RESUMO
OBJECTIVE: To evaluate the influence of surface treatment on roughness (SA), topography, and shear bond strength (SBS) of computer-aided designer and manufacture (CAD/CAM) zirconia-reinforced lithium silicate (ZLS) and feldspathic (FEL) glass-ceramics. MATERIALS AND METHODS: FEL and ZLS specimens were submitted to 5% or 10% hydrofluoric acid (HF) or self-etching ceramic primer (MEP) and different application times (20, 40, and 60 s), or to sandblasting (Control, 20 s). Resin cement cylinders were bonded to the specimens and tested in shear (n = 10) after 24 h and 16-months of water storage. SA and topography were evaluated by atomic force (AFM, n = 10) and scanning electron microscopy. Data were analyzed by ANOVA and Bonferroni test (α = 0.05). RESULTS: Sandblasting promoted the highest SA for ZLS, but 10% HF (40, 60 s) promoted higher SBS at 16 months. 10% HF produced the highest SA for FEL, but sandblasting and 5% HF (20 s) maintained SBS after 16 months, without differences from 10% HF (20 s) (p > 0.05). Overall, MEP produced lower SA and SBS among groups (p < 0.05). HF displayed greater morphological changes on FEL. CONCLUSION: 10% HF (40 s) provided better results for ZLS, while 5% or 10% HF (20 s) was suitable for FEL. CLINICAL SIGNIFICANCE: Surface treatments influenced SA, topography, and SBS of materials. HF etching is the surface treatment of choice for both CAD/CAM glass-ceramics.
Assuntos
Colagem Dentária , Porcelana Dentária , Cerâmica , Computadores , Teste de Materiais , Cimentos de Resina , Propriedades de SuperfícieRESUMO
Optimizing nanoplastics (NPs) removal performance of rapid sand filter (RSF) in water treatment plants is significant for NP pollution prevention and remediation. This study investigated the application prospect of natural granular manganese sand, zeolite and limestone in RSF for NP removal through column experiments. Pristine, amino-modified, and carboxyl-modified polystyrene NPs (100 nm) were selected as experimental subjects. Quartz sand filter showed negligible NP removal, zeolite and manganese sand showed no obvious optimization on NP filtration. Limestone amended RSF significantly enhanced the removal of three NPs, the removal efficiency increased with decreasing size and increasing limestone grains dosage. The excellent performance of limestone was attributed to its special physicochemical properties in terms of synthetical action of electrostatic interaction, cationic bridging and especially the surface roughness morphology, and the mechanisms overcame the influence of functional groups of NPs. The results indicate the prospective applications of granular limestone in RSF for NP filtration.