Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Ther Oncol ; 12(3): 223-229, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29790314

RESUMO

OBJECTIVE: We describe the first case of a novel treatment for a newly diagnosed glioblastoma (GBM) using superselective intraarterial cerebral infusion (SIACI) of cetuximab after osmotic disruption of the blood-brain barrier (BBB) with mannitol. A 51year-old female underwent craniotomy for removal of a right frontal GBM. Pathology confirmed EGFR amplification, and she underwent three treatments of SIACI of cetuximab to the tumor site. The first treatment was given within a week of starting standard of care chemoradiation (Stupp protocol), which is a combination of radiation treatment (2 Gy per/ day x 30 days, total of 60 Gy) and oral temozolomide (75 mg/m2). The second and third SIACI of cetuximab were administered 3 and 6 months later, while the patient continued on maintenance temozolomide. Post-radiation changes on MRI were stable, and there were no signs of recurrence at 4 and 6 months post-resection. Herein, we detail the technical aspects of this novel treatment paradigm and suggest that SIACI of cetuximab after BBB disruption using mannitol, combined with the standard of care chemoradiation therapy, may be an effective treatment method for newly diagnosed EGFR amplified glioblastoma.


Assuntos
Antineoplásicos Alquilantes/administração & dosagem , Antineoplásicos Imunológicos/administração & dosagem , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/terapia , Cetuximab/administração & dosagem , Dacarbazina/análogos & derivados , Fracionamento da Dose de Radiação , Glioblastoma/terapia , Manitol/uso terapêutico , Angiografia Digital , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Angiografia Cerebral/métodos , Quimiorradioterapia Adjuvante , Quimioterapia Adjuvante , Craniotomia , Dacarbazina/administração & dosagem , Feminino , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Infusões Intra-Arteriais , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Temozolomida , Resultado do Tratamento
2.
Front Oncol ; 12: 950167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212394

RESUMO

Objective: To provide a comprehensive review of intra-arterial cerebral infusions of chemotherapeutics in glioblastoma multiforme treatment and discuss potential research aims. We describe technical aspects of the intra-arterial delivery, methods of blood-brain barrier disruption, the role of intraoperative imaging and clinical trials involving intra-arterial cerebral infusions of chemotherapeutics in the treatment of glioblastoma multiforme. Method: 159 articles in English were reviewed and used as the foundation for this paper. The Medline/Pubmed, Cochrane databases, Google Scholar, Scielo and PEDro databases have been used to select the most relevant and influential papers on the intra-arterial cerebral infusions of chemotherapeutics in the treatment of glioblastoma multiforme. Additionally, we have included some relevant clinical trials involving intra-arterial delivery of chemotherapeutics to other than GBM brain tumours. Conclusion: Considering that conventional treatments for glioblastoma multiforme fall short of providing a significant therapeutic benefit, with a majority of patients relapsing, the neuro-oncological community has considered intra-arterial administration of chemotherapeutics as an alternative to oral or intravenous administration. Numerous studies have proven the safety of IA delivery of chemotherapy and its ability to ensure higher drug concentrations in targeted areas, simultaneously limiting systemic toxicity. Nonetheless, the scarcity of phase III trials prevents any declaration of a therapeutic benefit. Given that the likelihood of a single therapeutic agent which will be effective for the treatment of glioblastoma multiforme is extremely low, it is paramount to establish an adequate multimodal therapy which will have a synergistic effect on the diverse pathogenesis of GBM. Precise quantitative and spatial monitoring is necessary to guarantee the accurate delivery of the therapeutic to the tumour. New and comprehensive pharmacokinetic models, a more elaborate understanding of glioblastoma biology and effective methods of diminishing treatment-related neurotoxicity are paramount for intra-arterial cerebral infusion of chemotherapeutics to become a mainstay treatment for glioblastoma multiforme. Additional use of other imaging methods like MRI guidance during the procedure could have an edge over X-ray alone and aid in selecting proper arteries as well as infusion parameters of chemotherapeutics making the procedure safer and more effective.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA