Ressonância Magnética , Adulto Jovem , Mapeamento Encefálico
5.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38365269

RESUMO

The aim of this paper is to investigate dynamical functional disturbance in central executive network in minimal hepatic encephalopathy and determine its association with metabolic disorder and cognitive impairment. Data of magnetic resonance spectroscopy and resting-state functional magnetic resonance imaging were obtained from 27 cirrhotic patients without minimal hepatic encephalopathy, 20 minimal hepatic encephalopathy patients, and 24 healthy controls. Central executive network was identified utilizing seed-based correlation approach. Dynamic functional connectivity across central executive network was calculated using sliding-window approach. Functional states were estimated by K-means clustering. Right dorsolateral prefrontal cortex metabolite ratios (i.e. glutamate and glutamine complex/total creatine, myo-inositol / total creatine, and choline / total creatine) were determined. Neurocognitive performance was determined by psychometric hepatic encephalopathy scores. Minimal hepatic encephalopathy patients had decreased myo-inositol / total creatine and choline / total creatine and increased glutamate and glutamine complex / total creatine in right dorsolateral prefrontal cortex (all P ≤ 0.020); decreased static functional connectivity between bilateral dorsolateral prefrontal cortex and between right dorsolateral prefrontal cortex and lateral-inferior temporal cortex (P ≤ 0.001); increased frequency and mean dwell time in state-1 (P ≤ 0.001), which exhibited weakest functional connectivity. Central executive network dynamic functional indices were significantly correlated with right dorsolateral prefrontal cortex metabolic indices and psychometric hepatic encephalopathy scores. Right dorsolateral prefrontal cortex myo-inositol / total creatine and mean dwell time in state-1 yielded best potential for diagnosing minimal hepatic encephalopathy. Dynamic functional disturbance in central executive network may contribute to neurocognitive impairment and could be correlated with metabolic disorder.


Assuntos
Encefalopatia Hepática , Humanos , Encefalopatia Hepática/complicações , Encefalopatia Hepática/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Glutamina/metabolismo , Creatina/metabolismo , Cirrose Hepática/complicações , Cirrose Hepática/metabolismo , Ácido Glutâmico/metabolismo , Inositol/metabolismo , Colina/metabolismo , Encéfalo
6.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38864573

RESUMO

The experience of an extremely aversive event can produce enduring deleterious behavioral, and neural consequences, among which posttraumatic stress disorder (PTSD) is a representative example. Although adolescence is a period of great exposure to potentially traumatic events, the effects of trauma during adolescence remain understudied in clinical neuroscience. In this exploratory work, we aim to study the whole-cortex functional organization of 14 adolescents with PTSD using a data-driven method tailored to our population of interest. To do so, we built on the network neuroscience framework and specifically on multilayer (multisubject) community analysis to study the functional connectivity of the brain. We show, across different topological scales (the number of communities composing the cortex), a hyper-colocalization between regions belonging to occipital and pericentral regions and hypo-colocalization in middle temporal, posterior-anterior medial, and frontal cortices in the adolescent PTSD group compared to a nontrauma exposed group of adolescents. These preliminary results raise the question of an altered large-scale cortical organization in adolescent PTSD, opening an interesting line of research for future investigations.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Transtornos de Estresse Pós-Traumáticos/psicologia , Adolescente , Feminino , Masculino , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Vias Neurais/fisiopatologia , Mapeamento Encefálico/métodos , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Córtex Cerebral/diagnóstico por imagem
7.
J Neurosci ; 43(49): 8275-8293, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38073598

RESUMO

Neurodevelopmental disorders (NDDs) are a group of complex neurologic and psychiatric disorders. Functional and molecular imaging techniques, such as resting-state functional magnetic resonance imaging (rs-fMRI) and positron emission tomography (PET), can be used to measure network activity noninvasively and longitudinally during maturation in both humans and rodent models. Here, we review the current knowledge on rs-fMRI and PET biomarkers in the study of normal and abnormal neurodevelopment, including intellectual disability (ID; with/without epilepsy), autism spectrum disorder (ASD), and attention deficit hyperactivity disorder (ADHD), in humans and rodent models from birth until adulthood, and evaluate the cross-species translational value of the imaging biomarkers. To date, only a few isolated studies have used rs-fMRI or PET to study (abnormal) neurodevelopment in rodents during infancy, the critical period of neurodevelopment. Further work to explore the feasibility of performing functional imaging studies in infant rodent models is essential, as rs-fMRI and PET imaging in transgenic rodent models of NDDs are powerful techniques for studying disease pathogenesis, developing noninvasive preclinical imaging biomarkers of neurodevelopmental dysfunction, and evaluating treatment-response in disease-specific models.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Epilepsia , Lactente , Humanos , Adulto , Transtorno do Espectro Autista/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons , Biomarcadores , Encéfalo/diagnóstico por imagem
8.
J Neurophysiol ; 132(3): 744-756, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39015075

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease, and mild cognitive impairment (MCI) is considered a transitional stage between healthy aging and dementia. Early detection of MCI can help slow down the progression of AD. At present, there are few studies exploring the characteristics of abnormal dynamic brain activity in AD. This article uses a method called leading eigenvector dynamics analysis (LEiDA) to study resting-state functional magnetic resonance imaging (rs-fMRI) data of AD, MCI, and cognitively normal (CN) participants. By identifying repetitive states of phase coherence, intergroup differences in brain dynamic activity indicators are examined, and the neurobehavioral scales were used to assess the relationship between abnormal dynamic activities and cognitive function. The results showed that in the indicators of occurrence probability and lifetime, the globally synchronized state of the patient group decreased. The activity state of the limbic regions significantly detected the difference between AD and the other two groups. Compared to CN, AD and MCI have varying degrees of increase in default and visual region activity states. In addition, in the analysis related to the cognitive scales, it was found that individuals with poorer cognitive abilities were less active in the globally synchronized state and more active in limbic region activity state and visual region activity state. Taken together, these findings reveal abnormal dynamic activity of resting-state networks in patients with AD and MCI, provide new insights into the dynamic analysis of brain networks, and contribute to a deeper understanding of abnormal spatial dynamic patterns in AD patients.NEW & NOTEWORTHY Alzheimer's disease (AD) is a neurodegenerative disease, but few studies have explored the characteristics of abnormal dynamic brain activity in AD patients. Here, our report reveals the abnormal dynamic activity of the patients' resting-state network, providing new insights into the dynamic analysis of brain networks and helping to gain a deeper understanding of the abnormal spatial dynamic patterns in AD patients.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Imageamento por Ressonância Magnética , Rede Nervosa , Humanos , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/diagnóstico por imagem , Feminino , Idoso , Masculino , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Pessoa de Meia-Idade , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Descanso , Idoso de 80 Anos ou mais
9.
Eur J Neurosci ; 59(1): 119-131, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37969020

RESUMO

Post-chemotherapy cognitive impairment, also known as 'chemobrain', is a common neurotoxic complication induced by chemotherapy, which has been reported in many cancer survivors who have undergone chemotherapy. In this study, we aimed to explore the effects of D-neneneba dicitabine, C-nenenebb cytarabine, A-aclamycin, G-granulocyte colony-stimulating factor (D-CAG) chemotherapy on cognitive function in patients with acute myeloid leukaemia (AML) and its possible central mechanisms. Twenty patients with AML and 25 matched healthy controls (HC) were enrolled in this study. The cognitive function of patients before and after D-CAG chemotherapy was evaluated by the Functional Assessment of Cancer Therapy-Cognitive Function (FACT-Cog). The resting-state functional magnetic resonance imaging data were collected from all patients before and after chemotherapy intervention, as well as HC. Then, resting-state functional magnetic resonance imaging data were preprocessed using DPABI software package and regional homogeneity (ReHo) values of brain regions were calculated. Finally, ReHo values between groups were compared by Resting-State fMRI Data Analysis software package with t-tests and Alphasim method was performed for multiple comparison correction. Moreover, associations between ReHo values of altered brain regions and the scores of FACT-Cog were analysed by Pearson correlation. The total FACT-Cog scores and four factor scores of AML patients increased significantly after treatment. ReHo values showed no significant changes in patients before treatment when compared with HC. Compared with HC, ReHo values of the right middle frontal gyrus, inferior frontal gyrus (opercular part), middle occipital gyrus, and left praecuneus decreased significantly, while ReHo values of the left inferior temporal gyrus, right middle temporal gyrus, and hippocampus increased significantly in patients after treatment. Compared with patients before treatment, ReHo values decreased significantly in the right middle frontal gyrus, inferior frontal gyrus (opercular part), and middle and inferior occipital gyri of patients after treatment. In addition, ReHo values of the right inferior frontal gyrus (opercular part) were negatively correlated with the total scores of FACT-Cog and factor scores of perceived cognitive impairment in patients after treatment. There were also negative correlations between ReHo values of the right middle frontal gyrus and perceived cognitive impairment scores. The present study confirmed that D-CAG chemotherapy might cause impaired subjective self-reported cognitive functioning in AML patients, which might be related to the decreased function of certain regions in the right prefrontal lobe. These findings provided further understanding of the mechanisms involved in post-chemotherapy cognitive impairment and would help develop new therapeutic strategies for 'chemobrain' in AML patients.


Assuntos
Mapeamento Encefálico , Leucemia Mieloide Aguda , Humanos , Encéfalo/diagnóstico por imagem , Cognição , Imageamento por Ressonância Magnética/métodos , Leucemia Mieloide Aguda/diagnóstico por imagem , Leucemia Mieloide Aguda/tratamento farmacológico
10.
Eur J Neurosci ; 59(10): 2766-2777, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38515219

RESUMO

Despite altered brain activities being associated with suicidal ideation (SI), the neural correlates of SI in major depressive disorder (MDD) have remained elusive. We enrolled 82 first-episode drug-naïve MDD patients including 41 with SI and 41 without SI, as well as 41 healthy controls (HCs). Resting-state functional and structural MRI data were collected. The measures of fractional amplitude of low-frequency fluctuation (fALFF) and grey matter volume (GMV) were calculated and compared. Compared with HCs, patients with SI exhibited increased fALFF values in the right rectus gyrus and left medial superior frontal gyrus, middle frontal gyrus and precuneus. Decreased GMV in the right parahippocampal gyrus, insula and middle occipital gyrus and increased GMV in the left superior frontal gyrus were detected in patients with SI. In addition, patients without SI demonstrated increased fALFF values in the right superior frontal gyrus and decreased fALFF values in the right postcentral gyrus. Decreased GMV in the left superior frontal gyrus, right medial superior frontal gyrus, opercular part of inferior frontal gyrus, postcentral gyrus, fusiform gyrus and increased left supplementary motor area, superior occipital gyrus, right anterior cingulate gyrus and superior temporal gyrus were revealed in patients with SI. Moreover, in comparison with patients without SI, increased fALFF values were identified in the left precuneus of patients with SI. However, no significant differences were found in GMV between patients with and without SI. These findings might be helpful for finding neuroimaging markers predicting individual suicide risk and detecting targeted brain regions for effective early interventions.


Assuntos
Encéfalo , Transtorno Depressivo Maior , Imageamento por Ressonância Magnética , Ideação Suicida , Humanos , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/diagnóstico por imagem , Masculino , Feminino , Adulto , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Adulto Jovem , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Substância Cinzenta/fisiopatologia
11.
Hum Brain Mapp ; 45(1): e26529, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37991144

RESUMO

Mild cognitive impairment (MCI) is a critical prodromal stage of Alzheimer's disease (AD), and the mechanism underlying the conversion is not fully explored. Construction and inter-cohort validation of imaging biomarkers for predicting MCI conversion is of great challenge at present, due to lack of longitudinal cohorts and poor reproducibility of various study-specific imaging indices. We proposed a novel framework for inter-cohort MCI conversion prediction, involving comparison of structural, static, and dynamic functional brain features from structural magnetic resonance imaging (sMRI) and resting-state functional MRI (fMRI) between MCI converters (MCI_C) and non-converters (MCI_NC), and support vector machine for construction of prediction models. A total of 218 MCI patients with 3-year follow-up outcome were selected from two independent cohorts: Shanghai Memory Study cohort for internal cross-validation, and Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort for external validation. In comparison with MCI_NC, MCI_C were mainly characterized by atrophy, regional hyperactivity and inter-network hypo-connectivity, and dynamic alterations characterized by regional and connectional instability, involving medial temporal lobe (MTL), posterior parietal cortex (PPC), and occipital cortex. All imaging-based prediction models achieved an area under the curve (AUC) > 0.7 in both cohorts, with the multi-modality MRI models as the best with excellent performances of AUC > 0.85. Notably, the combination of static and dynamic fMRI resulted in overall better performance as relative to static or dynamic fMRI solely, supporting the contribution of dynamic features. This inter-cohort validation study provides a new insight into the mechanisms of MCI conversion involving brain dynamics, and paves a way for clinical use of structural and functional MRI biomarkers in future.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Reprodutibilidade dos Testes , China , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Biomarcadores
12.
Hum Brain Mapp ; 45(11): e26801, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087903

RESUMO

Damage to the posterior language area (PLA), or Wernicke's area causes cortical reorganization in the corresponding regions of the contralateral hemisphere. However, the details of reorganization within the ipsilateral hemisphere are not fully understood. In this context, direct electrical stimulation during awake surgery can provide valuable opportunities to investigate neuromodulation of the human brain in vivo, which is difficult through the non-invasive approaches. Thus, in this study, we aimed to investigate the characteristics of the cortical reorganization of the PLA within the ipsilateral hemisphere. Sixty-two patients with left hemispheric gliomas were divided into groups depending on whether the lesion extended to the PLA. All patients underwent direct cortical stimulation with a picture-naming task. We further performed functional connectivity analyses using resting-state functional magnetic resonance imaging (MRI) in a subset of patients and calculated betweenness centrality, an index of the network importance of brain areas. During direct cortical stimulation, the regions showing positive (impaired) responses in the non-PLA group were localized mainly in the posterior superior temporal gyrus (pSTG), whereas those in the PLA group were widely distributed from the pSTG to the posterior supramarginal gyrus (pSMG). Notably, the percentage of positive responses in the pSMG was significantly higher in the PLA group (47%) than in the non-PLA group (8%). In network analyses of functional connectivity, the pSMG was identified as a hub region with high betweenness centrality in both the groups. These findings suggest that the language area can spread beyond the PLA to the pSMG, a hub region, in patients with lesion progression to the pSTG. The change in the pattern of the language area may be a compensatory mechanism to maintain efficient brain networks.


Assuntos
Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Rede Nervosa , Área de Wernicke , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Área de Wernicke/diagnóstico por imagem , Área de Wernicke/fisiopatologia , Área de Wernicke/fisiologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Glioma/diagnóstico por imagem , Glioma/fisiopatologia , Glioma/cirurgia , Glioma/patologia , Estimulação Elétrica , Idoso , Idioma , Conectoma , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiopatologia , Mapeamento Encefálico , Adulto Jovem
13.
J Transl Med ; 22(1): 763, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143498

RESUMO

BACKGROUD: Temporal lobe epilepsy (TLE) is associated with abnormal dynamic functional connectivity patterns, but the dynamic changes in brain activity at each time point remain unclear, as does the potential molecular mechanisms associated with the dynamic temporal characteristics of TLE. METHODS: Resting-state functional magnetic resonance imaging (rs-fMRI) was acquired for 84 TLE patients and 35 healthy controls (HCs). The data was then used to conduct HMM analysis on rs-fMRI data from TLE patients and an HC group in order to explore the intricate temporal dynamics of brain activity in TLE patients with cognitive impairment (TLE-CI). Additionally, we aim to examine the gene expression profiles associated with the dynamic modular characteristics in TLE patients using the Allen Human Brain Atlas (AHBA) database. RESULTS: Five HMM states were identified in this study. Compared with HCs, TLE and TLE-CI patients exhibited distinct changes in dynamics, including fractional occupancy, lifetimes, mean dwell time and switch rate. Furthermore, transition probability across HMM states were significantly different between TLE and TLE-CI patients (p < 0.05). The temporal reconfiguration of states in TLE and TLE-CI patients was associated with several brain networks (including the high-order default mode network (DMN), subcortical network (SCN), and cerebellum network (CN). Furthermore, a total of 1580 genes were revealed to be significantly associated with dynamic brain states of TLE, mainly enriched in neuronal signaling and synaptic function. CONCLUSIONS: This study provides new insights into characterizing dynamic neural activity in TLE. The brain network dynamics defined by HMM analysis may deepen our understanding of the neurobiological underpinnings of TLE and TLE-CI, indicating a linkage between neural configuration and gene expression in TLE.


Assuntos
Epilepsia do Lobo Temporal , Imageamento por Ressonância Magnética , Cadeias de Markov , Humanos , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Masculino , Feminino , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Regulação da Expressão Gênica , Estudos de Casos e Controles , Adulto Jovem , Pessoa de Meia-Idade , Descanso/fisiologia , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem
14.
Psychol Sci ; 35(4): 376-389, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38446868

RESUMO

Inhibitory control is central to many theories of cognitive and brain development, and impairments in inhibitory control are posited to underlie developmental psychopathology. In this study, we tested the possibility of shared versus unique associations between inhibitory control and three common symptom dimensions in youth psychopathology: attention-deficit/hyperactivity disorder (ADHD), anxiety, and irritability. We quantified inhibitory control using four different experimental tasks to estimate a latent variable in 246 youth (8-18 years old) with varying symptom types and levels. Participants were recruited from the Washington, D.C., metro region. Results of structural equation modeling integrating a bifactor model of psychopathology revealed that inhibitory control predicted a shared or general psychopathology dimension, but not ADHD-specific, anxiety-specific, or irritability-specific dimensions. Inhibitory control also showed a significant, selective association with global efficiency in a frontoparietal control network delineated during resting-state functional magnetic resonance imaging. These results support performance-based inhibitory control linked to resting-state brain function as an important predictor of comorbidity in youth psychopathology.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Psicopatologia , Humanos , Adolescente , Criança , Ansiedade/psicologia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
15.
J Magn Reson Imaging ; 59(4): 1135-1148, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37424140

RESUMO

Resting-state functional magnetic resonance imaging (rsfMRI) has been developed as a method of investigating spontaneous neural activity. Based on its low-frequency signal synchronization, rsfMRI has made it possible to identify multiple macroscopic structures termed resting-state networks (RSNs) on a single scan of less than 10 minutes. It is easy to implement even in clinical practice, in which assigning tasks to patients can be challenging. These advantages have accelerated the adoption and growth of rsfMRI. Recently, studies on the global rsfMRI signal have attracted increasing attention. Because it primarily arises from physiological events, less attention has hitherto been paid to the global signal than to the local network (i.e., RSN) component. However, the global signal is not a mere nuisance or a subsidiary component. On the contrary, it is quantitatively the dominant component that accounts for most of the variance in the rsfMRI signal throughout the brain and provides rich information on local hemodynamics that can serve as an individual-level diagnostic biomarker. Moreover, spatiotemporal analyses of the global signal have revealed that it is closely and fundamentally associated with the organization of RSNs, thus challenging the basic assumptions made in conventional rsfMRI analyses and views on RSNs. This review introduces new concepts emerging from rsfMRI spatiotemporal analyses focusing on the global signal and discusses how they may contribute to future clinical medicine. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 1.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Humanos , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Descanso/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Hemodinâmica
16.
Cerebellum ; 23(4): 1678-1696, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38280142

RESUMO

This study aimed to investigate the potential therapeutic effects of cerebellar transcranial magnetic stimulation (TMS) on balance and limb motor impairments in stroke patients. A meta-analysis of randomized controlled trials was conducted to assess the effects of cerebellar TMS on balance and motor impairments in stroke patients. Additionally, an activation likelihood estimation (ALE) meta-analysis was performed on resting-state functional magnetic resonance imaging (fMRI) studies to compare spontaneous neural activity differences between stroke patients and healthy controls using measures including the amplitude of low frequency fluctuation (ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo). The analysis included 10 cerebellar TMS studies and 18 fMRI studies. Cerebellar TMS treatment demonstrated significant improvements in the Berg Balance Scale score (p < 0.0001) and the Fugl-Meyer Assessment lower extremity score (p < 0.0001) compared to the control group in stroke patients. Additionally, spontaneous neural activity alterations were identified in motor-related regions after stroke, including the precentral gyrus, putamen, thalamus, and paracentral lobule. Cerebellar TMS shows promise as a therapeutic intervention to enhance balance and lower limb motor function in stroke patients. It is easy for clinical application and addresses the limitations of insufficient direct stimulation depth on the leg area of the cortex. However, further research combining neuroimaging outcomes with clinical measurements is necessary to validate these findings.


Assuntos
Cerebelo , Imageamento por Ressonância Magnética , Equilíbrio Postural , Ensaios Clínicos Controlados Aleatórios como Assunto , Acidente Vascular Cerebral , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Imageamento por Ressonância Magnética/métodos , Cerebelo/diagnóstico por imagem , Cerebelo/fisiopatologia , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/fisiopatologia , Equilíbrio Postural/fisiologia , Descanso , Reabilitação do Acidente Vascular Cerebral/métodos , Resultado do Tratamento
17.
Epilepsy Behav ; 157: 109751, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38820678

RESUMO

BACKGROUND: Hippocampal sclerosis (HS) is a prevalent cause of temporal lobe epilepsy (TLE). However, up to 30% of individuals with TLE present negative magnetic resonance imaging (MRI) findings. A comprehensive grasp of the similarities and differences in brain activity among distinct TLE subtypes holds significant clinical and scientific importance. OBJECTIVE: To comprehensively examine the similarities and differences between TLE with HS (TLE-HS) and MRI-negative TLE (TLE-N) regarding static and dynamic abnormalities in spontaneous brain activity (SBA). Furthermore, we aimed to determine whether these alterations correlate with epilepsy duration and cognition, and to determine a potential differential diagnostic index for clinical utility. METHODS: We measured 12 SBA metrics in 38 patients with TLE-HS, 51 with TLE-N, and 53 healthy volunteers. Voxel-wise analysis of variance (ANOVA) and post-hoc comparisons were employed to compare these metrics. The six static metrics included amplitude of low-frequency fluctuations (ALFF), fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity (ReHo), voxel-mirrored homotopic connectivity (VMHC), degree centrality (DC), and global signal correlation (GSCorr). Additionally, six corresponding dynamic metrics were assessed: dynamic ALFF (dALFF), dynamic fALFF (dfALFF), dynamic ReHo (dReHo), dynamic DC (dDC), dynamic VMHC (dVMHC), and dynamic GSCorr (dGSCorr). Receiver operating characteristic (ROC) curve analysis of abnormal indices was employed. Spearman correlation analyses were also conducted to examine the relationship between the abnormal indices, epilepsy duration and cognition scores. RESULTS: Both TLE-HS and TLE-N presented as extensive neural network disorders, sharing similar patterns of SBA alterations. The regions with increased fALFF, dALFF, and dfALFF levels were predominantly observed in the mesial temporal lobe, thalamus, basal ganglia, pons, and cerebellum, forming a previously proposed mesial temporal epilepsy network. Conversely, decreased SBA metrics (fALFF, ReHo, dReHo, DC, GSCorr, and VMHC) consistently appeared in the lateral temporal lobe ipsilateral to the epileptic foci. Notably, SBA alterations were more obvious in patients with TLE-HS than in those with TLE-N. Additionally, patients with TLE-HS exhibited reduced VMHC in both mesial and lateral temporal lobes compared with patients with TLE-N, with the hippocampus displaying moderate discriminatory power (AUC = 0.759). Correlation analysis suggested that alterations in SBA indicators may be associated with epilepsy duration and cognitive scores. CONCLUSIONS: The simultaneous use of static and dynamic SBA metrics provides evidence supporting the characterisation of both TLE-HS and TLE-N as complex network diseases, facilitating the exploration of mechanisms underlying epileptic activity and cognitive impairment. Overall, SBA abnormality patterns were generally similar between the TLE-HS and TLE-N groups, encompassing networks related to TLE and auditory and occipital visual functions. These changes were more pronounced in the TLE-HS group, particularly within the mesial and lateral temporal lobes.


Assuntos
Epilepsia do Lobo Temporal , Hipocampo , Imageamento por Ressonância Magnética , Esclerose , Humanos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/patologia , Feminino , Masculino , Adulto , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Pessoa de Meia-Idade , Adulto Jovem , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Mapeamento Encefálico , Testes Neuropsicológicos , Esclerose Hipocampal
18.
Neuroradiology ; 66(5): 847-854, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38530417

RESUMO

PURPOSE: We sought to use the fractional amplitude of low-frequency fluctuation (fALFF) method to investigate the changes in spontaneous brain activity in CSM patients and their relationships with clinical features. METHODS: We recruited 20 patients with CSM, and 20 healthy controls (HCs) matched for age, sex, and education status. The fALFF method was used to evaluate the altered spontaneous brain activities. The Pearson correlation analysis of fALFF and the clinical features were carried out. RESULTS: Compared with HC, CSM group showed increased fALFF values in the left middle frontal gyrus, inferior parietal lobule, and right angular gyrus. Decreased fALFF values were found in the right lingual gyrus, cuneus (P < 0.05). Pearson correlation analysis shows that the fALFF values of all CSM were positively correlated with JOA score in the right angular gyrus (r = 0.518, P < 0.05). CONCLUSION: CSM patients have abnormal fALFF distribution in multiple brain regions and might be an appealing alternative approach for further exploration of the pathological and neuropsychological states in CSM.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/patologia , Mapeamento Encefálico/métodos , Lobo Occipital , Lobo Frontal
19.
Audiol Neurootol ; 29(2): 146-166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37963433

RESUMO

INTRODUCTION: The aim of the study was to investigate differences in the intra- and inter-network functional connectivity (FC) of the brain using resting-state functional magnetic resonance imaging (rs-fMRI) in patients with tinnitus, with (T + H) or without hearing loss (T). METHODS: We performed rs-fMRI on 82 participants (21 T, 32 T + H, and 29 healthy controls). An independent component analysis (ICA) was performed to obtain the resting-state networks (RSNs) and calculate the differences in FC. Moreover, we investigated the relationships between networks using functional network connectivity analysis. RESULTS: We identified nine major RSNs, including the auditory network; default mode network; executive control network (ECN), including the right frontoparietal network and left frontoparietal network (LFPN); somatomotor network (SMN); dorsal attention network; ventral attention network; salience network (SN); and visual network (VN). These RSNs were extracted in all groups using ICA. Compared with that in the control group, we observed reduced FC between the LFPN and VN in the T group and between the LFPN and SN in the T + H group. The inter-network connectivity analysis revealed decreased network interactions in the SMN (IC 22)-ECN (IC 2), SMN (IC 22)-VN (IC 8), and VN (IC 14)-SN (IC 3) connections in the T + H group, compared with the healthy control group. Furthermore, we observed significantly decreased network interactions in the SMN (IC 22)-VN (IC 8) in the T group. CONCLUSIONS: Our results indicated abnormalities within the brain networks of the T and T + H groups, including the SMN, ECN, and VN, compared with the control group. Furthermore, both T and T + H groups demonstrated reduced FC between the LFPN, VN, and SMN. There were no significant differences between the T and the T + H groups. Furthermore, we observed reduced FC between the right olfactory cortex and the orbital part of the right middle frontal gyrus, right precentral gyrus, left dorsolateral superior frontal gyrus, and right triangular part of the inferior frontal gyrus within the T and T + H groups. Thus, disruptions in brain regions responsible for attention, stimulus monitoring, and auditory orientation contribute to tinnitus generation.


Assuntos
Surdez , Perda Auditiva , Zumbido , Humanos , Mapeamento Encefálico/métodos , Zumbido/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Perda Auditiva/diagnóstico por imagem
20.
Artigo em Inglês | MEDLINE | ID: mdl-38906983

RESUMO

BACKGROUND: Attention-deficit hyperactivity disorder (ADHD) has a high prevalence of co-occurring impaired self-regulation (dysregulation), exacerbating adverse outcomes. Neural correlates underlying impaired self-regulation in ADHD remain inconclusive. We aimed to investigate the impact of dysregulation on intrinsic functional connectivity (iFC) in children with ADHD and the correlation of iFC with dysregulation among children with ADHD relative to typically developing controls (TDC). METHODS: Resting-state functional MRI data of 71 children with ADHD (11.38 ± 2.44 years) and 117 age-matched TDC were used in the final analysis. We restricted our analyses to resting-state networks (RSNs) of interest derived from independent component analysis. Impaired self-regulation was estimated based on the Child Behavioral Checklist-Dysregulation Profile. RESULTS: Children with ADHD showed stronger iFC than TDC in the left frontoparietal network, somatomotor network (SMN), visual network (VIS), default-mode network (DMN), and dorsal attention network (DAN) (FWE-corrected alpha < 0.05). After adding dysregulation levels as an extra regressor, the ADHD group only showed stronger iFC in the VIS and SMN. ADHD children with high dysregulation had higher precuneus iFC within DMN than ADHD children with low dysregulation. Angular gyrus iFC within DMN was positively correlated with dysregulation in the ADHD group but negatively correlated with dysregulation in the TDC group. Functional network connectivity showed ADHD had a greater DMN-DAN connection than TDC, regardless of the dysregulation level. CONCLUSIONS: Our findings suggest that DMN connectivity may contribute to impaired self-regulation in ADHD. Impaired self-regulation should be considered categorical and dimensional moderators for the neural correlates of altered iFC in ADHD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA