Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Med ; 30(1): 87, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877413

RESUMO

BACKGROUND: Intervertebral disc degeneration (IDD) is a common musculoskeletal degenerative disease, which often leads to low back pain and even disability, resulting in loss of labor ability and decreased quality of life. Although many progresses have been made in the current research, the underlying mechanism of IDD remains unclear. The apoptosis of nucleus pulposus (NP) cells (NPCs) is an important pathological mechanism in intervertebral disc degeneration (IDD). This study evaluated the relationship between S100A6 and NPCs and its underlying mechanism. METHODS: Mass spectrometry, bioinformatics, and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were used to screen and verify hub genes for IDD in human IVD specimens with different degeneration degrees. Western blotting, immunohistochemistry (IHC), and/or immunofluorescence (IF) were used to detect the expression level of S100A6 in human NP tissues and NPCs. The apoptotic phenotype of NPCs and Wnt/ß-catenin signaling pathway were evaluated using flow cytometry, western blotting, and IF. S100A6 was overexpressed or knocked down in NPCs to determine its impact on apoptosis and Wnt/ß-catenin signaling pathway activity. Moreover, we used the XAV-939 to inhibit and SKL2001 to activate the Wnt/ß-catenin signaling pathway. The therapeutic effect of S100A6 inhibition on IDD was also evaluated. RESULTS: S100A6 expression increased in IDD. In vitro, increased S100A6 expression promoted apoptosis in interleukin (IL)-1ß-induced NPCs. In contrast, the inhibition of S100A6 expression partially alleviated the progression of annulus fibrosus (AF) puncture-induced IDD in rats. Mechanistic studies revealed that S100A6 regulates NPC apoptosis via Wnt/ß-catenin signaling pathway. CONCLUSIONS: This study showed that S100A6 expression increased during IDD and promoted NPCs apoptosis by regulating the Wnt/ß-catenin signaling pathway, suggesting that S100A6 is a promising new therapeutic target for IDD.


Assuntos
Apoptose , Degeneração do Disco Intervertebral , Núcleo Pulposo , Proteína A6 Ligante de Cálcio S100 , Via de Sinalização Wnt , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Apoptose/genética , Humanos , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteína A6 Ligante de Cálcio S100/genética , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Animais , Masculino , Feminino , Ratos , Adulto , Pessoa de Meia-Idade , beta Catenina/metabolismo , beta Catenina/genética , Ratos Sprague-Dawley , Modelos Animais de Doenças , Proteínas de Ciclo Celular
2.
J Cell Biochem ; 124(2): 205-220, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36502516

RESUMO

Receptor for advanced glycation end products (RAGE), a member of the immunoglobulin family, interactions with its ligands trigger downstream signaling and induce an inflammatory response linked to diabetes, inflammation, carcinogenesis, cardiovascular disease, and a variety of other human disorders. The interaction of RAGE and S100A6 has been associated with a variety of malignancies. For the control of RAGE-related illnesses, there is a great demand for more specialized drug options. To identify the most effective target for combating human malignancies associated with RAGE-S100A6 complex, we conducted single and differential gene expression analyses of S100A6 and RAGE, comparing normal and malignant tissues. Further, a structure-based virtual screening was conducted using the ZINC15 database. The chosen compounds were then subjected to a molecular docking investigation on the RAGE active site region, recognized by the various cancer-related RAGE ligands. An optimized RAGE structure was screened against a library of drug-like molecules. The screening results suggested that three promising compounds were presented as the top acceptable drug-like molecules with a high binding affinity at the RAGE V-domain catalytic region. We depicted that these compounds may be potential RAGE inhibitors and could be used to produce a successful medication against human cancer and other RAGE-related diseases based on their various assorted parameters, binding energy, hydrogen bonding, ADMET characteristics, etc. MD simulation on a time scale of 50 ns was used to test the stability of the RAGE-inhibitor complexes. Therefore, targeting RAGE and its ligands using these drug-like molecules may be an effective therapeutic approach.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Ligantes , Perfilação da Expressão Gênica , Proteína A6 Ligante de Cálcio S100/genética , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteínas de Ciclo Celular/genética
3.
Breast Cancer Res ; 25(1): 55, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217945

RESUMO

BACKGROUND: S100A6 and murine double minute 2 (MDM2) are important cancer-related molecules. A previous study identified an interaction between S100A6 and MDM2 by size exclusion chromatography and surface plasmon resonance experiments. The present study investigated whether S100A6 could bind to MDM2 in vivo and further explored its functional implication. METHODS: Co-immunoprecipitation, glutathione-S-transferase pull-down assay, and immunofluorescence were performed to determine the in vivo interaction between S100A6 and MDM2. Cycloheximide pulse-chase assay and ubiquitination assay were performed to clarify the mechanism by which S100A6 downregulated MDM2. In addition, clonogenic assay, WST-1 assay, and flow cytometry of apoptosis and the cell cycle were performed and a xenograft model was established to evaluate the effects of the S100A6/MDM2 interaction on growth and paclitaxel-induced chemosensitivity of breast cancer. The expressions of S100A6 and MDM2 in patients with invasive breast cancer were analyzed by immunohistochemistry. In addition, the correlation between the expression of S100A6 and the response to neoadjuvant chemotherapy was statistically analyzed. RESULTS: S100A6 promoted the MDM2 translocation from nucleus to cytoplasm, in which the S100A6 bound to the binding site of the herpesvirus-associated ubiquitin-specific protease (HAUSP) in MDM2, disrupted the MDM2-HAUSP-DAXX interactions, and induced the MDM2 self-ubiquitination and degradation. Furthermore, the S100A6-mediated MDM2 degradation suppressed the growth of breast cancer and enhanced its sensitivity to paclitaxel both in vitro and in vivo. For patients with invasive breast cancer who received epirubicin and cyclophosphamide followed by docetaxel (EC-T), expressions of S100A6 and MDM2 were negatively correlated, and high expression of S100A6 suggested a higher rate of pathologic complete response (pCR). Univariate and multivariate analyses showed that the high expression of S100A6 was an independent predictor of pCR. CONCLUSION: These results reveal a novel function for S100A6 in downregulating MDM2, which directly enhances sensitivity to chemotherapy.


Assuntos
Neoplasias da Mama , Animais , Feminino , Humanos , Camundongos , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteína Supressora de Tumor p53/genética , Ubiquitinação
4.
Curr Issues Mol Biol ; 45(4): 2881-2894, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37185712

RESUMO

Ocular diseases have a strong impact on individuals, the effects of which extend from milder visual impairment to blindness. Due to this and to their prevalence, these conditions constitute important health, social and economic challenges. Thus, improvements in their early detection and diagnosis will help dampen the impact of these conditions, both on patients and on healthcare systems alike. In this sense, identifying tear biomarkers could establish better non-invasive approaches to diagnose these diseases and to monitor responses to therapy. With this in mind, we developed a solid phase capture assay, based on antibody microarrays, to quantify S100A6, MMP-9 and CST4 in human tear samples, and we used these arrays to study tear samples from healthy controls and patients with Sjögren's Syndrome, at times concomitant with rheumatoid arthritis. Our results point out that the detection of S100A6 in tear samples seems to be positively correlated to rheumatoid arthritis, consistent with the systemic nature of this autoinflammatory pathology. Thus, we provide evidence that antibody microarrays may potentially help diagnose certain pathologies, possibly paving the way for significant improvements in the future care of these patients.

5.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674873

RESUMO

S100A6, also known as calcyclin, is a calcium-binding protein belonging to the S100 protein family. It was first identified and purified more than 30 years ago. Initial structural studies, focused mostly on the mode and affinity of Ca2+ binding and resolution of the resultant conformational changes, were soon complemented by research on its expression, localization and identification of binding partners. With time, the use of biophysical methods helped to resolve the structure and versatility of S100A6 complexes with some of its ligands. Meanwhile, it became clear that S100A6 expression was altered in various pathological states and correlated with the stage/progression of many diseases, including cancers, indicative of its important, and possibly causative, role in some of these diseases. This, in turn, prompted researchers to look for the mechanism of S100A6 action and to identify the intermediary signaling pathways and effectors. After all these years, our knowledge on various aspects of S100A6 biology is robust but still incomplete. The list of S100A6 ligands is growing all the time, as is our understanding of the physiological importance of these interactions. The present review summarizes available data concerning S100A6 expression/localization, interaction with intracellular and extracellular targets, involvement in Ca2+-dependent cellular processes and association with various pathologies.


Assuntos
Neoplasias , Proteínas S100 , Humanos , Proteína A6 Ligante de Cálcio S100/metabolismo , Ligantes , Proteínas S100/química , Proteínas de Ciclo Celular/metabolismo , Transdução de Sinais
6.
Acta Biochim Biophys Sin (Shanghai) ; 54(1): 137-147, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35130629

RESUMO

The mechanism behind the aberrant expression of S100A6 in osteosarcoma is seldom reported so far. This study sought to explore the regulatory axis targeting S100A6 involved in osteosarcoma progression. Clinical samples collected from osteosarcoma patients were used to detect the expressions of SNHG1, miR-493-5p, and S100A6 by western bolt analysis and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The effects of S100A6 on proliferation and osteogenic differentiation were investigated by the CCK-8 assay, colony formation assay, Ethynyl deoxyuridine staining, matrix mineralization assay, and alkaline phosphatase assay. The potential of lncRNAs/miRNAs targeting S100A6 was identified by the bioinformatics approach, and the results were verified by the dual luciferase assay and RNA immunoprecipitation assay. Both and rescue experiments were performed to investigate the regulatory relationship between the identified lncRNAs and S100A6. The results showed that S100A6 is highly expressed in osteosarcoma. S100A6 overexpression not only increases the proliferation but also reduces the osteogenic differentiation of osteosarcoma cells, while S1006A silence exerts the opposite effects. Then, SNHG1 is identified to directly interact with miR-493-5p to attenuate miR-493-5p binding to the 3'-untranslated region of S100A6. Notably, S100A6 silence partially rescues the effect of SNHG1 overexpression on proliferation and osteogenic differentiation of osteosarcoma cells. Furthermore, the suppressive role of SNHG1 silence in the growth of osteosarcoma xenograft tumors is countered by S100A6 overexpression. Collectively, this study reveals that S100A6 plays an important role in osteosarcoma progression, and SNHG1 promotes S100A6 expression by competitively sponging miR-493-5p.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , RNA Longo não Codificante/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese , Osteossarcoma/genética , Osteossarcoma/patologia , RNA Longo não Codificante/genética , Proteína A6 Ligante de Cálcio S100/genética
7.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232318

RESUMO

The polarization of tumor-associated macrophages (TAMs) plays a key role in tumor development and immunotherapy in colorectal cancer (CRC) patients. However, the impact of apoptosis on TAM polarization and immunotherapy efficacy in patients with different mismatch repair statuses (MMR) remains unclear. Here, we constructed an atlas of macrophage and found a higher rate of infiltration of M2-like TAM subpopulation in pMMR CRC tumor tissues compared with that in dMMR CRC tumor tissues. Importantly, a lower infiltration rate of M2c-like TAMs was associated with immunotherapy response. The M2 polarization trajectory revealed the apoptosis of M2c-like TAMs in dMMR while the differentiation of M2c-like TAMs in pMMR, implying a higher polarization level of M2 in pMMR. Furthermore, we found that a high expression of S100A6 induces the apoptosis of M2c-like TAMs in dMMR. In conclusion, we identified apoptotic TAM subpopulations in the M2 polarization trajectory and found that apoptosis caused by the high expression of S100A6 reduces their infiltration in tumors as well as the level of M2 polarization and contributes to a favorable immunotherapy response. These findings provide new insights into the potential role of apoptosis in suppressing tumors and enhancing immunotherapeutic efficacy.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Apoptose , Neoplasias do Colo/patologia , Neoplasias Colorretais/patologia , Reparo de Erro de Pareamento de DNA , Humanos , Imunoterapia , Macrófagos/metabolismo
8.
Cell Biochem Funct ; 39(6): 771-779, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34008212

RESUMO

S100 calcium binding protein A6 (S100A6) has been reported to involve in many kinds of cancers through regulating intracellular calcium homeostasis. Previous studies found that S100A6 increased in lung cancer patients' plasma and pleural effusion. This study focused on its function in Calu-6 lung cancer cells. S100A6 gene was transferred into Calu-6 lung cancer cell line by lentivirus vector, the empty vector transfected cells and the blank cells were set as control groups. MTT was evaluating cell proliferation. The transwell assay was reflecting cell migration and cell invasion. The flow cytometric analysis was detecting cell apoptosis and cell cycle of three groups (Calu-6, Calu-6/neo, Calu-6/S100A6). Nude mouse tumorigenicity was then applied to evaluate S100A6's effect on cellular tumorigenicity. Compared with control groups, Calu-6/S100A6 cells showed a weakening trend in the cell behaviours of proliferation, migration and invasiveness, while had an enhancement of cell apoptosis, with all P < .05. The cell cycle of Calu-6/S100A6 cells had a reduction of S phase and an increase of G1 phase (P < .05). In animal study, after 5 weeks of cell injection, the tumour bulk of Calu-6/S100A6 group was smaller than controls, with P < .05. Our results demonstrate S100A6 inhibits the growth of Calu-6 lung cancer cells, as well as impairs Calu-6's ability in tumorigenesis. At cellular level, S100A6 is supposed to act as a tumour suppressor gene in lung cancer.


Assuntos
Apoptose , Proteínas de Ciclo Celular/metabolismo , Neoplasias Pulmonares/metabolismo , Proteína A6 Ligante de Cálcio S100/metabolismo , Movimento Celular , Proliferação de Células , Humanos , Neoplasias Pulmonares/patologia , Células Tumorais Cultivadas
9.
Biochem Biophys Res Commun ; 533(3): 332-337, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32958253

RESUMO

The Ca2+-mediated S100 family protein S100A6 has a crucial task in various intracellular and extracellular activities thereby demonstrating a possible involvement in the advancement and development of malignant tumors. S100A6 has been found to associate with receptor for advanced glycation end products, RAGE, through its extracellular extension. This extension is famously identified as a prominent receptor for many S100 family associates. Additionally, S100A6 binds to S100B protein and forms a heterodimer. Thus, we consider the S100B protein to be a prospective drug molecule to obstruct the interacting regions amongst S100A6 and RAGE V domain. We applied the NMR spectroscopy method to locate the binding area amid the S100A6m (mutant S100A6, cysteine at 3rd position of S100A6 is replaced with serine, C3S) and S100B proteins. The 1H-15N HSQC NMR titrations revealed the probable requisite dynamics of S100A6m and S100B interfaces. Utilizing data from the NMR titrations as input parameters, we ran the HADDOCK program and created a S100A6m-S100B heterodimer complex. The obtained complex was then superimposed with the reported complex of S100A6m-RAGE V domain. This superimposition displayed the possibility of S100B to be a potential antagonist that can block the interface area of the S100A6m and the RAGE V domain. Moreover, an in vitro cancer model using SW480 cells in water-soluble tetrazolium-1 assay (WST-1) showed a noticeable change in the cell proliferation as an effect of these proteins. Our study indicates the possibility to develop a S100B-like competitor that could play a key role in the treatment of S100- and RAGE-mediated human diseases.


Assuntos
Proteínas de Ciclo Celular/química , Regulação Neoplásica da Expressão Gênica , Receptor para Produtos Finais de Glicação Avançada/química , Proteína A6 Ligante de Cálcio S100/química , Subunidade beta da Proteína Ligante de Cálcio S100/química , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Clonagem Molecular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Proteína A6 Ligante de Cálcio S100/genética , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteína A6 Ligante de Cálcio S100/farmacologia , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/farmacologia
10.
Int J Mol Sci ; 21(11)2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492924

RESUMO

The S100A6 protein is present in different mammalian cells and tissues including the brain. It binds Ca2+ and Zn2+ and interacts with many target proteins/ligands. The best characterized ligands of S100A6, expressed at high level in the brain, include CacyBP/SIP and Sgt1. Research concerning the functional role of S100A6 and these two ligands indicates that they are involved in various signaling pathways that regulate cell proliferation, differentiation, cytoskeletal organization, and others. In this review, we focused on the expression/localization of these proteins in the brain and on their possible role in neurodegenerative diseases. Published results demonstrate that S100A6, CacyBP/SIP, and Sgt1 are expressed in various brain structures and in the spinal cord and can be found in different cell types including neurons and astrocytes. When it comes to their possible involvement in nervous system pathology, it is evident that their expression/level and/or subcellular localization is changed when compared to normal conditions. Among diseases in which such changes have been observed are Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), epileptogenesis, Parkinson's disease (PD), Huntington's disease (HD), and others.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Proteína A6 Ligante de Cálcio S100/metabolismo , Medula Espinal/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Epilepsia/metabolismo , Regulação da Expressão Gênica , Humanos , Doença de Huntington/metabolismo , Ligantes , Camundongos , Doença de Parkinson/metabolismo , Conformação Proteica , Transdução de Sinais
11.
J Cell Physiol ; 234(10): 17561-17569, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30805941

RESUMO

Epidermal growth factor receptor (EGFR) is a central transmitter of mitogenic signals in epithelial cells; enhanced EGFR activity is observed in many tumors of epithelial origin. S100A6 is a small calcium-binding protein, characteristic mainly of epithelial cells and fibroblasts, strongly implicated in cell proliferation and upregulated in tumors. In this study, using biochemical assays along with immunohistochemical and immunocytochemical analysis of organotypic and standard cultures of HaCaT keratinocytes with S100A6 overexpression or knock-down, we have examined the effect of S100A6 on EGFR activity and downstream signaling. We found that HaCaT cells overexpressing S100A6 had enhanced EGFR, phospho EGFR, and phospho extracellular signal-regulated kinase 1/2 (pERK1/2) staining intensity and level coupled to higher signal transducer and activator of transcription 3 (STAT3) activity. Conversely, S100A6 knockdown cells had impaired EGFR signaling that could be enhanced by addition of recombinant S100A6 to the culture media. Altogether the results show that S100A6 may exert its proproliferative effects through activating EGFR.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Queratinócitos/metabolismo , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proliferação de Células/fisiologia , Receptores ErbB/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Queratinócitos/citologia , Sistema de Sinalização das MAP Quinases , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína A6 Ligante de Cálcio S100/antagonistas & inibidores , Proteína A6 Ligante de Cálcio S100/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador alfa/metabolismo
12.
J Cell Physiol ; 233(11): 8826-8838, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29806702

RESUMO

Calcyclin (S100A6) binding protein/Siah-1 interacting protein (CacyBP/SIP) is mainly a cytoplasmic protein; however, some literature data suggested its presence in the nucleus. In this work we examined more precisely the nuclear localization and function of CacyBP/SIP. By applying mass spectrometry, we have identified several nuclear proteins, among them is nucleophosmin (NPM1), that may interact with CacyBP/SIP. Subsequent assays revealed that CacyBP/SIP forms complexes with NPM1 in the cell and that the interaction between these two proteins is direct. Interestingly, although CacyBP/SIP exhibits phosphatase activity, we have found that its overexpression favors phosphorylation of NPM1 on S125. In turn, the RNA immunoprecipitation assay indicated that the altered CacyBP/SIP level has an impact on the amount of 28S and 18S rRNA bound to NPM1. The overexpression of CacyBP/SIP resulted in a significant increase in the binding of 28S and 18S rRNA to NPM1, whereas silencing of CacyBP/SIP expression decreased 28S rRNA binding and had no effect on the binding of 18S rRNA. Further studies have shown that under oxidative stress, CacyBP/SIP overexpression alters NPM1 distribution in cell nuclei. In addition, staining for a nucleolar marker, fibrillarin, revealed that CacyBP/SIP is indispensable for maintaining the nucleolar structure. These results are in agreement with data obtained by western blot analysis, which show that upon oxidative stress the NPM1 level decreases but that CacyBP/SIP overexpression counteracts the effect of stress. Altogether, our results show for the first time that CacyBP/SIP binds to and affects the properties of a nuclear protein, NPM1, and that it is indispensable for preserving the structure of nucleoli under oxidative stress.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Citoplasma/genética , Proteínas Nucleares/genética , Mapas de Interação de Proteínas/genética , Animais , Núcleo Celular/genética , Células HCT116 , Humanos , Camundongos , Nucleofosmina , Estresse Oxidativo/genética , Ligação Proteica/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Proteínas de Ligação a RNA/genética
13.
BMC Cardiovasc Disord ; 18(1): 190, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30286717

RESUMO

BACKGROUND: Recent studies have shown a significant role of the endocannabinoid system, apelin and S100A6 protein in the regulation of cardiovascular system functioning. The aim of the study was to compare and evaluate the distribution of cannabinoid receptors (CB1 and CB2), apelin and S100A6 protein in the heart of healthy women in different age groups. METHODS: The study was conducted on the hearts of 10 women (organ donors) without a history of cardiovascular disease, who were divided into two age groups: women older than 50 years and women under 50 years of age. Paraffin heart sections were processed by immunohistochemistry for detection of cannabinoids receptors (CB1 and CB2), apelin and S100A6 protein. RESULTS: CB1 and CB2 immunoreactivity in the cytoplasm of cardiomyocytes in the heart of women over 50 was weaker than in younger individuals. There was also strong immunoreactivity of CB1 in intercalated discs (ICDs) of the heart, only in women over 50. The presence of this receptor in this location was not found in women under 50. Apelin- and S100A6-immunoreactivity in the cardiomyocytes was stronger in older women compared to women under 50.The CB1, apelin and S100A6 immunostaining in the endothelium of myocardial vessels was weaker in women over 50 than in younger women, while intensity of CB2- immunoreaction in coronary endothelium was similar in both groups of women. The results of the study indicate the important role of endocannabinoids, apelin, and S100A6 protein in cardiac muscle function. CONCLUSION: This report might contribute to a better understanding of the role of endocannabinoid system, apelin and S100 proteins in heart function as well as shed new light on processes involved in age-related cardiomyopathy.


Assuntos
Apelina/análise , Proteínas de Ciclo Celular/análise , Miócitos Cardíacos/química , Receptor CB1 de Canabinoide/análise , Receptor CB2 de Canabinoide/análise , Proteína A6 Ligante de Cálcio S100/análise , Adulto , Fatores Etários , Células Endoteliais/química , Humanos , Pessoa de Meia-Idade , Fatores Sexuais , Adulto Jovem
14.
Cell Mol Life Sci ; 74(15): 2749-2760, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28417162

RESUMO

S100A6 protein belongs to the A group of the S100 protein family of Ca2+-binding proteins. It is expressed in a limited number of cell types in adult normal tissues and in several tumor cell types. As an intracellular protein, S100A6 has been implicated in the regulation of several cellular functions, such as proliferation, apoptosis, the cytoskeleton dynamics, and the cellular response to different stress factors. S100A6 can be secreted/released by certain cell types which points to extracellular effects of the protein. RAGE (receptor for advanced glycation endproducts) and integrin ß1 transduce some extracellular S100A6's effects. Dosage of serum S100A6 might aid in diagnosis in oncology.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Neoplasias/metabolismo , Proteínas S100/metabolismo , Animais , Apoptose , Proteínas de Ciclo Celular/sangue , Proteínas de Ciclo Celular/genética , Movimento Celular , Citoesqueleto/genética , Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Humanos , Integrina beta1/metabolismo , Neoplasias/sangue , Neoplasias/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Proteína A6 Ligante de Cálcio S100 , Proteínas S100/sangue , Proteínas S100/genética , Transdução de Sinais , Células-Tronco/metabolismo
15.
Gynecol Endocrinol ; 34(9): 815-820, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29544367

RESUMO

S100 calcium-binding protein A6 (S100A6) is up-regulated in many malignancies and overexpression of S100A6 has been identified associated with proliferation, migration and invasion phenotype in several cancer cells. In the present study, we explored whether S100A6 plays a role in the development of endometriosis. Significantly higher levels of mRNA and protein expression of S100A6 were observed in ectopic endometrial tissues compared to eutopic and normal endometrial tissues. Silencing of S100A6 in ectopic endometrial stromal cells (ESCs) significantly inhibited cell viability, migration and invasion. Moreover, knockdown of S100A6 suppressed p38/MAPK activity in ectopic ESCs, which can be partially attenuated by CacyBP/SIP phosphorylation inhibitor. In conclusion, our results suggest that the abnormal expression of S100A6 may contribute to the pathogenesis of endometriosis and the S100A6/CacyBP/p38 signaling may provide as a promising treatment target.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Endometriose/metabolismo , Endométrio/metabolismo , Proteína A6 Ligante de Cálcio S100/metabolismo , Células Estromais/metabolismo , Regulação para Cima , Adulto , Proteínas de Ciclo Celular/genética , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Endometriose/genética , Feminino , Humanos , Proteína A6 Ligante de Cálcio S100/genética , Adulto Jovem
16.
Biochem Biophys Res Commun ; 491(4): 980-985, 2017 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-28765046

RESUMO

S100A6 is a Ca2+-signal transducer that interacts with numerous proteins and regulates their biochemical functions. Here we identified a centrosomal protein, FOR20 (FOP-related protein of 20 kDa) as a novel S100A6 target by screening protein microarrays carrying 19,676 recombinant GST-fused human proteins. Binding experiments revealed that S100A6 interacts with the N-terminal region (residues 1-30) of FOR20 in a Ca2+-dependent manner in vitro and in living cells. Several S100 proteins including S100A1, A2, A4, A11, B also exhibited Ca2+-dependent interactions with FOR20 as well as S100A6. We found that two distantly related centrosomal proteins, FOP and OFD1, also possess N-terminal regions with a significant sequence similarity to the putative S100A6-binding site (residues 1-30) in FOR20 and are capable of binding to S100A6 in a Ca2+-dependent manner. Taken together, these results may indicate that S100A6 interacts with FOR20 and related centrosomal proteins through a conserved N-terminal domain, suggesting a novel Ca2+-dependent regulation of centrosomal function.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas/química , Proteínas/metabolismo , Proteínas S100/química , Proteínas S100/metabolismo , Animais , Células COS , Células Cultivadas , Centrossomo/química , Centrossomo/metabolismo , Chlorocebus aethiops , Células HeLa , Humanos , Análise Serial de Proteínas , Ligação Proteica , Proteína A6 Ligante de Cálcio S100 , Especificidade por Substrato
17.
Biol Chem ; 398(10): 1087-1094, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28343163

RESUMO

The Ca2+-binding protein, S100A6, belongs to the S100 family. Binding of Ca2+ induces a conformational change, which causes an increase in the overall S100A6 hydrophobicity and allows it to interact with many targets. S100A6 is expressed in different normal tissues and in many tumors. Up to now it has been shown that S100A6 is involved in cell proliferation, cytoskeletal dynamics and tumorigenesis, and that it might have some extracellular functions. In this review, we summarize novel discoveries concerning S100A6 targets, its involvement in cellular signaling pathways, and presence in stem/progenitor cells, extracellular matrix and body fluids of diseased patients.


Assuntos
Proteínas S100/metabolismo , Animais , Líquidos Corporais/metabolismo , Cálcio/metabolismo , Matriz Extracelular/metabolismo , Humanos , Transdução de Sinais , Células-Tronco/metabolismo
18.
Mol Carcinog ; 56(3): 972-984, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27596819

RESUMO

An elevated level of S100A6 is associated with poor outcomes of many tumor types, but, how S100A6 contributes to nasopharyngeal carcinoma (NPC) progression remains unknown. Here, we investigated the expression and prognostic significance of S100A6 in NPC and explored the molecular mechanisms under-lying the role of S100A6 in NPC development. The results showed that S100A6 was markedly up-regulated in NPC tissues and cell lines compared to paired peritumoral normal tissues and a normal nasopharyngeal epithelial cell line, respectively. In tissues from 92 NPC patients, high S100A6 expression was associated with advanced N stage, locoregional failure and disease progression and was predictive of poor locoregional recurrence-free survival (LRRFS, P = 0.001) and progression-free survival (PFS, P = 0.001). Multivariate analysis showed that S100A6 is an independent prognostic factor for LRRFS and PFS. Silencing S100A6 using siRNA or shRNA significantly suppressed NPC cell proliferation, colony formation and p38/mitogen-activated protein kinase (MAPK) activity in vitro and inhibited tumor growth in a xenograft mouse model of NPC. In contrast, overexpressing S100A6 via plasmid transfection resulted in increased NPC cell proliferation and p38/MAPK activation. S100A6-induced proliferation was abolished by a p38 inhibitor. In summary, S100A6 may be a new prognostic marker of NPC and may promote NPC development via the activation of p38/MAPK signaling pathways. These findings suggest S100A6/p38/MAPK signaling as a potential therapeutic target for NPC. © 2016 Wiley Periodicals, Inc.


Assuntos
Carcinoma/patologia , Proteínas de Ciclo Celular/metabolismo , Sistema de Sinalização das MAP Quinases , Neoplasias Nasofaríngeas/patologia , Proteínas S100/metabolismo , Regulação para Cima , Animais , Carcinoma/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/metabolismo , Estadiamento de Neoplasias , Transplante de Neoplasias , Prognóstico , Estudos Retrospectivos , Proteína A6 Ligante de Cálcio S100
19.
Arterioscler Thromb Vasc Biol ; 36(9): 1854-67, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27386938

RESUMO

OBJECTIVE: S100A6, a member of the S100 protein family, has been described as relevant for cell cycle entry and progression in endothelial cells. The molecular mechanism conferring S100A6's proliferative actions, however, remained elusive. APPROACH AND RESULTS: Originating from the clinically relevant observation of enhanced S100A6 protein expression in proliferating endothelial cells in remodeling coronary and carotid arteries, our study unveiled S100A6 as a suppressor of antiproliferative signal transducers and activators of transcription 1 signaling. Discovery of the molecular liaison was enabled by combining gene expression time series analysis with bioinformatic pathway modeling in S100A6-silenced human endothelial cells stimulated with vascular endothelial growth factor A. This unbiased approach led to successful identification and experimental validation of interferon-inducible transmembrane protein 1 and protein inhibitors of activated signal transducers and activators of transcription as key components of the link between S100A6 and signal transducers and activators of transcription 1. CONCLUSIONS: Given the important role of coordinated endothelial cell cycle activity for integrity and reconstitution of the inner lining of arterial blood vessels in health and disease, signal transducers and activators of transcription 1 suppression by S100A6 may represent a promising therapeutic target to facilitate reendothelialization in damaged vessels.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Proliferação de Células , Células Endoteliais/metabolismo , Proteínas S100/metabolismo , Fator de Transcrição STAT1/metabolismo , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Biologia Computacional , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Inativação Gênica , Humanos , Masculino , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Interferência de RNA , Ratos Sprague-Dawley , Reepitelização , Proteína A6 Ligante de Cálcio S100 , Proteínas S100/genética , Fator de Transcrição STAT1/genética , Transdução de Sinais , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sus scrofa , Fatores de Tempo , Transcriptoma , Transfecção , Fator A de Crescimento do Endotélio Vascular/farmacologia , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia
20.
Future Oncol ; 13(23): 2053-2063, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28984474

RESUMO

AIM: We explored the expression of S100A6 and its role in intrahepatic cholangiocarcinoma (ICC). METHODS: The expression of S100A6 in ICC samples was detected by immunohistochemistry. In vitro experiments, we silenced and overexpressed S100A6 to investigate its role in cell functions. RESULTS: The expression of S100A6 was markedly increased in ICC tissues and cell lines. S100A6 overexpression was an independent risk factor for patients' survival. Silencing S100A6 resulted in a suppression of proliferation and p38/MAPK activity, while overexpressing S100A6 caused a promotion of proliferation and p38/MAPK. DISCUSSION:  S100A6 participated in the proliferation of ICC cells and correlated with a more aggressive behavior of ICC. Conclusion: S100A6 may serve as a novel prognostic marker and a potential therapeutic target for ICC patients.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Proteínas de Ciclo Celular/metabolismo , Colangiocarcinoma/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Adulto , Idoso , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/mortalidade , Neoplasias dos Ductos Biliares/patologia , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Colangiocarcinoma/genética , Colangiocarcinoma/mortalidade , Colangiocarcinoma/patologia , Feminino , Seguimentos , Expressão Gênica , Humanos , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Proteína A6 Ligante de Cálcio S100/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA