Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.749
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(4): 957-968.e21, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33567265

RESUMO

Ligand-gated ion channels mediate signal transduction at chemical synapses and transition between resting, open, and desensitized states in response to neurotransmitter binding. Neurotransmitters that produce maximum open channel probabilities (Po) are full agonists, whereas those that yield lower than maximum Po are partial agonists. Cys-loop receptors are an important class of neurotransmitter receptors, yet a structure-based understanding of the mechanism of partial agonist action has proven elusive. Here, we study the glycine receptor with the full agonist glycine and the partial agonists taurine and γ-amino butyric acid (GABA). We use electrophysiology to show how partial agonists populate agonist-bound, closed channel states and cryo-EM reconstructions to illuminate the structures of intermediate, pre-open states, providing insights into previously unseen conformational states along the receptor reaction pathway. We further correlate agonist-induced conformational changes to Po across members of the receptor family, providing a hypothetical mechanism for partial and full agonist action at Cys-loop receptors.


Assuntos
Ativação do Canal Iônico , Receptores de Glicina/agonistas , Receptores de Glicina/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Microscopia Crioeletrônica , Glicina , Células HEK293 , Humanos , Imageamento Tridimensional , Maleatos/química , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Neurotransmissores/metabolismo , Domínios Proteicos , Receptores de Glicina/genética , Receptores de Glicina/ultraestrutura , Estireno/química , Peixe-Zebra , Ácido gama-Aminobutírico/metabolismo
2.
EMBO J ; 43(10): 1919-1946, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38360993

RESUMO

Most cellular ubiquitin signaling is initiated by UBA1, which activates and transfers ubiquitin to tens of E2 enzymes. Clonally acquired UBA1 missense mutations cause an inflammatory-hematologic overlap disease called VEXAS (vacuoles, E1, X-linked, autoinflammatory, somatic) syndrome. Despite extensive clinical investigation into this lethal disease, little is known about the underlying molecular mechanisms. Here, by dissecting VEXAS-causing UBA1 mutations, we discovered that p.Met41 mutations alter cytoplasmic isoform expression, whereas other mutations reduce catalytic activity of nuclear and cytoplasmic isoforms by diverse mechanisms, including aberrant oxyester formation. Strikingly, non-p.Met41 mutations most prominently affect transthioesterification, revealing ubiquitin transfer to cytoplasmic E2 enzymes as a shared property of pathogenesis amongst different VEXAS syndrome genotypes. A similar E2 charging bottleneck exists in some lung cancer-associated UBA1 mutations, but not in spinal muscular atrophy-causing UBA1 mutations, which instead, render UBA1 thermolabile. Collectively, our results highlight the precision of conformational changes required for faithful ubiquitin transfer, define distinct and shared mechanisms of UBA1 inactivation in diverse diseases, and suggest that specific E1-E2 modules control different aspects of tissue differentiation and maintenance.


Assuntos
Enzimas Ativadoras de Ubiquitina , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/genética , Humanos , Mutação de Sentido Incorreto , Ubiquitina/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo
3.
Hum Mol Genet ; 33(13): 1120-1130, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38520738

RESUMO

Spinal muscular atrophy (SMA), which results from the deletion or/and mutation in the SMN1 gene, is an autosomal recessive neuromuscular disorder that leads to weakness and muscle atrophy. SMN2 is a paralogous gene of SMN1. SMN2 copy number affects the severity of SMA, but its role in patients treated with disease modifying therapies is unclear. The most appropriate individualized treatment for SMA has not yet been determined. Here, we reported a case of SMA type I with normal breathing and swallowing function. We genetically confirmed that this patient had a compound heterozygous variant: one deleted SMN1 allele and a novel splice mutation c.628-3T>G in the retained allele, with one SMN2 copy. Patient-derived sequencing of 4 SMN1 cDNA clones showed that this intronic single transversion mutation results in an alternative exon (e)5 3' splice site, which leads to an additional 2 nucleotides (AG) at the 5' end of e5, thereby explaining why the patient with only one copy of SMN2 had a mild clinical phenotype. Additionally, a minigene assay of wild type and mutant SMN1 in HEK293T cells also demonstrated that this transversion mutation induced e5 skipping. Considering treatment cost and goals of avoiding pain caused by injections and starting treatment as early as possible, risdiplam was prescribed for this patient. However, the patient showed remarkable clinical improvements after treatment with risdiplam for 7 months despite carrying only one copy of SMN2. This study is the first report on the treatment of risdiplam in a patient with one SMN2 copy in a real-world setting. These findings expand the mutation spectrum of SMA and provide accurate genetic counseling information, as well as clarify the molecular mechanism of careful genotype-phenotype correlation of the patient.


Assuntos
Mutação , Splicing de RNA , Atrofias Musculares Espinais da Infância , Proteína 2 de Sobrevivência do Neurônio Motor , Feminino , Humanos , Alelos , Compostos Azo , Éxons/genética , Células HEK293 , Pirimidinas/uso terapêutico , Splicing de RNA/genética , Atrofias Musculares Espinais da Infância/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Recém-Nascido , Lactente
4.
Hum Mol Genet ; 33(15): 1367-1377, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38704739

RESUMO

Spinal Muscular Atrophy is caused by partial loss of survival of motoneuron (SMN) protein expression. The numerous interaction partners and mechanisms influenced by SMN loss result in a complex disease. Current treatments restore SMN protein levels to a certain extent, but do not cure all symptoms. The prolonged survival of patients creates an increasing need for a better understanding of SMA. Although many SMN-protein interactions, dysregulated pathways, and organ phenotypes are known, the connections among them remain largely unexplored. Monogenic diseases are ideal examples for the exploration of cause-and-effect relationships to create a network describing the disease-context. Machine learning tools can utilize such knowledge to analyze similarities between disease-relevant molecules and molecules not described in the disease so far. We used an artificial intelligence-based algorithm to predict new genes of interest. The transcriptional regulation of 8 out of 13 molecules selected from the predicted set were successfully validated in an SMA mouse model. This bioinformatic approach, using the given experimental knowledge for relevance predictions, enhances efficient targeted research in SMA and potentially in other disease settings.


Assuntos
Inteligência Artificial , Biologia Computacional , Modelos Animais de Doenças , Atrofia Muscular Espinal , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Animais , Camundongos , Humanos , Biologia Computacional/métodos , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Aprendizado de Máquina , Algoritmos , Regulação da Expressão Gênica/genética
5.
Development ; 150(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37823339

RESUMO

The kidney vasculature has a complex architecture that is essential for renal function. The molecular mechanisms that direct development of kidney blood vessels are poorly characterized. We identified a regionally restricted, stroma-derived signaling molecule, netrin 1 (Ntn1), as a regulator of renal vascular patterning in mice. Stromal progenitor (SP)-specific ablation of Ntn1 (Ntn1SPKO) resulted in smaller kidneys with fewer glomeruli, as well as profound defects of the renal artery and transient blood flow disruption. Notably, Ntn1 ablation resulted in loss of arterial vascular smooth muscle cell (vSMC) coverage and in ectopic SMC deposition at the kidney surface. This was accompanied by dramatic reduction of arterial tree branching that perdured postnatally. Transcriptomic analysis of Ntn1SPKO kidneys revealed dysregulation of vSMC differentiation, including downregulation of Klf4, which we find expressed in a subset of SPs. Stromal Klf4 deletion similarly resulted in decreased smooth muscle coverage and arterial branching without, however, the disruption of renal artery patterning and perfusion seen in Ntn1SPKO. These data suggest a stromal Ntn1-Klf4 axis that regulates stromal differentiation and reinforces stromal-derived smooth muscle as a key regulator of renal blood vessel formation.


Assuntos
Perfilação da Expressão Gênica , Rim , Camundongos , Animais , Netrina-1/genética , Netrina-1/metabolismo , Rim/fisiologia , Diferenciação Celular/genética , Morfogênese , Miócitos de Músculo Liso
6.
Genes Dev ; 32(15-16): 1045-1059, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30012555

RESUMO

Ubiquitous deficiency in the survival motor neuron (SMN) protein causes death of motor neurons-a hallmark of the neurodegenerative disease spinal muscular atrophy (SMA)-through poorly understood mechanisms. Here, we show that the function of SMN in the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs) regulates alternative splicing of Mdm2 and Mdm4, two nonredundant repressors of p53. Decreased inclusion of critical Mdm2 and Mdm4 exons is most prominent in SMA motor neurons and correlates with both snRNP reduction and p53 activation in vivo. Importantly, increased skipping of Mdm2 and Mdm4 exons regulated by SMN is necessary and sufficient to synergistically elicit robust p53 activation in wild-type mice. Conversely, restoration of full-length Mdm2 and Mdm4 suppresses p53 induction and motor neuron degeneration in SMA mice. These findings reveal that loss of SMN-dependent regulation of Mdm2 and Mdm4 alternative splicing underlies p53-mediated death of motor neurons in SMA, establishing a causal link between snRNP dysfunction and neurodegeneration.


Assuntos
Processamento Alternativo , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas/genética , Animais , Morte Celular , Éxons , Camundongos , Neurônios Motores/patologia , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/fisiopatologia , Células NIH 3T3 , Degeneração Neural/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Ribonucleoproteínas Nucleares Pequenas/biossíntese , Proteína Supressora de Tumor p53/metabolismo
7.
J Neurosci ; 44(8)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38123361

RESUMO

When we intensively train a timing skill, such as learning to play the piano, we not only produce brain changes associated with task-specific learning but also improve our performance in other temporal behaviors that depend on these tuned neural resources. Since the neural basis of time learning and generalization is still unknown, we measured the changes in neural activity associated with the transfer of learning from perceptual to motor timing in a large sample of subjects (n = 65; 39 women). We found that intense training in an interval discrimination task increased the acuity of time perception in a group of subjects that also exhibited learning transfer, expressed as a reduction in inter-tap interval variability during an internally driven periodic motor task. In addition, we found subjects with no learning and/or generalization effects. Notably, functional imaging showed an increase in pre-supplementary motor area and caudate-putamen activity between the post- and pre-training sessions of the tapping task. This increase was specific to the subjects that generalized their timing acuity from the perceptual to the motor context. These results emphasize the central role of the cortico-basal ganglia circuit in the generalization of timing abilities between tasks.


Assuntos
Córtex Motor , Humanos , Feminino , Transferência de Experiência , Imageamento por Ressonância Magnética/métodos , Encéfalo , Gânglios da Base , Destreza Motora
8.
Biochem Biophys Res Commun ; 712-713: 149923, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640735

RESUMO

Stasimon/Tmem41b is a transmembrane protein with phospholipid scrambling activity that resides in the endoplasmic reticulum and has been implicated in autophagy, lipid metabolism, and viral replication. Stasimon/Tmem41b has also been linked to the function of sensory-motor circuits and the pathogenesis of spinal muscular atrophy. However, the early embryonic lethality of constitutive knockout in mice has hindered the analysis of spatial and temporal requirements of Stasimon/Tmem41b in vivo. To address this, we developed a novel mouse line harboring a conditional knockout allele of the Stasimon/Tmem41b gene in which exon 4 has been flanked by loxP sites (Stas/Tmem41bCKO). Cre-mediated recombination of Stas/Tmem41bCKO generates a functionally null allele (Stas/Tmem41bΔ4) resulting in loss of protein expression and embryonic lethality in the homozygous mouse mutant. Here, using a ubiquitously expressed, tamoxifen inducible Cre recombinase in the homozygous Stas/Tmem41bCKO mice, we demonstrate that postnatal depletion of Stasimon/Tmem41b rapidly arrests weight gain in adult mice and causes motor dysfunction and death approximately three weeks after tamoxifen treatment. Moreover, we show that depletion of Stasimon/Tmem41b severely affects cell proliferation in mouse embryonic fibroblasts. This study provides new insights into the essential requirement of Stasimon/Tmem41b for cellular and organismal fitness and expands the experimental toolkit to investigate its functions in the mammalian system.


Assuntos
Proliferação de Células , Proteínas de Membrana , Camundongos Knockout , Animais , Camundongos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fibroblastos/metabolismo , Camundongos Endogâmicos C57BL
9.
RNA ; 28(3): 303-319, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34893560

RESUMO

Spinal muscular atrophy (SMA) is a devastating neurodegenerative disease caused by reduced amounts of the ubiquitously expressed Survival of Motor Neuron (SMN) protein. In agreement with its crucial role in the biogenesis of spliceosomal snRNPs, SMN-deficiency is correlated to numerous splicing alterations in patient cells and various tissues of SMA mouse models. Among the snRNPs whose assembly is impacted by SMN-deficiency, those involved in the minor spliceosome are particularly affected. Importantly, splicing of several, but not all U12-dependent introns has been shown to be affected in different SMA models. Here, we have investigated the molecular determinants of this differential splicing in spinal cords from SMA mice. We show that the branchpoint sequence (BPS) is a key element controlling splicing efficiency of minor introns. Unexpectedly, splicing of several minor introns with suboptimal BPS is not affected in SMA mice. Using in vitro splicing experiments and oligonucleotides targeting minor or major snRNAs, we show for the first time that splicing of these introns involves both the minor and major machineries. Our results strongly suggest that splicing of a subset of minor introns is not affected in SMA mice because components of the major spliceosome compensate for the loss of minor splicing activity.


Assuntos
Atrofia Muscular Espinal/genética , Splicing de RNA , Spliceossomos/metabolismo , Animais , Células HeLa , Humanos , Íntrons , Camundongos , Atrofia Muscular Espinal/metabolismo , Sítios de Splice de RNA , Ribonucleoproteínas Nucleares Pequenas/metabolismo
10.
J Virol ; 97(6): e0032723, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37255444

RESUMO

The mature human immunodeficiency virus (HIV) envelope glycoprotein (Env) trimer, which consists of noncovalently associated gp120 exterior and gp41 transmembrane subunits, mediates virus entry into cells. The pretriggered (State-1) Env conformation is the major target for broadly neutralizing antibodies (bNAbs), whereas receptor-induced downstream Env conformations elicit immunodominant, poorly neutralizing antibody (pNAb) responses. To examine the contribution of membrane anchorage to the maintenance of the metastable pretriggered Env conformation, we compared wild-type and State-1-stabilized Envs solubilized in detergents or in styrene-maleic acid (SMA) copolymers. SMA directly incorporates membrane lipids and resident membrane proteins into lipid nanoparticles (styrene-maleic acid lipid particles [SMALPs]). The integrity of the Env trimer in SMALPs was maintained at both 4°C and room temperature. In contrast, Envs solubilized in Cymal-5, a nonionic detergent, were unstable at room temperature, although their stability was improved at 4°C and/or after incubation with the entry inhibitor BMS-806. Envs solubilized in ionic detergents were relatively unstable at either temperature. Comparison of Envs solubilized in Cymal-5 and SMA at 4°C revealed subtle differences in bNAb binding to the gp41 membrane-proximal external region, consistent with these distinct modes of Env solubilization. Otherwise, the antigenicity of the Cymal-5- and SMA-solubilized Envs was remarkably similar, both in the absence and in the presence of BMS-806. However, both solubilized Envs were recognized differently from the mature membrane Env by specific bNAbs and pNAbs. Thus, detergent-based and detergent-free solubilization at 4°C alters the pretriggered membrane Env conformation in consistent ways, suggesting that Env assumes default conformations when its association with the membrane is disrupted. IMPORTANCE The human immunodeficiency virus (HIV) envelope glycoproteins (Envs) in the viral membrane mediate virus entry into the host cell and are targeted by neutralizing antibodies elicited by natural infection or vaccines. Detailed studies of membrane proteins rely on purification procedures that allow the proteins to maintain their natural conformation. In this study, we show that a styrene-maleic acid (SMA) copolymer can extract HIV-1 Env from a membrane without the use of detergents. The Env in SMA is more stable at room temperature than Env in detergents. The purified Env in SMA maintains many but not all of the characteristics expected of the natural membrane Env. Our results underscore the importance of the membrane environment to the native conformation of HIV-1 Env. Purification methods that bypass the need for detergents could be useful tools for future studies of HIV-1 Env structure and its interaction with receptors and antibodies.


Assuntos
Proteína gp120 do Envelope de HIV , Proteína gp41 do Envelope de HIV , HIV-1 , Anticorpos Amplamente Neutralizantes , Produtos do Gene env do Vírus da Imunodeficiência Humana , Glicoproteínas/química , Anticorpos Anti-HIV , Proteína gp120 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/química , Lipídeos , Conformação Proteica , Estireno/metabolismo , Detergentes
11.
Clin Exp Immunol ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902849

RESUMO

Smooth muscle antibodies (SMA) with anti-microfilament actin (MF-SMA) specificity are regarded as highly specific markers of type 1 autoimmune hepatitis (AIH-1) but their recognition relying on immunofluorescence of vessel, glomeruli, and tubules (SMA-VGT pattern) in rodent kidney-tissue, is restricted by operator-dependent interpretation.A gold standard method for their identification is not available. We assessed and compared the diagnostic accuracy for AIH-1 of an embryonal-aorta vascular-smooth-muscle(VSM) cell line-based assay with those of the rodent-tissue based assay for the detection of MF-SMA pattern in AIH-1 patients and controls. Sera from 138 AIH-1 patients and 295 controls (105 primary biliary cholangitis,40 primary sclerosing cholangitis,50 chronic viral hepatitis,20 alcohol-related liver disease,40 steatotic liver disease,and 40 healthy controls) were assayed for MF-SMA and for SMA-VGT using VSM-based and rodent tissue-based assays, respectively. MF-SMA and SMA-VGT were found in 96(70%) and 87(63%) AIH-1 patients, and 2 controls (p<0.0001).Compared with SMA-VGT, MF-SMA showed similar specificity (99%), higher sensitivity (70% vs 63%,p=ns) and likelihood ratio for a positive test (70 vs 65). Nine (7%) AIH-1 patients were MF-SMA positive despite being SMA-VGT negative. Overall agreement between SMA-VGT and MF-SMA was 87% (kappa coefficient 0.870,[0.789-0.952]). MF-SMA were associated with higher serum γ-globulin [26(12-55) vs 20 g/l(13-34),p<0.005] and immunoglobulin G (IgG) levels [3155(1296-7344) vs 2050 mg/dl(1377-3357), p<0.002]. The easily recognizable IFL MF-SMA pattern on VSM cells strongly correlated with SMA-VGT and has an equally high specificity for AIH-1. Confirmation of these results in other laboratories would support the clinical application of the VSM cell-based assay for reliable detection of AIH-specific SMA.

12.
Ann Surg Oncol ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008210

RESUMO

BACKGROUND: Pancreatic head cancer with perineural invasion of the superior mesenteric artery (SMA) requires dissection of the nerve plexus around the SMA (PLsma, superior mesenteric nerve plexus) to obtain cancer-free margins.1,2 Technically challenging robot-assisted pancreaticoduodenectomy with PLsma resection is rarely performed owing to the technical limitations of the robot. In this multimedia article, we present our approach to robot-assisted pancreaticoduodenectomy with PLsma dissection.3-5 METHODS: We performed a robot-assisted pancreaticoduodenectomy with resection of the hemicircle of the PLsma in a 78-year-old woman with resectable pancreatic cancer extending to the root of the inferior pancreaticoduodenal artery. In this video, we show how to obtain an optimal view using the multiple scope transition method,4 and technical tips to perform a PLsma dissection with a robot to perform this difficult surgery safely. RESULTS: The operative time was 568 min and 300 mL of blood was lost. The pathological diagnosis was invasive pancreatic ductal carcinoma with lymph node metastasis, and R0 resection was performed. The distance margin from the SMA was 2 mm. The patient was discharged on the 18th postoperative day without postoperative complications. CONCLUSIONS: Robot-assisted pancreaticoduodenectomy with dissection of the hemicircle of the PLsma, which is difficult to perform, can be performed safely with an optimal view using the multiple-scope transition method, and delicate dissection using a robot.

13.
Acta Neuropathol ; 147(1): 53, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470509

RESUMO

Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by recessive pathogenic variants affecting the survival of motor neuron (SMN1) gene (localized on 5q). In consequence, cells lack expression of the corresponding protein. This pathophysiological condition is clinically associated with motor neuron (MN) degeneration leading to severe muscular atrophy. Additionally, vulnerability of other cellular populations and tissues including skeletal muscle has been demonstrated. Although the therapeutic options for SMA have considerably changed, treatment responses may differ thus underlining the persistent need for validated biomarkers. To address this need and to identify novel marker proteins for SMA, we performed unbiased proteomic profiling on cerebrospinal fluid derived (CSF) from genetically proven SMA type 1-3 cases and afterwards performed ELISA studies on CSF and serum samples to validate the potential of a novel biomarker candidates in both body fluids. To further decipher the pathophysiological impact of this biomarker, immunofluorescence studies were carried out on spinal cord and skeletal muscle derived from a 5q-SMA mouse model. Proteomics revealed increase of LARGE1 in CSF derived from adult patients showing a clinical response upon treatment with nusinersen. Moreover, LARGE1 levels were validated in CSF samples of further SMA patients (type 1-3) by ELISA. These studies also unveiled a distinguishment between groups in improvement of motor skills: adult patients do present with lowered level per se at baseline visit while no elevation upon treatment in the pediatric cohort can be observed. ELISA-based studies of serum samples showed no changes in the pediatric cohort but unraveled elevated level in adult patients responding to future intervention with nusinersen, while non-responders did not show a significant increase. Additional immunofluorescence studies of LARGE1 in MN and skeletal muscle of a SMA type 3 mouse model revealed an increase of LARGE1 during disease progression. Our combined data unraveled LARGE1 as a protein dysregulated in serum and CSF of SMA-patients (and in MN and skeletal muscle of SMA mice) holding the potential to serve as a disease marker for SMA and enabling to differentiate between patients responding and non-responding to therapy with nusinersen.


Assuntos
Atrofia Muscular Espinal , Atrofias Musculares Espinais da Infância , Adulto , Humanos , Criança , Camundongos , Animais , Proteômica , Atrofia Muscular Espinal/genética , Atrofias Musculares Espinais da Infância/tratamento farmacológico , Atrofias Musculares Espinais da Infância/patologia , Neurônios Motores/patologia , Biomarcadores/líquido cefalorraquidiano , Modelos Animais de Doenças
14.
Arch Biochem Biophys ; 754: 109944, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395124

RESUMO

The collagen/fibrin(ogen) receptor, glycoprotein VI (GPVI), is a platelet activating receptor and a promising anti-thrombotic drug target. However, while agonist-induced GPVI clustering on platelet membranes has been shown to be essential for its activation, it is unknown if GPVI dimerisation represents a unique conformation for ligand binding. Current GPVI structures all contain only the two immunoglobulin superfamily (IgSF) domains in the GPVI extracellular region, so lacking the mucin-like stalk, transmembrane, cytoplasmic tail of GPVI and its associated Fc receptor γ (FcRγ) homodimer signalling chain, and provide contradictory insights into the mechanisms of GPVI dimerisation. Here, we utilised styrene maleic-acid lipid particles (SMALPs) to extract GPVI in complex with its two associated FcRγ chains from transfected HEK-293T cells, together with the adjacent lipid bilayer, then purified and characterised the GPVI/FcRγ-containing SMALPs, to enable structural insights into the full-length GPVI/FcRγ complex. Using size exclusion chromatography followed by a native polyacrylamide gel electrophoresis (PAGE) method, SMA-PAGE, we revealed multiple sizes of the purified GPVI/FcRγ SMALPs, suggesting the potential existence of GPVI oligomers. Importantly, GPVI/FcRγ SMALPs were functional as they could bind collagen. Mono-dispersed GPVI/FcRγ SMALPs could be observed under negative stain electron microscopy. These results pave the way for the future investigation of GPVI stoichiometry and structure, while also validating SMALPs as a promising tool for the investigation of human membrane protein interactions, stoichiometry and structure.


Assuntos
Plaquetas , Receptores de IgG , Humanos , Receptores de IgG/metabolismo , Plaquetas/química , Plaquetas/metabolismo , Membrana Celular/metabolismo , Transdução de Sinais , Colágeno/metabolismo
15.
Arch Biochem Biophys ; 754: 109946, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395122

RESUMO

G-protein-coupled receptors (GPCRs) are the largest family of membrane proteins, regulate a plethora of physiological responses and are the therapeutic target for 30-40% of clinically-prescribed drugs. They are integral membrane proteins deeply embedded in the plasma membrane where they activate intracellular signalling via coupling to G-proteins and ß-arrestin. GPCRs are in intimate association with the bilayer lipids and that lipid environment regulates the signalling functions of GPCRs. This complex lipid 'landscape' is both heterogeneous and dynamic. GPCR function is modulated by bulk membrane properties including membrane fluidity, microdomains, curvature, thickness and asymmetry but GPCRs are also regulated by specific lipid:GPCR binding, including cholesterol and anionic lipids. Understanding the molecular mechanisms whereby GPCR signalling is regulated by lipids is a very active area of research currently. A major advance in membrane protein research in recent years was the application of poly(styrene-co-maleic acid) (SMA) copolymers. These spontaneously generate SMA lipid particles (SMALPs) encapsulating membrane protein in a nano-scale disc of cell membrane, thereby removing the historical need for detergent and preserving lipid:GPCR interaction. The focus of this review is how GPCR-SMALPs are increasing our understanding of GPCR structure and function at the molecular level. Furthermore, an increasing number of 'second generation' SMA-like copolymers have been reported recently. These are reviewed from the context of increasing our understanding of GPCR molecular mechanisms. Moreover, their potential as a novel platform for downstream biophysical and structural analyses is assessed and looking ahead, the translational application of SMA-like copolymers to GPCR drug discovery programmes in the future is considered.


Assuntos
Receptores Acoplados a Proteínas G , Membrana Celular , Lipídeos/química , Proteínas de Membrana/química
16.
Muscle Nerve ; 69(3): 340-348, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38238963

RESUMO

INTRODUCTION/AIMS: Current upper limb assessments in pediatric spinal muscular atrophy (SMA) may not adequately capture change with disease progression. Our aim was to examine the relationship between motor function, strength, and hand/finger mobility of the upper limb in treatment-naïve children with SMA Types 2 and 3 to assess new methods to supplement current outcomes. METHODS: The Revised Upper Limb Module (RULM), grip and pinch strength, and hand/finger mobility data were collected from 19 children with SMA Types 2 and 3 aged 5.2-16.9 years over a year. RESULTS: A median loss between 0.5 and 2.5 points in the RULM was seen across all SMA subgroups with the biggest median loss recorded between 10 and 14 years of age. The grip strength loss was -0.06 kg (-4.69 to 3.49; IQR, 1.21); pinch improvement of 0.05 (-0.65 to 1.27; IQR, 0.48); hand/finger mobility test improvement of 4 points (-24 to 14; IQR, 6.75) for the whole cohort. Significant correlations were found between the RULM and grip strength (p < .001), RULM and pinch strength (p < .001), RULM and revised Brooke (p < .001), grip strength and pinch strength (p < .001). DISCUSSION: The combined use of the RULM, dynamometry, and hand mobility provide insight about correlations between function and strength in children with SMA. The RULM and grip strength assessments captured a significant decline in upper limb function, whereas the pinch and finger/hand mobility showed an improvement over the course of 1 year and these results should be considered for future studies.


Assuntos
Atrofia Muscular Espinal , Atrofias Musculares Espinais da Infância , Humanos , Criança , Adolescente , Extremidade Superior , Mãos , Força da Mão
17.
Eur J Neurol ; 31(1): e16099, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37823715

RESUMO

BACKGROUND: To assess compound muscle action potential (CMAP) amplitudes as electrophysiologic markers in relation to clinical outcome in adult patients with 5q-linked spinal muscular atrophy (SMA) before and during treatment with risdiplam. METHODS: In this monocentric longitudinal cohort study, CMAP of 18 adult patients with SMA type 2 or 3 were assessed at baseline (T0 ) and after 10 months (T10 ) of risdiplam treatment. CMAP amplitudes of the median, ulnar, peroneal, and tibial nerves were compared with established clinical outcome scores, and with the course of disease before start of treatment. RESULTS: During a pharmacotherapy-naive pre-treatment period of 328 ± 46 days, Revised Upper Limb Module (RULM) score and peroneal nerve CMAP amplitudes decreased, while CMAP of tibial and upper limb nerves remained unchanged. CMAP amplitudes positively correlated with clinical scores (Hammersmith Functional Motor Scale-Expanded [HFMSE], RULM) at T0 . During risdiplam treatment, HFMSE and Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND) scores increased, paralleled by marked increase of CMAP amplitudes in both median nerves (T10 -T0 ; right: Δ = 1.4 ± 1.4 mV, p = 0.0003; left: Δ = 1.3 ± 1.4 mV, p = 0.0007), but not in ulnar, peroneal, or tibial nerves. A robust increase of median nerve CMAP amplitudes correlated well with an increase in the HFMSE score (T10 -T0 ). Median nerve CMAP amplitudes at T0 were associated with subsequent risdiplam-related improvement of HFMSE and CHOP INTEND scores at T10 . CONCLUSIONS: Median nerve CMAP amplitudes increase with risdiplam treatment in adult SMA patients, and should be further evaluated as potential easy-to-use electrophysiologic markers in assessing and monitoring clinical response to therapy.


Assuntos
Atrofia Muscular Espinal , Atrofias Musculares Espinais da Infância , Adulto , Criança , Lactente , Humanos , Estudos Longitudinais , Atrofia Muscular Espinal/tratamento farmacológico , Atrofias Musculares Espinais da Infância/tratamento farmacológico , Avaliação de Resultados em Cuidados de Saúde
18.
J Surg Res ; 295: 70-80, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37992455

RESUMO

INTRODUCTION: Acute proximal superior mesenteric artery (SMA) occlusion is highly lethal, and adjuncts are needed to mitigate ischemic injury until definitive therapy. We hypothesized that raising mean arterial pressure (MAP) >90 mmHg with norepinephrine may delay irreversible bowel ischemia by increasing gastroduodenal artery (GDA) flow despite possible pressor-induced vasospasm. METHODS: 12 anesthetized swine underwent laparotomy, GDA flow probe placement, and proximal SMA exposure and clamping. Animals were randomized between conventional therapy (CT) versus targeted MAP >90 mmHg (MAP push; MP) where norepinephrine was titrated after 45 min of SMA occlusion. Animals were followed until bowel death or 4 h. Kaplan-Meier bowel survival, mean normalized GDA flow, and histology were compared. RESULTS: 12 swine (mean 57.8 ± 7.6 kgs) were included, six per group. Baseline weight, HR, MAP and GDA flows were not different. Within 5 min following SMA clamping, all 12 animals had an increase in MAP without other intervention from 81.7 to 105.5 mmHg (29.1%, P < 0.01) with a concomitant 74.9% increase in GDA flow as compared to baseline (P < 0.01). Beyond 45 min postclamp, MAP was greater in the MP group as intended, as were GDA flows. Median time to irreversibly ischemic bowel was 31% longer for MAP push animals (CT: 178 versus MP: 233 min, P = 0.006), Hazard Ratio of CT 8.85 (95% CI: 1.86-42.06); 3/6 MP animals versus 0/6 CT animals with bowel survived to predetermined end point. CONCLUSIONS: In this swine model of acute complete proximal SMA occlusion, increasing MAP >90 mmHg with norepinephrine was associated with an increase in macrovascular blood flow through the GDA and bowel survival. Norepinephrine was not associated with worse bowel survival and a MAP push may increase the time window where ischemic bowel can be salvaged.


Assuntos
Pressão Arterial , Isquemia Mesentérica , Animais , Pressão Sanguínea , Isquemia/patologia , Artéria Mesentérica Superior/cirurgia , Isquemia Mesentérica/etiologia , Isquemia Mesentérica/cirurgia , Norepinefrina , Suínos
19.
Brain ; 146(3): 806-822, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36445400

RESUMO

Hereditary motor neuropathies (HMN) were first defined as a group of neuromuscular disorders characterized by lower motor neuron dysfunction, slowly progressive length-dependent distal muscle weakness and atrophy, without sensory involvement. Their cumulative estimated prevalence is 2.14/100 000 and, to date, around 30 causative genes have been identified with autosomal dominant, recessive,and X-linked inheritance. Despite the advances of next generation sequencing, more than 60% of patients with HMN remain genetically uncharacterized. Of note, we are increasingly aware of the broad range of phenotypes caused by pathogenic variants in the same gene and of the considerable clinical and genetic overlap between HMN and other conditions, such as Charcot-Marie-Tooth type 2 (axonal), spinal muscular atrophy with lower extremities predominance, neurogenic arthrogryposis multiplex congenita and juvenile amyotrophic lateral sclerosis. Considering that most HMN present during childhood, in this review we primarily aim to summarize key clinical features of paediatric forms, including recent data on novel phenotypes, to help guide differential diagnosis and genetic testing. Second, we describe newly identified causative genes and molecular mechanisms, and discuss how the discovery of these is changing the paradigm through which we approach this group of conditions.


Assuntos
Doença de Charcot-Marie-Tooth , Atrofia Muscular Espinal , Humanos , Doença de Charcot-Marie-Tooth/genética , Atrofia Muscular Espinal/genética , Fenótipo , Testes Genéticos
20.
Brain ; 146(2): 668-677, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-35857854

RESUMO

5q-associated spinal muscular atrophy is a rare neuromuscular disorder with the leading symptom of a proximal muscle weakness. Three different drugs have been approved by the European Medicines Agency and Food and Drug Administration for the treatment of spinal muscular atrophy patients, however, long-term experience is still scarce. In contrast to clinical trial data with restricted patient populations and short observation periods, we report here real-world evidence on a broad spectrum of patients with early-onset spinal muscular atrophy treated with nusinersen focusing on effects regarding motor milestones, and respiratory and bulbar insufficiency during the first years of treatment. Within the SMArtCARE registry, all patients under treatment with nusinersen who never had the ability to sit independently before the start of treatment were identified for data analysis. The primary outcome of this analysis was the change in motor function evaluated with the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders and motor milestones considering World Health Organization criteria. Further, we evaluated data on the need for ventilator support and tube feeding, and mortality. In total, 143 patients with early-onset spinal muscular atrophy were included in the data analysis with a follow-up period of up to 38 months. We observed major improvements in motor function evaluated with the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders. Improvements were greater in children >2 years of age at start of treatment than in older children. 24.5% of children gained the ability to sit independently. Major improvements were observed during the first 14 months of treatment. The need for intermittent ventilator support and tube feeding increased despite treatment with nusinersen. Our findings confirm the increasing real-world evidence that treatment with nusinersen has a dramatic influence on disease progression and survival in patients with early-onset spinal muscular atrophy. Major improvements in motor function are seen in children younger than 2 years at the start of treatment. Bulbar and respiratory function needs to be closely monitored, as these functions do not improve equivalent to motor function.


Assuntos
Atrofia Muscular Espinal , Atrofias Musculares Espinais da Infância , Criança , Lactente , Humanos , Atrofias Musculares Espinais da Infância/tratamento farmacológico , Atrofia Muscular Espinal/tratamento farmacológico , Oligonucleotídeos/uso terapêutico , Injeções Espinhais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA