Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Gastroenterol Hepatol ; 6(2): 149-162, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30023411

RESUMO

Short-bowel syndrome represents the most common cause of intestinal failure and occurs when the remaining intestine cannot support fluid and nutrient needs to sustain adequate physiology and development without the use of supplemental parenteral nutrition. After intestinal loss or damage, the remnant bowel undergoes multifactorial compensatory processes, termed adaptation, which are largely driven by intraluminal nutrient exposure. Previous studies have provided insight into the biological processes and mediators after resection, however, there still remains a gap in the knowledge of more comprehensive mechanisms that drive the adaptive responses in these patients. Recent data support the microbiota as a key mediator of gut homeostasis and a potential driver of metabolism and immunomodulation after intestinal loss. In this review, we summarize the emerging ideas related to host-microbiota interactions in the intestinal adaptation processes.

2.
Cell Mol Gastroenterol Hepatol ; 4(2): 285-297, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28795125

RESUMO

BACKGROUND & AIMS: Despite a prominent association, chronic intestinal barrier loss is insufficient to induce disease in human subjects or experimental animals. We hypothesized that compensatory mucosal immune activation might protect individuals with increased intestinal permeability from disease. We used a model in which intestinal barrier loss is triggered by intestinal epithelial-specific expression of constitutively active myosin light chain kinase (CA-MLCK). Here we asked whether constitutive tight junction barrier loss impacts susceptibility to enteric pathogens. METHODS: Acute or chronic Toxoplasma gondii or Salmonella typhimurium infection was assessed in CA-MLCK transgenic or wild-type mice. Germ-free mice or those lacking specific immune cell populations were used to investigate the effect of microbial-activated immunity on pathogen translocation in the context of increased intestinal permeability. RESULTS: Acute T gondii and S typhimurium translocation across the epithelial barrier was reduced in CA-MLCK mice. This protection was due to enhanced mucosal immune activation that required CD4+ T cells and interleukin 17A but not immunoglobulin A. The protective mucosal immune activation in CA-MLCK mice depended on segmented filamentous bacteria (SFB), because protection against early S typhimurium invasion was lost in germ-free CA-MLCK mice but could be restored by conventionalization with SFB-containing, not SFB-deficient, microbiota. In contrast, chronic S typhimurium infection was more severe in CA-MLCK mice, suggesting that despite activation of protective mucosal immunity, barrier defects ultimately result in enhanced disease progression. CONCLUSIONS: Increased epithelial tight junction permeability synergizes with commensal bacteria to promote intestinal CD4+ T-cell expansion and interleukin 17A production that limits enteric pathogen invasion.

3.
Gut Microbes ; 6(2): 156-60, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25901893

RESUMO

The symbiotic relationship between the mammalian host and gut microbes has fascinated many researchers in recent years. Use of germ-free animals has contributed to our understanding of how commensal microbes affect the host. Immunodeficiency animals lacking specific components of the mammalian immune system, on the other hand, enable studying of the reciprocal function-how the host controls which microbes to allow for symbiosis. Here we review the recent advances and discuss our perspectives of how to better understand the latter, with an emphasis on the effects of adaptive immunity on the composition and diversity of gut commensal bacteria.


Assuntos
Imunidade Adaptativa , Microbioma Gastrointestinal/imunologia , Simbiose , Animais , Humanos
4.
Gut Microbes ; 6(1): 10-23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25531553

RESUMO

Alterations in the composition of the commensal microbiota (dysbiosis) seem to be a pathogenic component of functional gastrointestinal disorders, mainly irritable bowel syndrome (IBS), and might participate in the secretomotor and sensory alterations observed in these patients.We determined if a state antibiotics-induced intestinal dysbiosis is able to modify colonic pain-related and motor responses and characterized the neuro-immune mechanisms implicated in mice. A 2-week antibiotics treatment induced a colonic dysbiosis (increments in Bacteroides spp, Clostridium coccoides and Lactobacillus spp and reduction in Bifidobacterium spp). Bacterial adherence was not affected. Dysbiosis was associated with increased levels of secretory-IgA, up-regulation of the antimicrobial lectin RegIIIγ, and toll-like receptors (TLR) 4 and 7 and down-regulation of the antimicrobial-peptide Resistin-Like Molecule-ß and TLR5. Dysbiotic mice showed less goblet cells, without changes in the thickness of the mucus layer. Neither macroscopical nor microscopical signs of inflammation were observed. In dysbiotic mice, expression of the cannabinoid receptor 2 was up-regulated, while the cannabinoid 1 and the mu-opioid receptors were down-regulated. In antibiotic-treated mice, visceral pain-related responses elicited by intraperitoneal acetic acid or intracolonic capsaicin were significantly attenuated. Colonic contractility was enhanced during dysbiosis. Intestinal dysbiosis induce changes in the innate intestinal immune system and modulate the expression of pain-related sensory systems, an effect associated with a reduction in visceral pain-related responses. Commensal microbiota modulates gut neuro-immune sensory systems, leading to functional changes, at least as it relates to viscerosensitivity. Similar mechanisms might explain the beneficial effects of antibiotics or certain probiotics in the treatment of IBS.


Assuntos
Antibacterianos/efeitos adversos , Colo/microbiologia , Colo/fisiologia , Disbiose/induzido quimicamente , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Antibacterianos/administração & dosagem , Colo/efeitos dos fármacos , Colo/patologia , Feminino , Camundongos
5.
Gut Microbes ; 5(5): 594-605, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25483329

RESUMO

Immediately following birth, the gastrointestinal tract is colonized with a complex community of bacteria, which helps shape the immune system. Under conditions of health, the immune system is able to differentiate between innocuous antigens, including food protein and commensals, and harmful antigens such as pathogens. However, patients with celiac disease (CD) develop an intolerance to gluten proteins which results in a pro-inflammatory T-cell mediated immune response with production of anti-gluten and anti-tissue transglutaminase antibodies. This adaptive immune response, in conjunction with activation of innate inflammatory cells, lead to destruction of the small intestinal mucosa. Overall 30% of the global population has genetic risk to develop CD. However, only a small proportion develop CD, suggesting that additional environmental factors must play a role in disease pathogenesis. Alterations in small intestinal microbial composition have recently been associated with active CD, indicating a possible role for the microbiota in CD. However, studies demonstrating causality are lacking. This review will highlight the recent data on the potential role of the microbiota in CD pathogenesis, the potential mechanisms, and discuss future research directions.


Assuntos
Doença Celíaca/microbiologia , Doença Celíaca/patologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Glutens/imunologia , Glutens/metabolismo , Microbiota , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA