Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ann Oncol ; 35(4): 392-401, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38244927

RESUMO

BACKGROUND: Sacituzumab govitecan (SG) is a Trop-2-directed antibody-drug conjugate containing cytotoxic SN-38, the active metabolite of irinotecan. SG received accelerated US Food and Drug Administration approval for locally advanced (LA) or metastatic urothelial carcinoma (mUC) previously treated with platinum-based chemotherapy and a checkpoint inhibitor, based on cohort 1 of the TROPHY-U-01 study. Mutations in the uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) gene are associated with increased adverse events (AEs) with irinotecan-based therapies. Whether UGT1A1 status could impact SG toxicity and efficacy remains unclear. PATIENTS AND METHODS: TROPHY-U-01 (NCT03547973) is a multicohort, open-label, phase II registrational study. Cohort 1 includes patients with LA or mUC who progressed after platinum- and checkpoint inhibitor-based therapies. SG was administered at 10 mg/kg intravenously on days 1 and 8 of 21-day cycles. The primary endpoint was objective response rate (ORR) per central review; secondary endpoints included progression-free survival, overall survival, and safety. Post hoc safety analyses were exploratory with descriptive statistics. Updated analyses include longer follow-up. RESULTS: Cohort 1 included 113 patients. At a median follow-up of 10.5 months, ORR was 28% (95% CI 20.2% to 37.6%). Median progression-free survival and overall survival were 5.4 months (95% CI 3.5-6.9 months) and 10.9 months (95% CI 8.9-13.8 months), respectively. Occurrence of grade ≥3 treatment-related AEs and treatment-related discontinuation were consistent with prior reports. UGT1A1 status was wildtype (∗1|∗1) in 40%, heterozygous (∗1|∗28) in 42%, homozygous (∗28|∗28) in 12%, and missing in 6% of patients. In patients with ∗1|∗1, ∗1|∗28, and ∗28|∗28 genotypes, any grade treatment-related AEs occurred in 93%, 94%, and 100% of patients, respectively, and were managed similarly regardless of UGT1A1 status. CONCLUSIONS: With longer follow-up, the ORR remains high in patients with heavily pretreated LA or mUC. Safety data were consistent with the known SG toxicity profile. AE incidence varied across UGT1A1 subgroups; however, discontinuation rates remained relatively low for all groups.


Assuntos
Anticorpos Monoclonais Humanizados , Camptotecina/análogos & derivados , Carcinoma de Células de Transição , Imunoconjugados , Neoplasias da Bexiga Urinária , Humanos , Irinotecano , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/genética , Platina/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Imunoconjugados/efeitos adversos
2.
Mol Pharm ; 21(7): 3240-3255, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38785196

RESUMO

Inhibitors of a DNA repair enzyme known as polynucleotide kinase 3'-phosphatase (PNKP) are expected to show synergistic cytotoxicity in combination with topoisomerase I (TOP1) inhibitors in cancer. In this study, the synergistic cytotoxicity of a novel inhibitor of PNKP, i.e., A83B4C63, with a potent TOP1 inhibitor, i.e., SN-38, against colorectal cancer cells was investigated. Polymeric micelles (PMs) for preferred tumor delivery of A83B4C63, developed through physical encapsulation of this compound in methoxy poly(ethylene oxide)-poly(α-benzyl carboxylate-ε-caprolactone) (mPEO-b-PBCL) micelles, were combined with SN-38 in free or PM form. The PM form of SN-38 was prepared through chemical conjugation of SN-38 to the functional end group of mPEO-b-PBCL and further assembly of mPEO-b-PBCL-SN-38 in water. Moreover, mixed micelles composed of mPEO-b-PBCL and mPEO-b-PBCL-SN-38 were used to co-load A83B4C63 and SN-38 in the same nanoformulation. The loading content (% w/w) of the SN-38 and A83B4C63 to mPEO-b-PBCL in the co-loaded formulation was 7.91 ± 0.66 and 16.13 ± 0.11% (w/w), respectively, compared to 15.67 ± 0.34 (% w/w) and 23.06 ± 0.63 (% w/w) for mPEO-b-PBCL micelles loading individual drugs. Notably, the average diameter of PMs co-encapsulating both SN-38 and A83B4C63 was larger than that of PMs encapsulating either of these compounds alone but still lower than 60 nm. The release of A83B4C63 from PMs co-encapsulating both drugs was 76.36 ± 1.41% within 24 h, which was significantly higher than that of A83B4C63-encapsulated micelles (42.70 ± 0.72%). In contrast, the release of SN-38 from PMs co-encapsulating both drugs was 44.15 ± 2.61% at 24 h, which was significantly lower than that of SN-38-conjugated PMs (74.16 ± 3.65%). Cytotoxicity evaluations by the MTS assay as analyzed by the Combenefit software suggested a clear synergy between PM/A83B4C63 (at a concentration range of 10-40 µM) and free SN-38 (at a concentration range of 0.001-1 µM). The synergistic cytotoxic concentration range for SN-38 was narrowed down to 0.1-1 or 0.01-1 µM when combined with PM/A83B4C63 at 10 or 20-40 µM, respectively. In general, PMs co-encapsulating A83B4C63 and SN-38 at drug concentrations within the synergistic range (10 µM for A83B4C63 and 0.05-1 µM for SN-38) showed slightly less enhancement of SN-38 anticancer activity than a combination of individual micelles, i.e., A83B4C63 PMs + SN-38 PMs at the same molar concentrations. This was attributed to the slower release of SN-38 from the SN-38 and A83B4C63 co-encapsulated PMs compared to PMs only encapsulating SN-38. Cotreatment of cells with TOP1 inhibitors and A83B4C63 formulation enhanced the expression level of γ-HA2X, cleaved PARP, caspase-3, and caspase-7 in most cases. This trend was more consistent and notable for PMs co-encapsulating both A83B4C63 and SN-38. The overall result from the study shows a synergy between PMs of SN-38 and A83B4C63 as a mixture of two PMs for individual drugs or PMs co-encapsulating both drugs.


Assuntos
Neoplasias Colorretais , Irinotecano , Micelas , Inibidores da Topoisomerase I , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Irinotecano/farmacologia , Irinotecano/administração & dosagem , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/administração & dosagem , Inibidores da Topoisomerase I/química , Linhagem Celular Tumoral , Animais , Camundongos , Nanomedicina/métodos , Sinergismo Farmacológico , DNA Topoisomerases Tipo I/metabolismo , Nanopartículas/química , Ensaios Antitumorais Modelo de Xenoenxerto , Poliésteres/química , Fosfotransferases (Aceptor do Grupo Álcool) , Enzimas Reparadoras do DNA
3.
Bioorg Med Chem Lett ; 101: 129657, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360419

RESUMO

Herein, we report the modular synthesis and evaluation of a prostate-specific membrane antigen (PSMA) targeted small molecule drug conjugate (SMDC) carrying the chemotherapeutic agent, SN38. Due to the fluorogenic properties of SN38, payload release kinetics from the platform was observed in buffers representing the pH conditions of systemic circulation and cellular internalization. It was found that this platform is stable with minimal payload release at physiological pH with most rapid payload release observed at pH values representing the endosome complex. We confirmed selective payload release and chemotherapeutic efficacy for PSMA(+) prostate cancer cells over PSMA(-) cells. These results demonstrate that chemotherapeutic agents with limited solubility can be conjugated to a water-soluble targeting and linker platform without attenuating efficacy.


Assuntos
Glutamato Carboxipeptidase II , Neoplasias da Próstata , Masculino , Humanos , Linhagem Celular Tumoral , Glutamato Carboxipeptidase II/química , Antígenos de Superfície/química , Neoplasias da Próstata/tratamento farmacológico
4.
Bioorg Med Chem ; 106: 117754, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728869

RESUMO

To improve the biodistribution of the drug in the tumor, a supramolecular prodrug of SN38 was fabricated in situ between endogenous albumin and SN38 prodrug modified with semaglutide side chain. Firstly, SN38 was conjugated with semaglutide side chain and octadecanedioic acid via glycine linkers to obtain SI-Gly-SN38 and OA-Gly-SN38 prodrugs, respectively. Both SI-Gly-SN38 and OA-Gly-SN38 exhibited excellent stability in PBS for over 24 h. Due to the strong binding affinity of the semaglutide side chain with albumin, the plasma half-life of SI-Gly-SN38 was 2.7 times higher than that of OA-Gly-SN38. Furthermore, with addition of HSA, the fluorescence intensity of SI-Gly-SN38 was 4 times higher than that of OA-Gly-SN38, confirming its strong binding capability with HSA. MTT assay showed that the cytotoxicity of SI-Gly-SN38 and OA-Gly-SN38 was higher than that of Irinotecan. Even incubated with HSA, the SI-Gly-SN38 and OA-Gly-SN38 still maintained high cytotoxicity, indicating minimal influence of HSA on their cytotoxicity. In vivo pharmacokinetic studies demonstrated that the circulation half-life of SI-Gly-SN38 was twice that of OA-Gly-SN38. SI-Gly-SN38 exhibited significantly reduced accumulation in the lungs, being only 0.23 times that of OA-Gly-SN38. The release of free SN38 in the lungs from SI-Gly-SN38 was only 0.4 times that from OA-Gly-SN38 and Irinotecan. The SI-Gly-SN38 showed the highest accumulation in tumors. The tumor inhibition rate of SI-Gly-SN38 was 6.42% higher than that of OA-Gly-SN38, and 8.67% higher than that of Irinotecan, respectively. These results indicate that the supramolecular prodrug delivery system can be constructed between SI-Gly-SN38 and endogenous albumin, which improves drug biodistribution in vivo, enhances tumor accumulation, and plays a crucial role in tumor growth inhibition.


Assuntos
Irinotecano , Pró-Fármacos , Irinotecano/química , Irinotecano/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/síntese química , Animais , Humanos , Camundongos , Distribuição Tecidual , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Camundongos Nus , Albuminas/química , Masculino , Relação Estrutura-Atividade , Albumina Sérica Humana/química , Peptídeos Semelhantes ao Glucagon
5.
Bioorg Chem ; 147: 107370, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621338

RESUMO

Here, we introduce a novel and effective approach utilizing a cathepsin B cleavage albumin-binding SN38 prodrug specifically designed for the treatment of metastatic breast cancer. Termed Mal-va-mac-SN38, our prodrug exhibits a unique ability to rapidly and covalently bind with endogenous albumin, resulting in the formation of HSA-va-mac-SN38. This prodrug demonstrates exceptional stability in human plasma. Importantly, HSA-va-mac-SN38 showcases an impressive enhancement in cellular uptake by 4T1 breast cancer cells, primarily facilitated through caveolin-mediated endocytosis. Intriguingly, the release of the active SN38, is triggered by the enzymatic activity of cathepsin B within the lysosomal environment. In vivo studies employing a lung metastasis 4T1 breast cancer model underscore the potency of HSA-va-mac-SN38. Histological immunohistochemical analyses further illuminate the multifaceted impact of our prodrug, showcasing elevated levels of apoptosis, downregulated expression of matrix metalloproteinases, and inhibition of angiogenesis, all critical factors contributing to the anti-metastatic effect observed. Biodistribution studies elucidate the capacity of Mal-va-mac-SN38 to augment tumor accumulation through covalent binding to serum albumin, presenting a potential avenue for targeted therapeutic interventions. Collectively, our findings propose a promising therapeutic avenue for metastatic breast cancer, through the utilization of a cathepsin B-cleavable albumin-binding prodrug.


Assuntos
Antineoplásicos , Neoplasias da Mama , Catepsina B , Desenho de Fármacos , Pró-Fármacos , Pró-Fármacos/síntese química , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Catepsina B/metabolismo , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Animais , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Relação Dose-Resposta a Droga , Apoptose/efeitos dos fármacos
6.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473971

RESUMO

UDP-glycosyltransferases (UGTs) form a large enzyme family that is found in a wide range of organisms. These enzymes are known for accepting a wide variety of substrates, and they derivatize xenobiotics and metabolites for detoxification. However, most UGT homologs have not been well characterized, and their potential for biomedical and environmental applications is underexplored. In this work, we have used a fluorescent assay for screening substrates of a plant UGT homolog by monitoring the formation of UDP. We optimized the assay such that it could be used for high-throughput screening of substrates of the Medicago truncatula UGT enzyme, UGT71G1, and our results show that 34 of the 159 screened compound samples are potential substrates. With an LC-MS/MS method, we confirmed that three of these candidates indeed were glycosylated by UGT71G1, which includes bisphenol A (BPA) and 7-Ethyl-10-hydroxycamptothecin (SN-38); derivatization of these toxic compounds can lead to new environmental and medical applications. This work suggests that UGT homologs may recognize a substrate profile that is much broader than previously anticipated. Additionally, it demonstrates that this screening method provides a new means to study UDP-glycosyltransferases, facilitating the use of these enzymes to tackle a wide range of problems.


Assuntos
Glicosiltransferases , Espectrometria de Massas em Tandem , Glicosiltransferases/metabolismo , Cromatografia Líquida , Plantas/metabolismo , Difosfato de Uridina
7.
Biochem Biophys Res Commun ; 665: 19-25, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37148742

RESUMO

SN-38, an active metabolite of irinotecan (CPT-11), is thought to circulate enterohepatically via organic anion-transporting polypeptides (OATPs), UDP-glucuronyl transferases (UGTs), multidrug resistance-related protein 2 (MRP2), and breast cancer resistance protein (BCRP). These transporters and enzymes are expressed in not only hepatocytes but also enterocytes. Therefore, we hypothesized that SN-38 circulates between the intestinal lumen and the enterocytes via these transporters and metabolic enzymes. To test this hypothesis, metabolic and transport studies of SN-38 and its glucuronide (SN-38G) were conducted in Caco-2 cells. The mRNA levels of UGTs, MRP2, BCRP, and OATP2B1 were confirmed in Caco-2 cells. SN-38 was converted to SN-38G in Caco-2 cells. The efflux of intracellularly generated SN-38G across the apical (digestive tract) membranes was significantly higher than the efflux across the basolateral (blood, portal vein) membranes of Caco-2 cells cultured on polycarbonate membranes. SN-38G efflux to the apical side was significantly reduced in the presence of MRP2 and BCRP inhibitors, suggesting that SN-38G is transported across the apical membrane by MRP2 and BCRP. Treatment of Caco-2 cells with OATP2B1 siRNA increased the SN-38 residue on the apical side, confirming that OATP2B1 is involved in the uptake of SN-38 into enterocytes. No SN-38 was detected on the basolateral side with or without siRNA treatment, suggesting that the enterohepatic circulation of SN-38 is limited, contrary to previous reports. These results suggest that SN-38 is absorbed into the enterocytes via OATP2B1, glucuronidated by UGTs to SN-38G, and excreted into the digestive tract lumen by MRP2 and BCRP. SN-38G can be deconjugated by ß-glucuronidase from intestinal bacteria in the digestive tract lumen to regenerate SN-38. We named this new concept of local drug circulation "intra-enteric circulation." This mechanism may allow SN-38 to circulate in the intestine and cause the development of delayed diarrhea, a serious side effect of CPT-11.


Assuntos
Proteínas de Neoplasias , Humanos , Irinotecano , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Células CACO-2 , Proteínas de Neoplasias/genética
8.
J Transl Med ; 21(1): 897, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072965

RESUMO

BACKGROUND: The alkaloid camptothecin analog SN38 is a potent antineoplastic agent, but cannot be used directly for clinical application due to its poor water solubility. Currently, the prodrug approach on SN38 has resulted in 3 FDA-approved cancer therapeutics, irinotecan, ONIVYDE, and Trodelvy. However, only 2-8% of irinotecan can be transformed enzymatically in vivo into the active metabolite SN38, which severely limits the drug's efficacy. While numerous drug delivery systems have been attempted to achieve effective SN38 delivery, none have produced drug products with antitumor efficacy better than irinotecan in clinical trials. Therefore, novel approaches are urgently needed for effectively delivering SN38 to cancer cells with better efficacy and lower toxicity. METHODS: Based on the unique properties of human serum albumin (HSA), we have developed a novel single protein encapsulation (SPE) technology to formulate cancer therapeutics for improving their pharmacokinetics (PK) and antitumor efficacy and reducing their side effects. Previous application of SPE technology to doxorubicin (DOX) formulation has led to a promising drug candidate SPEDOX-6 (FDA IND #, 152154), which will undergo a human phase I clinical trial. Using the same SPE platform on SN38, we have now produced two SPESN38 complexes, SPESN38-5 and SPESN38-8. We conducted their pharmacological evaluations with respect to maximum tolerated dose, PK, and in vivo efficacy against colorectal cancer (CRC) and soft tissue sarcoma (STS) in mouse models. RESULTS: The lyophilized SPESN38 complexes can dissolve in aqueous media to form clear and stable solutions. Maximum tolerated dose (MTD) of SPESN38-5 is 250 mg/kg by oral route (PO) and 55 mg/kg by intravenous route (IV) in CD-1 mice. SPESN38-8 has the MTD of 45 mg/kg by IV in the same mouse model. PK of SPESN38-5 by PO at 250 mg/kg gave mouse plasma AUC0-∞ of 0.05 and 4.5 nmol × h/mL for SN38 and SN38 glucuronidate (SN38G), respectively, with a surprisingly high molar ratio of SN38G:SN38 = 90:1. However, PK of SPESN38-5 by IV at 55 mg/kg yielded much higher mouse plasma AUC0-∞ of 19 and 28 nmol × h/mL for SN38 and SN38G, producing a much lower molar ratio of SN38G:SN38 = 1.5:1. Antitumor efficacy of SPESN38-5 and irinotecan (control) was evaluated against HCT-116 CRC xenograft tumors. The data indicates that SPESN38-5 by IV at 55 mg/kg is more effective in suppressing HCT-116 tumor growth with lower systemic toxicity compared to irinotecan at 50 mg/kg. Additionally, SPESN38-8 and DOX (control) by IV were evaluated in the SK-LMS-1 STS mouse model. The results show that SPESN38-8 at 33 mg/kg is highly effective for inhibiting SK-LMS-1 tumor growth with low toxicity, in contrast to DOX's insensitivity to SK-LMS-1 with high toxicity. CONCLUSION: SPESN38 complexes provide a water soluble SN38 formulation. SPESN38-5 and SPESN38-8 demonstrate better PK values, lower toxicity, and superior antitumor efficacy in mouse models, compared with irinotecan and DOX.


Assuntos
Antineoplásicos Fitogênicos , Antineoplásicos , Neoplasias Colorretais , Humanos , Camundongos , Animais , Irinotecano/uso terapêutico , Irinotecano/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Modelos Animais de Doenças , Água , Linhagem Celular Tumoral , Antineoplásicos Fitogênicos/farmacocinética
9.
Br J Clin Pharmacol ; 89(9): 2920-2925, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37337890

RESUMO

AIMS: There are limited pharmacokinetic data on the use of irinotecan in patients with reduced glomerular filtration rate (GFR) and no haemodialysis. In this case report, we present 2 cases and review the current literature. METHODS: The dose of irinotecan in both patients was reduced pre-emptively due to reduced GFR. The first patient had her irinotecan dose reduced to 50%, but was nevertheless admitted to hospital because of irinotecan-induced toxicity, including gastrointestinal toxicity and neutropenic fever. The dose was reduced further to 40% for the second cycle; however, the patient was again admitted to the hospital, and irinotecan was stopped indefinitely. The second patient also had his irinotecan dose reduced to 50% and was admitted to the emergency department for gastrointestinal toxicity after the first cycle. However, irinotecan could be administered in the same dose in later cycles. RESULTS: The area under the curve to infinity of irinotecan and SN-38 in the first patient were comparable to those of an individual receiving 100% dose intensity. The area under the curve to infinity of irinotecan and SN-38 in patient 2 in both cycles were slightly less than reference values. Furthermore, clearance values of irinotecan and SN-38 in our patients were comparable to those without renal impairment. CONCLUSION: Our case report suggests that reduced GFR may not significantly affect the clearance of irinotecan and SN-38, but can still result in clinical toxicity. Reduced initial dosing seems indicated in this patient population. Further research is needed to fully understand the relationship between reduced GFR, pharmacokinetics, and toxicity of irinotecan and SN-38.

10.
Bioorg Chem ; 137: 106582, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156134

RESUMO

Presently, chemotherapy remains to be one of the most important therapeutic approaches for malignant tumors. Ligands based drug conjugates are showing considerable promise as potential therapeutic agents delivery systems for cancer. Here, a series of HSP90 inhibitors-SN38 conjugates were developed through cleavable linkers for tumor-specific delivery of SN38 and reducing its side effects. In vitro assays showed that these conjugates exhibited acceptable stability in PBS and plasma, appreciable HSP90 binding affinity, and potent cytotoxic abilities. Cellular uptake behaviors also indicated that these conjugates could selectively target cancer cells in a time-dependent manner via HSP90. Among them, compound 10b with a glycine linkage exhibits appreciable in vitro and in vivo pharmacokinetic profiles, and excellent in vivo antitumor activity in Capan-1 xenograft models, demonstrating the selective targeting and accumulation of the active payload at tumor sites. Above all, these results suggest that compound 10b has the potential as a potent anticancer drug, meriting further evaluation in the future.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico
11.
Int J Mol Sci ; 24(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37240063

RESUMO

Resistance to chemotherapy is a leading cause of treatment failure. Drug resistance mechanisms involve mutations in specific proteins or changes in their expression levels. It is commonly understood that resistance mutations happen randomly prior to treatment and are selected during the treatment. However, the selection of drug-resistant mutants in culture could be achieved by multiple drug exposures of cloned genetically identical cells and thus cannot result from the selection of pre-existent mutations. Accordingly, adaptation must involve the generation of mutations de novo upon drug treatment. Here we explored the origin of resistance mutations to a widely used Top1 inhibitor, irinotecan, which triggers DNA breaks, causing cytotoxicity. The resistance mechanism involved the gradual accumulation of recurrent mutations in non-coding regions of DNA at Top1-cleavage sites. Surprisingly, cancer cells had a higher number of such sites than the reference genome, which may define their increased sensitivity to irinotecan. Homologous recombination repairs of DNA double-strand breaks at these sites following initial drug exposures gradually reverted cleavage-sensitive "cancer" sequences back to cleavage-resistant "normal" sequences. These mutations reduced the generation of DNA breaks upon subsequent exposures, thus gradually increasing drug resistance. Together, large target sizes for mutations and their Top1-guided generation lead to their gradual and rapid accumulation, synergistically accelerating the development of resistance.


Assuntos
Camptotecina , Neoplasias , Irinotecano/farmacologia , Camptotecina/farmacologia , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Quebras de DNA de Cadeia Dupla , Mutação , DNA , Neoplasias/tratamento farmacológico , Neoplasias/genética
12.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139274

RESUMO

The new 5-substituted SN-38 derivatives, 5(R)-(N-pyrrolidinyl)methyl-7-ethyl-10-hydroxycamptothecin (1) and its diastereomer 5(S) (2), were investigated using a combination of nuclear magnetic resonance (NMR) spectroscopy and molecular modeling methods. The chemical stability, configuration stability, and propensity to aggregate as a function of concentration were determined using 1H NMR. The calculated self-association constants (Ka) were found to be 6.4 mM-1 and 2.9 mM-1 for 1 and 2, respectively. The NMR experiments were performed to elucidate the interaction of each diastereomer with a nicked decamer duplex, referred to as 3. The calculated binding constants were determined to be 76 mM-1 and 150 mM-1 for the 1-3 and 2-3 complexes, respectively. NMR studies revealed that the interaction between 1 or 2 and the nicked decamer duplex occurred at the site of the DNA strand break. To complement these findings, molecular modeling methods and calculation protocols were employed to establish the interaction mode and binding constants and to generate molecular models of the DNA/ligand complexes.


Assuntos
DNA , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Irinotecano , DNA/química
13.
Invest New Drugs ; 40(3): 546-555, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35290548

RESUMO

Pancreatic cancer remains one of the most lethal cancers largely due to the inefficient delivery of therapeutics. Nanomaterials have been extensively investigated as drug delivery platforms, showing improved drug pharmacodynamics and pharmacokinetics. However, their applications in pancreatic cancer have not yet been successful due to limited tumor delivery caused by dense tumor stroma and distorted tumor vasculatures. Meanwhile, smaller-sized nanomaterials have shown improved tumor delivery and retention in various tumors, including pancreatic tumors, suggesting their potential in enhancing drug delivery. An ultrafine iron oxide nanoparticle (uIONP) was used to encapsulate 7-ethyl-10-hydroxyl camptothecin (SN38), the water-insoluble active metabolite of pancreatic cancer chemotherapy drug irinotecan. Insulin-like growth factor 1 (IGF-1) was conjugated to uIONP as a ligand for targeting pancreatic cancer cells overexpressing IGF-1 receptor (IGF1R). The SN38 loading and release profile were characterized. The pancreatic cancer cell targeting using IGF1-uIONP/SN38 and subsequently induced cell apoptosis were also investigated. IGF1-uIONP/SN38 demonstrated a stable drug loading in physiological pH with the loading efficiency of 68.2 ± 3.5% (SN38/Fe, wt%) and < 7% release for 24 h. In tumor-interstitial- and lysosomal-mimicking pH (6.5 and 5.5), 52.2 and 91.3% of encapsulated SN38 were released over 24 h. The IGF1-uIONP/SN38 exhibited specific receptor-mediated cell targeting and cytotoxicity Ato MiaPaCa-2 and Panc02 pancreatic cancer cells with IC50 of 11.8 ± 2.3 and 20.8 ± 3.5 nM, respectively, but not to HEK293 human embryonic kidney cells. IGF1-uIONP significantly improved the targeted SN38 delivery to pancreatic cancer cells, holding the potential for in vivo theranostic applications.


Assuntos
Antineoplásicos Fitogênicos , Nanopartículas , Neoplasias Pancreáticas , Antineoplásicos Fitogênicos/farmacologia , Camptotecina , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Células HEK293 , Humanos , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas/química , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
14.
BMC Cancer ; 22(1): 446, 2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35461219

RESUMO

BACKGROUND: Although several novel resistant breast cancer cell lines have been established, only a few resistant breast cancer cell lines overexpress breast cancer resistance proteins (BCRP). The aim of this study was to establish new resistant breast cancer cell lines overexpressing BCRP using SN38 (7-ethyl-10-hydroxycamptothecin), an active metabolite of irinotecan and was to discover genes and mechanisms associated with multidrug resistance. METHODS: SN38-resistant T47D breast cancer cell sublines were selected from the wild-type T47D cells by gradually increasing SN38 concentration. The sensitivity of the cells to anti-cancer drugs was assessed by 3-(4,5-methylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. Expression profiles of the resistance-related transporters were examined using RT-qPCR, and western blot analysis. Intracellular fluorescent dye accumulation in the resistant cells was determined using flow cytometry. RESULTS: The SN38-resistant T47D breast cancer cell sublines T47D/SN120 and T47D/SN150 were established after long-term exposure (more than 16 months) of wild-type T47D cells to 120 nM and 150 nM SN38, respectively. T47D/SN120 and T47D/SN150 cells were more resistant to SN38 (14.5 and 59.1 times, respectively), irinotecan (1.5 and 3.7 times, respectively), and topotecan (4.9 and 12 times, respectively), than the wild-type parental cells. Both T47D/SN120 and T47D/SN150 sublines were cross-resistant to various anti-cancer drugs. These resistant sublines overexpressed mRNAs of MRP1, MRP2, MRP3, MRP4, and BCRP. The DNA methylase inhibitor 5-aza-2'-deoxycytidine and the histone deacetylase inhibitor trichostatin A increased the expression levels of BCRP, MRP1, MRP2, MRP3, and MRP4 transcripts in T47D/WT cells. Fluorescent dye accumulation was found to be lower in T47D/SN120 and T47D/SN150 cells, compared to that in T47D/WT cells. However, treatment with known chemosensitizers increased the intracellular fluorescent dye accumulation and sensitivity of anti-tumor agents. CONCLUSION: T47D/SN120 and T47D/SN150 cells overexpressed MRP1, MRP2, MRP3, MRP4, and BCRP, which might be due to the suppression of epigenetic gene silencing via DNA hypermethylation and histone deacetylation. Although these resistant cells present a higher resistance to various anti-cancer drugs than their parental wild-type cells, multidrug resistance was overcome by treatment with chemosensitizers. These SN38 resistant T47D breast cancer cell sublines expressing resistance proteins can be useful for the development of new chemosensitizers.


Assuntos
Antineoplásicos , Neoplasias da Mama , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , DNA , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Corantes Fluorescentes/farmacologia , Humanos , Irinotecano/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
15.
Mol Pharm ; 19(6): 1866-1881, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35579267

RESUMO

SN-38 is an immensely potent anticancer agent although its use necessitates encapsulation to overcome issues of poor solubility and stability. Since SN-38 is a notoriously challenging drug to encapsulate, new avenues to increase encapsulation efficiency in polymer nanoparticles (PNPs) are needed. In this paper, we show that nanoprecipitation with curcumin (CUR) increases SN-38 encapsulation efficiencies in coloaded SN-38/CUR-PNPs based on poly(ε-caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG) by up to a factor of 10. In addition, we find a dramatic decrease in PNP polydispersities, from 0.34 to 0.07, as the initial CUR-to-polymer ratio increases from 0 to 10, with only a modest increase in PNP size (from 40 to 55 nm). Compared to coloaded PNP formation using nanoprecipitation in the bulk or in a gas-liquid, a two-phase microfluidic reactor shows similar trends with respect to CUR content, although improvements in SN-38 encapsulation efficiencies both with and without CUR are found using the microfluidic method. Additional precipitation studies without copolymer suggest that CUR increases the dispersion of SN-38 in the solvent medium of micelle formation, which may contribute to the observed encapsulation enhancement. Cytotoxicity studies of unencapsulated SN-38/CUR mixtures show that addition of CUR does not significantly affect SN-38 potency against either U87 (glioblastoma) or A204 (rhabdomyosarcoma) cell lines. However, we find significant differences in the potencies of SN-38/CUR-PNP formulations depending on initial CUR amounts, with an optimized formulation showing subnanomolar cytotoxicity against A204 cells, significantly more potent than either free SN-38 or PNPs containing only SN-38.


Assuntos
Curcumina , Nanopartículas , Curcumina/farmacologia , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Irinotecano , Micelas , Tamanho da Partícula , Polietilenoglicóis , Polímeros
16.
Mol Biol Rep ; 49(9): 8359-8368, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35764749

RESUMO

PURPOSE: Irinotecan (CPT-11) is a camptothecin derivative whose potent anti-tumor activity depends on the rapid formation of an in vivo active metabolite, SN38 (7-ethyl-10-hydroxycamptothecin). CPT-11 combine with other agents are often the treatment of choice for patients with advanced or metastatic colorectal cancer (CRC). This study evaluates the cytotoxic mechanism of a novel CPT-11 derivative, ZBH-1207 in CRC cells in vitro. METHODS: The anti-proliferation effect of ZBH-1207 on tumor cells was assessed by MTT assay. The inhibition of TOP1, the alteration of cell cycle and apoptosis, and the expression of caspase-3 and PARP in CRC cells induced by ZBH-1207 were detected by DNA relaxation assay, flow cytometry, and Western blot, respectively. RESULTS: ZBH-1207 significantly inhibits the proliferation of seven tumor cell lines and retains the activity of TOP1 as compared with CPT-11. Treatment with ZBH-1207 results in more apparent cell cycle arrests and apoptosis of CRC cells than that of CPT-11 and SN38. Accordingly, up-regulation of active caspase-3 and PARP expression were relatively higher in ZBH-1207 group than that in CPT-11 and SN38 group. CONCLUSION: ZBH-1207 has higher cytotoxicity than CPT-11/SN38 in CRC cells. Its molecular mechanism involves apoptosis signaling pathway.


Assuntos
Antineoplásicos Fitogênicos , Neoplasias do Colo , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Camptotecina/farmacologia , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Humanos , Irinotecano/farmacologia , Irinotecano/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
17.
Molecules ; 27(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36296539

RESUMO

The understanding of the mechanism of Topo I inhibition by organic ligands is a crucial source of information that has led to the design of more effective and safe pharmaceuticals in oncological chemotherapy. The vast number of inhibitors that have been studied in this respect over the last decades have enabled the creation of a concept of an 'interfacial inhibitor', thereby describing the machinery of Topo I inhibition. The central module of action of this machinery is the interface of a Topo I/DNA/inhibitor ternary complex. Most of the 'interfacial inhibitors' are primarily kinetic inhibitors that form molecular complexes with an "on-off" rate timing; therefore, all of the contacts between the inhibitor and both the enzyme and the DNA are essential to keep the complex stable and reduce the "off rate". To test this hypothesis, we designed the compound using a C-9-(N-(2'-hydroxyethyl)amino)methyl substituent in an SN38 core, with a view that a flexible substituent may bind inside the nick of a model of the DNA and stabilize the complex, leading to a reduction in the "off rate" of a ligand in a potential ternary complex in vivo. Using docking analysis and molecular dynamics, free energy calculations on the level of the MM-PBSA and MM-GBSA model, here we presented the in silico-calculated structure of a ternary complex involving the studied compound 1. This confirmed our suggestion that compound 1 is situated in a groove of the nicked DNA model in a few conformations. The number of hydrogen bonds between the components of a ternary complex was established, which strengthens the complex and supports our view. The docking analysis and free energy calculations for the receptor structures which were obtained in the MD simulations of the ternary complex 1/DNA/Topo I show that the binding constant is stronger than it was for similar complexes with TPT, CPT, and SN38, which are commonly considered as strong Topo I inhibitors. The binary complex structure 1/DNA was calculated and compared with the experimental results of a complex that was in a solution. The analysis of the cross-peaks in NOESY spectra allowed us to assign the dipolar interactions between the given protons in the calculated structures. A DOSY experiment in the solution confirmed the strong binding of a ligand in a binary complex, having a Ka of 746 mM-1, which was compared with a Ka of 3.78 mM-1 for TPT. The MALDI-ToF MS showed the presence of the biohybrid, thus evidencing the occurrence of DNA alkylation by compound 1. Because of it having a strong molecular complex, alkylation is the most efficient way to reduce the "on-off" timing as it acts as a tool that causes the cog to brake in a working gear, and this is this activity we want to highlight in our contribution. Finally, the Topo I inhibition test showed a lower IC50 of the studied compound than it did for CPT and SN38.


Assuntos
Camptotecina , Prótons , Ligantes , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/química , DNA Topoisomerases Tipo I/metabolismo , Inibidores da Topoisomerase , DNA/metabolismo , Preparações Farmacêuticas
18.
Ann Oncol ; 32(6): 746-756, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33741442

RESUMO

BACKGROUND: Sacituzumab govitecan (SG), a trophoblast cell surface antigen-2 (Trop-2)-directed antibody-drug conjugate, has demonstrated antitumor efficacy and acceptable tolerability in a phase I/II multicenter trial (NCT01631552) in patients with advanced epithelial cancers. This report summarizes the safety data from the overall safety population (OSP) and efficacy data, including additional disease cohorts not published previously. PATIENTS AND METHODS: Patients with refractory metastatic epithelial cancers received intravenous SG (8, 10, 12, or 18 mg/kg) on days 1 and 8 of 21-day cycles until disease progression or unacceptable toxicity. Endpoints for the OSP included safety and pharmacokinetic parameters with investigator-evaluated objective response rate (ORR per RECIST 1.1), duration of response, clinical benefit rate, progression-free survival, and overall survival evaluated for cohorts (n > 10 patients) of small-cell lung, colorectal, esophageal, endometrial, pancreatic ductal adenocarcinoma, and castrate-resistant prostate cancer. RESULTS: In the OSP (n = 495, median age 61 years, 68% female; UGT1A1∗28 homozygous, n = 46; 9.3%), 41 (8.3%) permanently discontinued treatment due to adverse events (AEs). Most common treatment-related AEs were nausea (62.6%), diarrhea (56.2%), fatigue (48.3%), alopecia (40.4%), and neutropenia (57.8%). Most common treatment-related serious AEs (n = 75; 15.2%) were febrile neutropenia (4.0%) and diarrhea (2.8%). Grade ≥3 neutropenia and febrile neutropenia occurred in 42.4% and 5.3% of patients, respectively. Neutropenia (all grades) was numerically more frequent in UGT1A1∗28 homozygotes (28/46; 60.9%) than heterozygotes (69/180; 38.3%) or UGT1A1∗1 wild type (59/177; 33.3%). There was one treatment-related death due to an AE of aspiration pneumonia. Partial responses were seen in endometrial cancer (4/18, 22.2% ORR) and small-cell lung cancer (11/62, 17.7% ORR), and one castrate-resistant prostate cancer patient had a complete response (n = 1/11; 9.1% ORR). CONCLUSIONS: SG demonstrated a toxicity profile consistent with previous published reports. Efficacy was seen in several cancer cohorts, which validates Trop-2 as a broad target in solid tumors.


Assuntos
Imunoconjugados , Neoplasias Pulmonares , Anticorpos Monoclonais Humanizados , Camptotecina/análogos & derivados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
19.
Invest New Drugs ; 39(2): 458-468, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33475937

RESUMO

Chemotherapy is usually the subsequent treatment for non-small cell lung cancer patients with acquired radioresistance after long-term fractionated radiotherapy. However, few studies have focused on the selection of chemotherapeutic drugs to treat lung adenocarcinoma patients with radioresistance. Our study compared the sensitivity changes of lung adenocarcinoma cells to conventional chemotherapeutic drugs under radioresistant circumstances by using three lung adenocarcinoma cell models, which were irradiated with fractionated X-rays at a total dose of 60 Gy. The results showed that the toxicities of paclitaxel, docetaxel and SN-38 were increased in radioresistant cells. The IC50 values of docetaxel and SN-38 decreased 0 ~ 3 times and 3 ~ 36 times in radioresistant cells, respectively. Notably, the A549 radioresistant cells were approximately 36 times more sensitive to SN-38 than the parental cells. Further results revealed that the downregulation of the efflux transporter BCRP by long-term fractionated irradiation was an important factor contributing to the increased cytotoxicity of SN-38. In addition, the reported miRNAs and transcriptional factors that regulate BCRP did not participate in the downregulation. In conclusion, these results presented important data on the sensitivity changes of lung adenocarcinoma cells to chemotherapeutic drugs after acquiring radioresistance and suggested that irinotecan (the prodrug of SN-38) might be a promising drug candidate for lung adenocarcinoma patients with acquired radioresistance.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/terapia , Proteínas de Neoplasias/efeitos dos fármacos , Células A549 , Carcinoma Pulmonar de Células não Pequenas/patologia , Regulação para Baixo , Humanos , Concentração Inibidora 50 , Irinotecano/farmacologia , Neoplasias Pulmonares/patologia
20.
Bioorg Med Chem Lett ; 46: 128146, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34048881

RESUMO

Derivatives of SN38 were synthesized that were either monosubstituted at C-5 or C-9 or disubstituted at both C-5 and C-9. Substitution to C-5 led to the generation of pairs of diastereomers (2c-2 h) in a one-pot reaction and was readily separable by HPLC. The absolute configurations of C-5 were established by electronic circular dichroism experiments. Compounds were tested in vitro against human cancer cell lines as well as a normal cell line. The impact of compounds 2a-2j on cancer cells is significant and the IC50 values against the normal cell line are several times higher than that of SN38. Using the Mannich reaction we obtained a new innovative group of derivatives with unique biological properties that preserves the high cytotoxicity in cancer cells and eliminates the acute toxicity to non-neoplastic cells, which can be considered a breakthrough in chemotherapy with the use of topoisomerase I inhibitors from the camptothecin family.


Assuntos
Antineoplásicos/farmacologia , Camptotecina/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Camptotecina/síntese química , Camptotecina/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA