Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 32(4): 1144-1157, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310354

RESUMO

The potent immunomodulatory function of mesenchymal stem/stromal cells (MSCs) elicited by proinflammatory cytokines IFN-γ and TNF-α (IT) is critical to resolve inflammation and promote tissue repair. However, little is known about how the immunomodulatory capability of MSCs is related to their differentiation competency in the inflammatory microenvironment. In this study, we demonstrate that the adipocyte differentiation and immunomodulatory function of human adipose tissue-derived MSCs (MSC(AD)s) are mutually exclusive. Mitochondrial reactive oxygen species (mtROS), which promote adipocyte differentiation, were decreased in MSC(AD)s due to IT-induced upregulation of superoxide dismutase 2 (SOD2). Furthermore, knockdown of SOD2 led to enhanced adipogenic differentiation but reduced immunosuppression capability of MSC(AD)s. Interestingly, the adipogenic differentiation was associated with increased mitochondrial biogenesis and upregulation of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PPARGC1A/PGC-1α) expression. IT inhibited PGC-1α expression and decreased mitochondrial mass but promoted glycolysis in an SOD2-dependent manner. MSC(AD)s lacking SOD2 were compromised in their therapeutic efficacy in DSS-induced colitis in mice. Taken together, these findings indicate that the adipogenic differentiation and immunomodulation of MSC(AD)s may compete for resources in fulfilling the respective biosynthetic needs. Blocking of adipogenic differentiation by mitochondrial antioxidant may represent a novel strategy to enhance the immunosuppressive activity of MSCs in the inflammatory microenvironment.


Assuntos
Células-Tronco Mesenquimais , Superóxido Dismutase , Camundongos , Humanos , Animais , Diferenciação Celular , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Adipócitos , Células-Tronco Mesenquimais/metabolismo
2.
Mol Biol Rep ; 51(1): 805, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001948

RESUMO

BACKGROUND: Coronary artery disease (CAD) has been linked to single nucleotide polymorphism (SNP) in superoxide dismutase 2 (SOD 2) gene. Additionally, several modifiable risk factors are also known to influence the CAD risk. AIM: To investigate the association between selected modifiable risk factors and oxidative stress markers with the SOD2 rs4880 SNP in CAD patients. METHODS: A cohort of 150 angiographically confirmed CAD patients, and 100 control subjects in the same geographic area were enrolled. SOD levels and lipid peroxidation were assessed in the blood samples using standard protocols. The genotyping of the SOD2 gene was conducted through the PCR-sequencing method. RESULTS: This study indicated that CAD patients with the rs4880 SNP having heterozygous AG and mutated homozygous GG genotypes have increased oxidative stress, decreased SOD activity, and a positive association with CAD risk (OR 2.85) in comparison with control individuals. The investigation among CAD patients was then carried out based on modifiable risk factors. The risk factors selected were clinical characteristics, physical habits, nutritional status, and body mass index. In all the cases, MDA levels showed a positive association, and SOD activity showed a negative association with the selected polymorphism. CONCLUSIONS: The study suggests that the selected modifiable risk factors have an important role in the higher oxidative stress found in patients, which may lead to SOD2 polymorphism. It also suggests that the SOD2 locus can be identified as a marker gene for CAD susceptibility.


Assuntos
Doença da Artéria Coronariana , Predisposição Genética para Doença , Estresse Oxidativo , Polimorfismo de Nucleotídeo Único , Superóxido Dismutase , Humanos , Superóxido Dismutase/genética , Estresse Oxidativo/genética , Doença da Artéria Coronariana/genética , Polimorfismo de Nucleotídeo Único/genética , Feminino , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Biomarcadores/sangue , Estudos de Casos e Controles , Idoso , Genótipo , Peroxidação de Lipídeos/genética , Estudos de Associação Genética
3.
BMC Vet Res ; 20(1): 98, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461282

RESUMO

BACKGROUND: Saidi sheep are the most abundant ruminant livestock species in Upper Egypt, especially in the Assiut governorate. Sheep are one of the most abundant animals raised for food in Egypt. They can convert low-quality roughages into meat and milk in addition to producing fiber and hides therefore; great opportunity exists to enhance their reproduction. Saidi breed is poorly known in terms of reproduction. So this work was done to give more information on some hormonal, oxidative, and blood metabolites parameters in addition to histological, histochemical and immunohistochemical investigations of the ovary during follicular phase of estrous cycle. The present study was conducted on 25 healthy Saidi ewes for serum analysis and 10 healthy ewes for histological assessment aged 2 to 5 years and weighted (38.5 ± 2.03 kg). RESULTS: The follicular phase of estrous cycle in Saidi sheep was characterized by the presence of ovarian follicles in different stages of development and atresia in addition to regressed corpus luteum. Interestingly, apoptosis and tissue oxidative markers play a crucial role in follicular and corpus luteum regression. The most prominent features of the follicular phase were the presence of mature antral (Graafian) and preovulatory follicles as well as increased level of some blood metabolites and oxidative markers. Here we give a new schematic sequence of ovarian follicles in Saidi sheep and describing the features of different types. We also clarified that these histological pictures of the ovary was influenced by hormonal, oxidative and blood metabolites factors that characterizes the follicular phase of estrous cycle in Saidi sheep. CONCLUSION: This work helps to understanding the reproduction in Saidi sheep which assist in improving the reproductive outcome of this breed of sheep. These findings are increasingly important for implementation of a genetic improvement program and utilizing the advanced reproductive techniques as estrous synchronization, artificial insemination and embryo transfer.


Assuntos
Fase Folicular , Ovário , Feminino , Ovinos , Animais , Ovário/metabolismo , Folículo Ovariano , Corpo Lúteo , Ciclo Estral
4.
Arch Toxicol ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012504

RESUMO

Skeletal fluorosis is a chronic metabolic bone disease caused by long-term excessive fluoride intake. Abnormal differentiation of osteoblasts plays an important role in disease progression. Research on the mechanism of fluoride-mediated bone differentiation is necessary for the prevention and treatment of skeletal fluorosis. In the present study, a rat model of fluorosis was established by exposing it to drinking water containing 50 mg/L F-. We found that fluoride promoted Runt-related transcription factor 2 (RUNX2) as well as superoxide dismutase 2 (SOD2) and sirtuin 3 (SIRT3) expression in osteoblasts of rat bone tissue. In vitro, we also found that 4 mg/L sodium fluoride promoted osteogenesis-related indicators as well as SOD2 and SIRT3 expression in MG-63 and Saos-2 cells. In addition, we unexpectedly discovered that fluoride suppressed the levels of reactive oxygen species (ROS) and mitochondrial reactive oxygen species (mtROS) in osteoblasts. When SOD2 or SIRT3 was inhibited in MG-63 cells, fluoride-decreased ROS and mtROS were alleviated, which in turn inhibited fluoride-promoted osteogenic differentiation. In conclusion, our results suggest that SIRT3/SOD2 mediates fluoride-promoted osteoblastic differentiation by down-regulating reactive oxygen species.

5.
Biochem Genet ; 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38522064

RESUMO

Oxidative stress is a sophisticated situation that orignates from the accumulation of reactive free radicals within cellular compartments. The antioxidant mechanism of the MnSOD enzyme facilitates the removal of these lethal oxygen species from cellular components. The main goal of this pertained work is to study the contribution of the SOD2 (rs4880; p.Val16Ala) variant to the development of bronchial asthma among children. The study's design was carried out based on a total of 254 participants including 127 asthmatic children (91 atopic and 36 non-atopic) along with 127 unrelated healthy controls. Allelic discrimination analysis was executed using the T-ARMS-PCR protocol. This potential variant conferred a significant association with decreased risk of bronchial asthmatic children under allelic (OR = 0.56, P-value = 0.002), recessive (OR = 0.32, P-value = 0.011), and dominant (OR = 0.51, P-value = 0.040) models. Additionally, atopic and non-atopic asthmatic children indicated a protection against bronchial asthma development under allelic, and dominant models (p-value < 0.05). Our findings suggested that the SOD2*rs4880 variant was correlated with decreased risk of childhood bronchial asthma.

6.
Biochem Genet ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294591

RESUMO

Semen possesses a variety of antioxidant defense mechanisms which protect sperm DNA from the damaging effects of oxidative stress. Correlation between antioxidant genes variants and sperm DNA fragmentation (SDF) level is not sufficiently studied. Therefore, we investigated the association between several single nucleotide polymorphisms (SNPs): CYP1A1 (rs1048943A > G), CYP4F2 (rs2108622G > A), NRF2 (rs6721961C > A), PON1 (rs662A > G), NOS3 (rs1799983G > T), GSTM1 (null), CAT (rs1001179C > T), SOD2 (rs4880A > G), GSTP1 (rs1695A > G), PON2 (rs7493G > C), EPHX2 (rs1042064T > C), and AHR (rs2066853G > A) and elevated SDF. The study employed a case-control design where, the allele and genotype frequencies of the selected SNPs were compared between 75 semen samples with abnormal SDF (the cases) and 75 samples with normal SDF (the controls). DNA was extracted from the semen samples and allele-specific PCR (AS-PCR) was used for genotyping the SNPs. Relevant data were collected from the patients' records et al.-Basma Fertility Center. Suitable statistical tests and multifactorial dimensionality reduction (MDR) test were used to anticipate SNP-SNP interactions. Comparison of semen parameters revealed significant differences between cases and controls in terms of liquefaction time, sperm total motility, and normal form. Genotype frequencies of NOS3 G > T (GT), SOD2 A > G (AA and AG), EPHX2 T > C (CC and CT), and AHR G > A (GA and GG) were significantly different between cases and controls. Allele frequencies of SOD2 (G-allele), and EPHX2 (T-allele) also significantly varied between cases and controls. MDR analysis revealed that the NOS3, SOD2, and EPHX2 SNPs combination has the highest impact on SDF. The study findings suggest that genetic variations in genes involved antioxidant defenses contribute to abnormal SDF.

7.
Biochem Genet ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609669

RESUMO

This study aimed to determine the role of the long noncoding RNA (lncRNA) gall bladder cancer-associated suppressor of pyruvate carboxylase (SOD2-1) in the progression of colorectal cancer (CRC). A total of 23 pairs of specimens, including CRC tissues and adjacent normal tissues, were collected, and the expression of lncRNA SOD2-1 (lnc-SOD2-1) was measured. lnc-SOD2-1 function was examined using HCT15 and HCT116 cells. A lnc-SOD2-1 overexpression vector was designed and transfected into both cell lines. MTS and colony formation assays were used to determine cell viability. Flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling assays were performed to measure apoptosis. Cell migration and invasion were evaluated using the Transwell assay. Migration and invasion markers were validated using quantitative reverse transcription-polymerase chain reaction and western blot analysis. The results indicated that the expression of lnc-SOD2-1 was downregulated in CRC tissues. lnc-SOD2-1 overexpression evidently decreased cell viability and led to the formation of fewer cell colonies. lnc-SOD2-1 overexpression induced ~ twofold higher apoptosis than the control group. lnc-SOD2-1 overexpression reduced the proportion of migratory and invasive cells to 50% and 75% of the control group, respectively. lnc-SOD2-1 overexpression significantly decreased the expression of matrix metalloproteinase-2 and -9. In conclusion, lnc-SOD2-1 may act as a tumor suppressor that inhibits the proliferation, migration, and invasion of CRC cells and induces their apoptosis.

8.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339126

RESUMO

Borna disease virus 1 (BoDV1) causes a persistent infection in the mammalian brain. Peroxisomes and mitochondria play essential roles in the cellular antiviral immune response, but the effect of BoDV1 infection on peroxisomal and mitochondrial dynamics and their respective antioxidant capacities is still not clear. Using different mouse lines-i.e., tumor necrosis factor-α transgenic (TNFTg; to pro-inflammatory status), TNF receptor-1 knockout (TNFR1ko), and TNFR2ko mice in comparison to wild-type (Wt) mice-we analyzed the abundances of both organelles and their main antioxidant enzymes, catalase and superoxide dismutase 2 (SOD2), in neurons of the hippocampal, cerebral, and cerebellar cortices. In TNFTg mice, a strong increase in mitochondrial (6.9-fold) and SOD2 (12.1-fold) abundances was detected; meanwhile, peroxisomal abundance increased slightly (1.5-fold), but that of catalase decreased (2.9-fold). After BoDV1 infection, a strong decrease in mitochondrial (2.1-6.5-fold), SOD2 (2.7-9.1-fold), and catalase (2.7-10.3-fold) abundances, but a slight increase in peroxisomes (1.3-1.6-fold), were detected in Wt and TNFR2ko mice, whereas no changes occurred in TNFR1ko mice. Our data suggest that the TNF system plays a crucial role in the biogenesis of both subcellular organelles. Moreover, TNFR1 signaling mediated the changes in peroxisomal and mitochondrial dynamics after BoDV1 infection, highlighting new mechanisms by which BoDV1 may achieve immune evasion and viral persistence.


Assuntos
Vírus da Doença de Borna , Receptores Tipo I de Fatores de Necrose Tumoral , Camundongos , Animais , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/fisiologia , Catalase/genética , Antioxidantes , Dinâmica Mitocondrial , Camundongos Knockout , Neurônios , Camundongos Endogâmicos C57BL , Mamíferos
9.
Int J Mol Sci ; 24(24)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38139144

RESUMO

Over the last two decades, a multitude of gain-of-function studies have been conducted on genes that encode antioxidative enzymes, including one of the key enzymes, manganese superoxide dismutase (SOD2). The results of such studies are often contradictory, as they strongly depend on many factors, such as the gene overexpression level. In this study, the effect of altering the ectopic expression level of major transcript variants of the SOD2 gene on the radioresistance of HEK293T cells was investigated using CRISPRa technology. A significant increase in cell viability in comparison with the transfection control was detected in cells with moderate SOD2 overexpression after irradiation at 2 Gy, but not at 3 or 5 Gy. A further increase in the level of SOD2 ectopic expression up to 22.5-fold resulted in increased cell viability detectable only after irradiation at 5 Gy. Furthermore, a 15-20-fold increase in SOD2 expression raised the clonogenic survival of cells after irradiation at 5 Gy. Simultaneous overexpression of genes encoding SOD2 and Catalase (CAT) enhanced clonogenic cell survival after irradiation more effectively than separate overexpression of both. In conjunction with the literature data on the suppression of the procarcinogenic effects of superoxide dismutase overexpression by ectopic expression of CAT, the data presented here suggest the potential efficacy of simultaneous overexpression of SOD2 and CAT to reduce oxidative stress occurring in various pathological processes. Moreover, these results illustrate the importance of selecting the degree of SOD2 overexpression to obtain a protective effect.


Assuntos
Estresse Oxidativo , Superóxido Dismutase , Humanos , Células HEK293 , Superóxido Dismutase/metabolismo , Transfecção
10.
Redox Biol ; 69: 102992, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142585

RESUMO

AIMS: In mammals, central chemoreception plays a crucial role in the regulation of breathing function in both health and disease conditions. Recently, a correlation between high levels of superoxide anion (O2.-) in the Retrotrapezoid nucleus (RTN), a main brain chemoreceptor area, and enhanced central chemoreception has been found in rodents. Interestingly, deficiency in superoxide dismutase 2 (SOD2) expression, a pivotal antioxidant enzyme, has been linked to the development/progression of several diseases. Despite, the contribution of SOD2 on O2.- regulation on central chemoreceptor function is unknown. Accordingly, we sought to determine the impact of partial deletion of SOD2 expression on i) O2.-accumulation in the RTN, ii) central ventilatory chemoreflex function, and iii) disordered-breathing. Finally, we study cellular localization of SOD2 in the RTN of healthy mice. METHODS: Central chemoreflex drive and breathing function were assessed in freely moving heterozygous SOD2 knockout mice (SOD2+/- mice) and age-matched control wild type (WT) mice by whole-body plethysmography. O2.- levels were determined in RTN brainstem sections and brain isolated mitochondria, while SOD2 protein expression and tissue localization were determined by immunoblot, RNAseq and immunofluorescent staining, respectively. RESULTS: Our results showed that SOD2+/- mice displayed reductions in SOD2 levels and high O2.- formation and mitochondrial dysfunction within the RTN compared to WT. Additionally, SOD2+/- mice displayed a heightened ventilatory response to hypercapnia and exhibited overt signs of altered breathing patterns. Both, RNAseq analysis and immunofluorescence co-localization studies showed that SOD2 expression was confined to RTN astrocytes but not to RTN chemoreceptor neurons. Finally, we found that SOD2+/- mice displayed alterations in RTN astrocyte morphology compared to RTN astrocytes from WT mice. INNOVATION & CONCLUSION: These findings provide first evidence of the role of SOD2 in the regulation of O2.- levels in the RTN and its potential contribution on the regulation of central chemoreflex function. Our results suggest that reductions in the expression of SOD2 in the brain may contribute to increase O2.- levels in the RTN being the outcome a chronic surge in central chemoreflex drive and the development/maintenance of altered breathing patterns. Overall, dysregulation of SOD2 and the resulting increase in O2.- levels in brainstem respiratory areas can disrupt normal respiratory control mechanisms and contribute to breathing dysfunction seen in certain disease conditions characterized by high oxidative stress.


Assuntos
Hipercapnia , Respiração , Superóxido Dismutase , Camundongos , Animais , Hipercapnia/metabolismo , Células Quimiorreceptoras/metabolismo , Mamíferos
11.
J Med Food ; 27(2): 123-133, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38100058

RESUMO

Echinacoside (ECH) is a prominent naturally occurring bioactive compound with effects of alleviating myocardial damage. We aimed to explore the beneficial effects of ECH against sepsis-induced myocardial damage and elucidate the potential mechanism. Echocardiography and Masson staining demonstrated that ECH alleviates cardiac function and fibrosis in the cecal ligation and puncture (CLP) model. Transcriptome profiling and network pharmacology analysis showed that there are 51 overlapping targets between sepsis-induced myocardial damage and ECH. Subsequently, chemical carcinogenesis-reactive oxygen species (ROS) were enriched in multiple targets. Wherein, SOD2 may be the potential target of ECH on sepsis-induced myocardial damage. Polymerase chain reaction results showed that ECH administration could markedly increase the expression of SOD2 and reduce the release of ROS. Combined with injecting the inhibitor of SOD2, the beneficial effect of ECH on mortality, cardiac function, and fibrosis was eliminated, and release of ROS was increased after inhibiting SOD2. ECH significantly alleviated myocardial damage in septic mice, and the therapeutic mechanism of ECH is achieved by upregulating SOD2 which decreased the release of ROS.


Assuntos
Glicosídeos , Miocárdio , Sepse , Camundongos , Animais , Espécies Reativas de Oxigênio , Sepse/complicações , Sepse/tratamento farmacológico , Fibrose
12.
Chem Biol Drug Des ; 103(2): e14491, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38404215

RESUMO

N6-methyladenosine (m6 A) modification has been reported to have roles in modulating the development of diabetic cataract (DC). Methyltransferase-like 3 (METTL3) is a critical m6 A methyltransferase involving in m6 A modification activation. Here, we aimed to explore the action and mechanism of METTL3-mediated maturation of miR-4654 in DC progression. Human lens epithelial cells (HLECs) were exposed to high glucose (HG) to imitate DC condition in vitro. Levels of genes and proteins were tested via qRT-PCR and western blotting assays. The proliferation and apoptosis of HLECs were evaluated by cell counting kit-8, 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry assays, respectively. Oxidative stress was analyzed by detecting the contents of reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA). The binding of miR-4654 and SOD2 was confirmed by dual-luciferase reporter assay. The m6 A-RNA immunoprecipitation (MeRIP) assay detected the m6 A modification profile. Thereafter, we found that miR-4654 expression was elevated in DC samples and HG-induced HLECs. MiR-4654 knockdown reversed HG-mediated apoptosis and oxidative stress in HLECs. Mechanistically, miR-4654 directly targeted SOD2, silencing of SOD2 abolished the protective effects of miR-4654 knockdown on HLECs under HG condition. In addition, METTL3 induced miR-4654 maturation through promoting pri-miR-4654 m6 A modification, thereby increasing miR-4654 content in HLECs. METTL3 was highly expressed in DC samples and HG-induced HLECs, METTL3 deficiency protected HLECs against HG-mediated apoptotic and oxidative injury via down-regulating miR-4654. In all, METTL3 induced miR-4654 maturation in a m6 A-dependent manner, which was then reduced SOD2 expression, thus promoting apoptosis and oxidative stress in HLECs, suggesting a novel path for DC therapy.


Assuntos
Catarata , Complicações do Diabetes , MicroRNAs , Superóxido Dismutase , Humanos , Apoptose , Catarata/genética , Catarata/metabolismo , Células Epiteliais/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
13.
Int Immunopharmacol ; 129: 111636, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38364746

RESUMO

Rosacea is a long-term inflammatory skin disease associated with the dysfunction of vascular and immunological systems. Treatment options for rosacea are difficult to implement. Oroxylin A(OA), a traditional Chinese medicine, has anti-inflammation effects in a variety of inflammatory diseases. However, it is not known that whether OA exerts protective effects against LL-37-induced rosacea. In this study, bioinformatics analyses showed that the mechanisms of rosacea and the pharmacological targets of OA were highly overlapped. Subsequently, it was shown that the administration of OA resulted in a notable amelioration of rosacea-like skin lesions, as evidenced by a reduction in immune cell infiltration, modulation of cytokine production, and inhibition of angiogenesis. Plus, it was shown that OA effectively suppressed the generation of ROS generated by LL-37, as well as the subsequent activation of NF-κB signaling pathway. To explore further, we found that OA inhibited LL-37-induced ROS production via SIRT3-SOD2 signaling pathway in keratinocytes. Based on the aforementioned evidence, it can be inferred that OA exhibits a mitigating effect on the inflammatory response in rosacea by modulating the SIRT3-SOD2-NF-κB signaling pathway.


Assuntos
Dermatite , Flavonoides , Rosácea , Sirtuína 3 , Humanos , NF-kappa B/metabolismo , Sirtuína 3/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rosácea/tratamento farmacológico , Transdução de Sinais , Inflamação/tratamento farmacológico
14.
Heliyon ; 10(14): e34438, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39082024

RESUMO

Aims: To analyze the expression of mitochondrial translational initiation factor 2 (MTIF2) and the biological functions of the gene in hepatocellular carcinoma (HCC). Background: The treatment of HCC treatment and its prognostic prediction are limited by a lack of comprehensive understanding of the molecular mechanisms in HCC. OBJECTIVE: To determine the cells expressing MTIF2 in HCC and the function of the MTIF2+ cell subpopulation. Methods: Gene expression analysis on TIMER 2.0, UALCAN, and GEPIA databases was performed to measure the expression of MTIF2 in HCC tissues. Cell clustering subgroups and annotation were conducted based on the single-cell sequencing data of HCC and paracancerous tissues in the Gene Expression Omnibus (GEO) database. MTIF2 expression in different cell types was analyzed. Further, biological pathways potentially regulated by MTIF2 in each cell type were identified. In addition, protein-protein interaction (PPI) networks of MTIF2 with genes in its regulated biological pathways were developed. The cell function assay was performed to verify the effects of superoxide dismutase-2 (SOD2) and MTIF2 on HCC cells. Finally, we screened virtual drugs targeting MTIF2 and SOD2 employing database screening, molecular docking and molecular dynamics. Results: MTIF2 showed a remarkably high expression in HCC tissues. We identified a total of 10 cell types between HCC tissues and paracancerous tissues. MTIF2 expression was upregulated in epithelial cells, macrophages, and hepatocytes. More importantly, high-expressed MTIF2 in HCC tissues was mainly derived from epithelial cells and hepatocytes, in which the reactive oxygen species (ROS) pathway was significantly positively correlated with MTIF2. In the PPI network, there was a unique interaction pair between SOD2 and MTIF2 in the ROS pathway. Cell function experiments showed that overexpression of MTIF2 enhanced the proliferative and invasive capacities of HCC, which could synergize with SOD2 to co-promote the development of HCC. Finally, molecular dynamics simulations showed that DB00183 maintained a high structural stability with MTIF2 and SOD2 proteins during the simulation process. Conclusion: Our study confirmed that the high-expressed MTIF2 in HCC tissues was derived from epithelial cells and hepatocytes. MTIF2 might act on SOD2 to regulate the ROS pathway, thereby affective the progression of HCC.

15.
Nutrients ; 16(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542762

RESUMO

The parenteral nutrition (PN) received by premature newborns is contaminated with peroxides that induce global DNA hypermethylation via oxidative stress. Exposure to peroxides could be an important factor in the induction of chronic diseases such as those observed in adults who were born preterm. As endogenous H2O2 is a major regulator of glucose-lipid metabolism, our hypothesis was that early exposure to PN induces permanent epigenetic changes in H2O2 metabolism. Three-day-old guinea pigs were fed orally (ON), PN or glutathione-enriched PN (PN+GSSG). GSSG promotes endogenous peroxide detoxification. After 4 days, half the animals were sacrificed, and the other half were fed ON until 16 weeks of age. The liver was harvested. DNA methylation and mRNA levels were determined for the SOD2, GPx1, GCLC, GSase, Nrf2 and Keap1 genes. PN induced GPx1 hypermethylation and decreased GPx1, GCLC and GSase mRNA. These findings were not observed in PN+GSSG. PN+GSSG induced Nrf2 hypomethylation and increased Nrf2 and SOD2 mRNA. These observations were independent of age. In conclusion, in neonatal guinea pigs, PN induces epigenetic changes, affecting the expression of H2O2 metabolism genes. These changes persist for at least 15 weeks after PN. This disruption may signify a permanent reduction in the capacity to detoxify peroxides.


Assuntos
Peróxido de Hidrogênio , Fator 2 Relacionado a NF-E2 , Animais , Cobaias , Peróxido de Hidrogênio/metabolismo , Dissulfeto de Glutationa/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Animais Recém-Nascidos , Nutrição Parenteral/efeitos adversos , Glutationa/metabolismo , Peróxidos/metabolismo , Suplementos Nutricionais , Epigênese Genética , RNA Mensageiro/genética
16.
Eur J Med Res ; 29(1): 250, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659023

RESUMO

OBJECTIVE: There is a growing body of evidence indicating that pyroptosis, a programmed cell death mechanism, plays a crucial role in the exacerbation of inflammation and fibrosis in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Circular RNAs (circRNAs), functioning as vital regulators within NAFLD, have been shown to mediate the process of cell pyroptosis. This study aims to elucidate the roles and mechanisms of circRNAs in NAFLD. METHODS: Utilizing a high-fat diet (HFD)-induced rat model for in vivo experimentation and hepatocytes treated with palmitic acid (PA) for in vitro models, we identified circular RNA SOD2 (circSOD2) as our circRNA of interest through analysis with the circMine database. The expression levels of associated genes and pyroptosis-related proteins were determined using quantitative real-time polymerase chain reaction and Western blotting, alongside immunohistochemistry. Serum liver function markers, cellular inflammatory cytokines, malondialdehyde, lactate dehydrogenase levels, and mitochondrial membrane potential, were assessed using enzyme-linked immunosorbent assay, standard assay kits, or JC-1 staining. Flow cytometry was employed to detect pyroptotic cells, and lipid deposition in liver tissues was observed via Oil Red O staining. The interactions between miR-532-3p/circSOD2 and miR-532-3p/Thioredoxin Interacting Protein (TXNIP) were validated through dual-luciferase reporter assays and RNA immunoprecipitation experiments. RESULTS: Our findings demonstrate that, in both in vivo and in vitro NAFLD models, there was an upregulation of circSOD2 and TXNIP, alongside a downregulation of miR-532-3p. Mechanistically, miR-532-3p directly bound to the 3'-UTR of TXNIP, thereby mediating inflammation and cell pyroptosis through targeting the TXNIP/NLR family pyrin domain containing 3 (NLRP3) inflammasome signaling pathway. circSOD2 directly interacted with miR-532-3p, relieving the suppression on the TXNIP/NLRP3 signaling pathway. Functionally, the knockdown of circSOD2 or TXNIP improved hepatocyte pyroptosis; the deletion of miR-532-3p reversed the effects of circSOD2 knockdown, and the deletion of TXNIP reversed the effects of circSOD2 overexpression. Furthermore, the knockdown of circSOD2 significantly mitigated the progression of NAFLD in vivo. CONCLUSION: circSOD2 competitively sponges miR-532-3p to activate the TXNIP/NLRP3 inflammasome signaling pathway, promoting pyroptosis in NAFLD.


Assuntos
Proteínas de Ciclo Celular , Hepatócitos , MicroRNAs , Proteína 3 que Contém Domínio de Pirina da Família NLR , Hepatopatia Gordurosa não Alcoólica , Piroptose , RNA Circular , Animais , Humanos , Masculino , Ratos , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Hepatócitos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Piroptose/genética , Ratos Sprague-Dawley , RNA Circular/genética , RNA Circular/metabolismo , Transdução de Sinais , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Tiorredoxinas/metabolismo , Tiorredoxinas/genética
17.
Free Radic Biol Med ; 222: 149-164, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38851518

RESUMO

OBJECTIVE: Calcific aortic valve disease (CAVD) predominantly affects the elderly and currently lacks effective medical treatments. Nesfatin-1, a peptide derived from the cleavage of Nucleobindin 2, has been implicated in various calcification processes, both physiological and pathological. This study explores the impact of Nesfatin-1 on the transformation of aortic valve interstitial cells (AVICs) in CAVD. METHODS AND RESULTS: In vitro experiments showed that Nesfatin-1 treatment mitigated the osteogenic differentiation of AVICs. Corresponding in vivo studies demonstrated a deceleration in the progression of CAVD. RNA-sequencing of AVICs treated with and without Nesfatin-1 highlighted an enrichment of the Ferroptosis pathway among the top pathways identified by the Kyoto Encyclopedia of Genes and Genomes analysis. Further examination confirmed increased ferroptosis in both calcified valves and osteoblast-like AVICs, with a reduction in ferroptosis following Nesfatin-1 treatment. Within the Ferroptosis pathway, ZIP8 showed the most notable modulation by Nesfatin-1. Silencing ZIP8 in AVICs increased ferroptosis and osteogenic differentiation, decreased intracellular Mn2+ concentration, and reduced the expression and activity of superoxide dismutase (SOD2). Furthermore, the silencing of SOD2 exacerbated ferroptosis and osteogenic differentiation. Nesfatin-1 treatment was found to elevate the expression of glutathione peroxidase 4 (GPX4) and levels of glutathione (GSH), as confirmed by Western blotting and GSH concentration assays. CONCLUSION: In summary, Nesfatin-1 effectively inhibits the osteogenic differentiation of AVICs by attenuating ferroptosis, primarily through the GSH/GPX4 and ZIP8/SOD2 pathways.

18.
Biomed Pharmacother ; 175: 116689, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703508

RESUMO

Ischemic heart disease invariably leads to devastating damage to human health. Nicotinamide ribose (NR), as one of the precursors of NAD+ synthesis, has been discovered to exert a protective role in various neurological and cardiovascular disorders. Our findings demonstrated that pretreatment with 200 mg/kg NR for 3 h significantly reduced myocardial infarct area, decreased levels of CK-MB and LDH in serum, and improved cardiac function in the rats during myocardial ischemia-reperfusion (I/R) injury. Meanwhile, 0.5 mM NR also effectively increased the viability and decreased the LDH release of H9c2 cells during OGD/R. We had provided evidence that NR pretreatment could decrease mitochondrial reactive oxygen species (mtROS) production and MDA content, and enhance SOD activity, thereby mitigating mitochondrial damage and inhibiting apoptosis during myocardial I/R injury. Further investigations revealed that NR increased NAD+ content and upregulated SIRT3 protein expression in myocardium. Through using of SIRT3 small interfering RNA and the SIRT3 deacetylase activity inhibitor 3-TYP, we had confirmed that the cardioprotective effect of NR on cardiomyocytes was largely dependent on the inhibition of mitochondrial oxidative stress via SIRT3-SOD2 axis. Overall, our study suggested that exogenous supplementation with NR mitigated mitochondrial damage and inhibited apoptosis during myocardial I/R injury by reducing mitochondrial oxidative stress via SIRT3-SOD2-mtROS pathway.


Assuntos
Apoptose , Traumatismo por Reperfusão Miocárdica , Niacinamida , Estresse Oxidativo , Compostos de Piridínio , Ratos Sprague-Dawley , Transdução de Sinais , Sirtuína 3 , Superóxido Dismutase , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Sirtuína 3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Niacinamida/farmacologia , Niacinamida/análogos & derivados , Superóxido Dismutase/metabolismo , Ratos , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Compostos de Piridínio/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Cardiotônicos/farmacologia , Sirtuínas
19.
Vavilovskii Zhurnal Genet Selektsii ; 28(4): 424-432, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39027127

RESUMO

Breast cancer is one of the leading causes of mortality among women. The most frequently encountered tumors are luminal tumors. Associations of polymorphisms in the hOGG1 (rs1052133), APEX1 (rs1130409), XPD (rs13181), SOD2 (rs4880), and CAT (rs1001179) genes were studied in 313 nonsmoking postmenopausal patients with luminal B subtype breast cancer. The control group consisted of 233 healthy nonsmoking postmenopausal women. Statistically significant associations of the XPD and APEX1 gene polymorphisms with the risk of developing luminal B Her2-negative subtype of breast cancer were observed in a log-additive inheritance model, while the CAT gene polymorphism showed an association in a dominant inheritance model (OR = 1.41; CI 95 %: 1.08-1.85; Padj.= 0.011; OR = 1.39; CI 95 %: 1.07-1.81; Padj = 0.013 и OR = 1.70; CI 95 %: 1.19-2.43; Padj = 0.004, respectively). In the group of elderly women (aged 60-74 years), an association of the CAT gene polymorphism with the risk of developing luminal B subtype of breast cancer was found in a log-additive inheritance model (OR = 1.87; 95 % CI: 1.22-2.85; Padj = 0.0024). Using MDR analysis, the most optimal statistically significant 3-locus model of gene-gene interactions in the development of luminal B Her2-negative subtype breast cancer was found. MDR analysis also showed a close interaction and mutual enhancement of effects between the APEX1 and SOD2 loci and the independence of the effects of these loci from the CAT locus in the formation of luminal B subtype breast cancer.

20.
Integr Cancer Ther ; 23: 15347354241258961, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38899834

RESUMO

CONTEXT: Salvia miltiorrhiza (SM) is a commonly used herb in traditional Chinese medicine (TCM) and has been used in the treatment of pancreatic cancer to relieve the symptom of "blood stasis and toxin accumulation." Tanshinones (Tan), the main lipophilic constituents extracted from the roots and rhizomes of SM, have been reported to possess anticancer functions in several cancers. But the mechanism of how the active components work in pancreatic cancer still need to be clarified. OBJECTIVE: In this study, we aimed to investigate the therapeutic potential of Tan in pancreatic cancer and elucidate the underlying mechanisms. MATERIALS AND METHODS: The viabilities of PANC-1 and Bxpc-3 cells were determined by MTT assay, after treatment with various concentrations of Tan. The apoptotic cells were quantified by annexin V-FITC/PI staining and DAPI staining assays. The expression of relative proteins was used western blotting. Tumor growth was assessed by subcutaneously inoculating cells into C57BL/6 mice. RESULTS: Our experiments discovered that Tan effectively suppressed pancreatic cancer cell proliferation and promoted apoptosis. Mechanistically, we propose that Tan enhances intracellular ROS levels by activating the AKT/FOXO3/SOD2 signaling pathway, ultimately leading to apoptosis in pancreatic cancer cells. In vivo assay showed the antitumor effect of Tan. CONCLUSION: Tan, a natural compound from Salvia miltiorrhiza, was found to effectively suppress pancreatic cancer cell proliferation and promote apoptosis both in vitro and in vivo. Mechanistically, we propose a positive feedback loop mechanism. These findings provide valuable insights into the molecular pathways driving pancreatic cancer progression.


Assuntos
Abietanos , Apoptose , Proteína Forkhead Box O3 , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio , Salvia miltiorrhiza , Transdução de Sinais , Neoplasias Pancreáticas/tratamento farmacológico , Salvia miltiorrhiza/química , Abietanos/farmacologia , Apoptose/efeitos dos fármacos , Animais , Humanos , Proteína Forkhead Box O3/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Extratos Vegetais/farmacologia , Camundongos Endogâmicos C57BL , Proliferação de Células/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA