RESUMO
Alternative polyadenylation (APA) enhances gene regulatory potential by increasing the diversity of mRNA transcripts. 3' UTR shortening through APA correlates with enhanced cellular proliferation and is a widespread phenomenon in tumor cells. Here, we show that the ubiquitously expressed transcription factor Sp1 binds RNA in vivo and is a common repressor of distal poly(A) site usage. RNA sequencing identified 2,344 genes (36% of the total mapped mRNA transcripts) with lengthened 3' UTRs upon Sp1 depletion. Sp1 preferentially binds the 3' UTRs of such lengthened transcripts and inhibits cleavage at distal sites by interacting with the subunits of the core cleavage and polyadenylation (CPA) machinery. The 3' UTR lengths of Sp1 target genes in breast cancer patient RNA-seq data correlate with Sp1 expression levels, implicating Sp1-mediated APA regulation in modulating tumorigenic properties. Taken together, our findings provide insights into the mechanism for dynamic APA regulation by unraveling a previously unknown function of the DNA-binding transcription factor Sp1.
Assuntos
Poli A , Poliadenilação , Regiões 3' não Traduzidas , Humanos , Poli A/metabolismo , RNA Mensageiro/metabolismo , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Zinco/metabolismoRESUMO
Lung adenocarcinoma (LUAD) is the leading cause of cancer-related death worldwide, but the underlying molecular mechanisms remain largely unclear. The transcription factor (TF) specificity protein 1 (SP1) plays a crucial role in the development of various cancers, including LUAD. Recent studies have indicated that master TFs may form phase-separated macromolecular condensates to promote super-enhancer (SE) assembly and oncogene expression. In this study, we demonstrated that SP1 undergoes phase separation and that its zinc finger 3 in the DNA-binding domain is essential for this process. Through Cleavage Under Targets & Release Using Nuclease (CUT&RUN) using antibodies against SP1 and H3K27ac, we found a significant correlation between SP1 enrichment and SE elements, identified the regulator of the G protein signaling 20 (RGS20) gene as the most likely target regulated by SP1 through SE mechanisms, and verified this finding using different approaches. The oncogenic activity of SP1 relies on its phase separation ability and RGS20 gene activation, which can be abolished by glycogen synthase kinase J4 (GSK-J4), a demethylase inhibitor. Together, our findings provide evidence that SP1 regulates its target oncogene expression through phase separation and SE mechanisms, thereby promoting LUAD cell progression. This study also revealed an innovative target for LUAD therapies through intervening in SP1-mediated SE formation.
Assuntos
Adenocarcinoma de Pulmão , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Proteínas RGS , Fator de Transcrição Sp1 , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Humanos , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Proteínas RGS/metabolismo , Proteínas RGS/genética , Linhagem Celular Tumoral , Animais , Elementos Facilitadores Genéticos , Progressão da Doença , Camundongos , Separação de FasesRESUMO
Prolidase (PEPD) is the only hydrolase that cleaves the dipeptides containing C-terminal proline or hydroxyproline-the rate-limiting step in collagen biosynthesis. However, the molecular regulation of prolidase expression remains largely unknown. In this study, we have identified overlapping binding sites for the transcription factors Krüppel-like factor 6 (KLF6) and Specificity protein 1 (Sp1) in the PEPD promoter and demonstrate that KLF6/Sp1 transcriptionally regulate prolidase expression. By cloning the PEPD promoter into a luciferase reporter and through site-directed deletion, we pinpointed the minimal sequences required for KLF6 and Sp1-mediated PEPD promoter-driven transcription. Interestingly, Sp1 inhibition abrogated KLF6-mediated PEPD promoter activity, suggesting that Sp1 is required for the basal expression of prolidase. We further studied the regulation of PEPD by KLF6 and Sp1 during transforming growth factor ß1 (TGF-ß1) signaling, since both KLF6 and Sp1 are key players in TGF-ß1 mediated collagen biosynthesis. Mouse and human fibroblasts exposed to TGF-ß1 resulted in the induction of PEPD transcription and prolidase expression. Inhibition of TGF-ß1 signaling abrogated PEPD promoter-driven transcriptional activity of KLF6 and Sp1. Knock-down of KLF6 as well as Sp1 inhibition also reduced prolidase expression. Chromatin immunoprecipitation assay supported direct binding of KLF6 and Sp1 to the PEPD promoter and this binding was enriched by TGF-ß1 treatment. Finally, immunofluorescence studies showed that KLF6 co-operates with Sp1 in the nucleus to activate prolidase expression and enhance collagen biosynthesis. Collectively, our results identify functional elements of the PEPD promoter for KLF6 and Sp1-mediated transcriptional activation and describe the molecular mechanism of prolidase expression.
Assuntos
Dipeptidases , Fator 6 Semelhante a Kruppel , Transdução de Sinais , Fator de Transcrição Sp1 , Animais , Humanos , Camundongos , Colágeno/metabolismo , Fator 6 Semelhante a Kruppel/genética , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismoRESUMO
Bovine alphaherpesvirus 1 (BoHV-1) infections cause respiratory tract disorders and suppress immune responses, which can culminate in bacterial pneumonia. Following acute infection, BoHV-1 establishes lifelong latency in sensory neurons present in trigeminal ganglia (TG) and unknown cells in pharyngeal tonsil. Latently infected calves consistently reactivate from latency after an intravenous injection of the synthetic corticosteroid dexamethasone (DEX), which mimics the effects of stress. The immediate early transcription unit 1 (IEtu1) promoter drives expression of infected cell protein 0 (bICP0) and bICP4, two key viral transcriptional regulators. The IEtu1 promoter contains two functional glucocorticoid receptor (GR) response elements (GREs), and this promoter is transactivated by GR, DEX, and certain Krüppel transcription factors that interact with GC-rich motifs, including consensus specificity protein 1 (Sp1) binding sites. Based on these observations, we hypothesized that Sp1 stimulates productive infection and transactivates key BoHV-1 promoters. DEX treatment of latently infected calves increased the number of Sp1+ TG neurons and cells in pharyngeal tonsil indicating that Sp1 expression is induced by stress. Silencing Sp1 protein expression with siRNA or mithramycin A, a drug that preferentially binds GC-rich DNA, significantly reduced BoHV-1 replication. Moreover, BoHV-1 infection of permissive cells increased Sp1 steady-state protein levels. In transient transfection studies, GR and Sp1 cooperatively transactivate IEtu1 promoter activity unless both GREs are mutated. Co-immunoprecipitation studies revealed that GR and Sp1 interact in mouse neuroblastoma cells (Neuro-2A) suggesting this interaction stimulates IEtu1 promoter activity. Collectively, these studies suggested that the cellular transcription factor Sp1 enhances productive infection and stress-induced BoHV-1 reactivation from latency.IMPORTANCEFollowing acute infection, bovine alphaherpesvirus 1 (BoHV-1) establishes lifelong latency in sensory neurons in trigeminal ganglia (TG) and pharyngeal tonsil. The synthetic corticosteroid dexamethasone consistently induces BoHV-1 reactivation from latency. The number of TG neurons and cells in pharyngeal tonsil expressing the cellular transcription factor specificity protein 1 (Sp1) protein increases during early stages of dexamethasone-induced reactivation from latency. Silencing Sp1 expression impairs BoHV-1 replication in permissive cells. Interestingly, mithramycin A, a neuroprotective antibiotic that preferentially binds GC-rich DNA, impairs Sp1 functions and reduces BoHV-1 replication suggesting that it is a potential antiviral drug. The glucocorticoid receptor (GR) and Sp1 cooperatively transactivate the BoHV-1 immediate early transcript unit 1 (IEtu1) promoter, which drives expression of infected cell protein 0 (bICP0) and bICP4. Mithramycin A also reduced Sp1- and GR-mediated transactivation of the IEtu1 promoter. These studies revealed that GR and Sp1 trigger viral gene expression and replication following stressful stimuli.
Assuntos
Infecções por Herpesviridae , Herpesvirus Bovino 1 , Receptores de Glucocorticoides , Fator de Transcrição Sp1 , Animais , Bovinos , Camundongos , Corticosteroides/metabolismo , Dexametasona/farmacologia , DNA/metabolismo , Herpesvirus Bovino 1/fisiologia , Plicamicina/análogos & derivados , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo , Fator de Transcrição Sp1/metabolismoRESUMO
Ischemia reperfusion (I/R) was considered as one of main causes of acute kidney injury (AKI). However, the exact mechanism remains unclear. Here, this study aimed to investigate the role and mechanism of the m6A demethylase fat mass and obesity-associated (FTO) protein in I/R-induced AKI. HK-2 cells and SD rats were utilized to establish hypoxia/reoxygenation (H/R) or I/R induced AKI models. The changes of RNAs and proteins were quantified using RT-qPCR, western blot, and immunofluorescence assays, respectively. Cell proliferation and apoptosis were assessed by CCK-8 and flow cytometry. Interactions between molecules were investigated using RIP, ChIP, Co-IP, RNA pull-down, and dual luciferase reporter assays. Global m6A quantification was evaluated by kits. TUNEL and HE staining were employed for histopathological examinations. Oxidative stress-related indicators and renal function were determined using ELISA assays. The FTO expression was downregulated in H/R-induced HK-2 cells and renal tissues from I/R-induced rats. Overexpression of FTO improved the cell viability but repressed apoptosis and oxidative stress in H/R-treated HK-2 cells, as well as enhanced renal function and alleviated kidney injury in I/R rats. Notably, the FTO overexpression significantly increased autophagy-related LC3 and ULK1 levels. When autophagy was inhibited, the protective effects of FTO in AKI were diminished. Notably, Ambra1, a crucial regulator of autophagy, was repressed in H/R-induced HK-2 cells. However, the FTO overexpression restored the Ambra1 expression by reducing m6A modification of its mRNA. SP1, acting as an upstream transcription factor, directly interacts with the FTO promoter to enhance FTO expression. Knockdown of SP1 or Ambra1 suppressed the beneficial effects of FTO upregulation on autophagy and oxidative stress injury in H/R-stimulated cells. FTO, transcriptionally activated by SP1, promoted autophagy by upregulating Ambra1/ULK1 signaling, thereby inhibiting oxidative stress and kidney injury. These findings may provide some novel insights for AKI treatment.
Assuntos
Injúria Renal Aguda , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Autofagia , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Animais , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/genética , Ratos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Masculino , Humanos , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular , Apoptose , Estresse Oxidativo , Peptídeos e Proteínas de Sinalização IntracelularRESUMO
CircRNAs are abnormally expressed in various cancers and play an important role in the occurrence and development of cancers. However, their biological functions and the underlying molecular mechanisms in pancreatic cancer (PC) metastasis are incompletely understood. Differentially expressed circRNAs were identified by second-generation transcriptome sequencing in three pairs of PC tissues and adjacent tissues. The expression and prognostic significance of hsa_circ_0007919 were evaluated by qRT-PCR and Kaplan-Meier survival curves. Gain- and loss-of-function assays were conducted to detect the role of hsa_circ_0007919 in PC metastasis in vitro. A lung metastasis model and IHC experiments were conducted to confirm the effects of hsa_circ_0007919 on tumor metastasis in vivo. Mechanistically, RNA immunoprecipitation and chromatin immunoprecipitation assays were conducted to explore the interplay among hsa_circ_0007919, Sp1, and the THBS1 promoter. hsa_circ_0007919 was significantly upregulated in PC tissues and cells and was correlated with lymph node metastasis, TNM stage, and poor prognosis. Knockdown of hsa_circ_0007919 significantly suppressed the migration and invasion of PC cells in vitro and inhibited tumor metastasis in vivo. However, overexpression of hsa_circ_0007919 exerted the opposite effects. Mechanistically, hsa_circ_0007919 could recruit the transcription factor Sp1 to inhibit THBS1 transcription, thereby facilitating PC metastasis. hsa_circ_0007919 can promote the metastasis of PC by inhibiting THBS1 expression. hsa_circ_0007919 may be a potential therapeutic target in PC.
Assuntos
MicroRNAs , Neoplasias Pancreáticas , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Invasividade Neoplásica/genética , Neoplasias Pancreáticas/genética , RNA Circular/genética , RNA Circular/metabolismoRESUMO
Myocardial infarction (MI) is a potentially fatal disease that causes a significant number of deaths worldwide. The strategy of increasing fatty acid oxidation in myocytes is considered a therapeutic avenue to accelerate metabolism to meet energy demands. We conducted the study aiming to investigate the effect of KN-93, which induces histone deacetylase (HDAC)4 shuttling to the nucleus, on fatty acid oxidation and the expression of related genes. A mouse model of myocardial infarction was induced by isoprenaline administration. Heart damage was assessed by the detection of cardiac injury markers. The level of fatty acid oxidation level was evaluated by testing the expression of related genes. Both immunofluorescence and immunoblotting in the cytosol or nucleus were utilized to observe the distribution of HDAC4. The interaction between HDAC4 and specificity protein (SP)1 was confirmed by co-immunoprecipitation. The acetylation level of SP1 was tested after KN-93 treatment and HDAC4 inhibitor. Oxygen consumption rate and immunoblotting experiments were used to determine whether the effect of KN-93 on increasing fatty acid oxidation is through HDAC4 and SP1. Administration of KN-93 significantly reduced cardiac injury in myocardial infarction and promoted fatty acid oxidation both in vitro and in vivo. KN-93 was shown to mediate nuclear translocation of HDAC4. HDAC4 was found to interact with SP1 and reduce SP1 acetylation. HDAC4 or SP1 inhibitors attenuated the effect of KN-93 on fatty acid oxidation. In conclusion, KN-93 promotes HDAC4 translocation to the nucleus, thereby potentially enhancing fatty acid oxidation by SP1.
Assuntos
Núcleo Celular , Ácidos Graxos , Histona Desacetilases , Infarto do Miocárdio , Oxirredução , Animais , Humanos , Masculino , Camundongos , Acetilação/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Ácidos Graxos/metabolismo , Histona Desacetilases/efeitos dos fármacos , Histona Desacetilases/metabolismo , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Oxirredução/efeitos dos fármacos , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Benzilaminas/farmacologia , Benzenossulfonamidas/farmacologiaRESUMO
The development of sepsis can lead to many organ dysfunction and even death. Myocardial injury is one of the serious complications of sepsis leading to death. New evidence suggests that microRNAs (miRNAs) play a critical role in infection myocardial injury. However, the mechanism which miR-208a-5p regulates sepsis-induced myocardial injury remains unclear. To mimic sepsis-induced myocardial injury in vitro, rat primary cardiomyocytes were treated with LPS. Cell viability and apoptosis were tested by CCK-8 and flow cytometry, respectively. The secretion of inflammatory factors was analyzed by ELISA. mRNA and protein levels were detected by RT-qPCR and Western blotting. The interaction among SP1, XIAP and miR-208a-5p was detected using dual luciferase report assay. Ultrasonic analysis and HE staining was performed to observe the effect of miR-208a-5p in sepsis-induced rats. Our findings indicated that miR-208a-5p expression in primary rat cardiomyocytes was increased by LPS. MiR-208a-5p inhibitor reversed LPS-induced cardiomyocytes injury through inhibiting the apoptosis. Furthermore, the inflammatory injury in cardiomyocytes was induced by LPS, which was rescued by miR-208a-5p inhibitor. In addition, downregulation of miR-208a-5p improved LPS-induced sepsis myocardial injury in vivo. Mechanistically, XIAP might be a target gene of miR-208a-5p. SP1 promoted transcription of miR-208a by binding to the miR-208a promoter region. Moreover, silencing of XIAP reversed the regulatory of miR-208a-5p inhibitor on cardiomyocytes injury. To sum up, those findings revealed silencing of miR-208a-5p could alleviate sepsis-induced myocardial injury, which would grant a new process for the treatment of sepsis.
Assuntos
MicroRNAs , Sepse , Animais , Ratos , Apoptose , Lipopolissacarídeos/farmacologia , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Sepse/complicações , Sepse/genética , Sepse/metabolismo , Fator de Transcrição Sp1RESUMO
BACKGROUND: Patients with lung adenocarcinoma (LUAD) generally have poor prognosis. The role of striatin-interacting protein 2 (STRIP2) in LUAD remain unclear. METHODS: Liquid chromatography-mass spectrometry analyses were used to screen the STRIP2-binding proteins and co-immunoprecipitation verified these interactions. A dual luciferase reporter assay explored the transcription factor activating STRIP2 transcription. Xenograft and lung metastasis models assessed STRIP2's role in tumor growth and metastasis in vivo. RESULTS: STRIP2 is highly expressed in LUAD tissues and is linked to poor prognosis. STRIP2 expression in LUAD cells significantly promoted cell proliferation, invasion, and migration in vitro and in vivo. Mechanistically, STRIP2 boosted the PI3K/AKT/mTOR/MYC cascades by binding AKT. In addition, specificity protein 1, potently activated STRIP2 transcription by binding to the STRIP2 promoter. Blocking STRIP2 reduces tumor growth and lung metastasis in xenograft models. CONCLUSIONS: Our study identifies STRIP2 is a key driver of LUAD progression and a potential therapeutic target.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Fator de Transcrição Sp1 , Serina-Treonina Quinases TOR , Humanos , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Linhagem Celular Tumoral , Camundongos Nus , Proliferação de Células , Células A549 , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Feminino , Masculino , Progressão da DoençaRESUMO
BACKGROUND & AIMS: HBV expresses more than 10 spliced RNAs from the viral pregenomic RNA, but their functions remain elusive and controversial. To address the function of HBV spliced RNAs, we generated splicing-deficient HBV mutants and conducted experiments to assess the impact of these mutants on HBV infection. METHODS: HepG2-NTCP cells, human hepatocyte chimeric FRG mice (hu-FRG mice), and serum from patients with chronic hepatitis B were used for experiments on HBV infection. Additionally, SHifter assays and cryo-electron microscopy were performed. RESULTS: We found the infectivity of splicing-deficient HBV was decreased 100-1,000-fold compared with that of wild-type HBV in hu-FRG mice. Another mutant, A487C, which loses the most abundant spliced RNA (SP1), also exhibits severely impaired infectivity. SP1 hypothetically encodes a novel protein HBcSP1 (HBc-Cys) that lacks the C-terminal cysteine from full-length HBc. In the SHifter assay, HBcSP1 was detected in wild-type viral particles at a ratio of about 20-100% vs. conventional HBc, as well as in the serum of patients with chronic hepatitis B, but not in A487C particles. When infection was conducted with a shorter incubation time of 4-8 h at lower PEG concentrations in HepG2-NTCP cells, the entry of the A487C mutant was significantly slower. SP1 cDNA complementation of the A487C mutant succeeded in rescuing its infectivity in hu-FRG mice and HepG2-NTCP cells. Moreover, cryo-electron microscopy revealed a disulfide bond between HBc cysteine 183 and 48 in the HBc intradimer of the A487C capsid, leading to a locked conformation that disfavored viral entry in contrast to the wild-type capsid. CONCLUSIONS: Prior studies unveiled the potential integration of the HBc-Cys protein into the HBV capsid. We confirmed the proposal and validated its identity and function during infection. IMPACT AND IMPLICATIONS: HBV SP1 RNA encodes a novel HBc protein (HBcSP1) that lacks the C-terminal cysteine from conventional HBc (HBc-Cys). HBcSP1 was detected in cell culture-derived HBV and confirmed in patients with chronic infection by both immunological and chemical modification assays at 10-50% of capsid. The splicing-deficient mutant HBV (A487C) impaired infectivity in human hepatocyte chimeric mice and viral entry in the HepG2-NTCP cell line. Furthermore, these deficiencies of the splicing-deficient mutant could be rescued by complementation with the SP1-encoded protein HBcSP1. We confirmed and validated the identity and function of HBcSP1 during infection, building on the current model of HBV particles.
Assuntos
Vírus da Hepatite B , Hepatite B Crônica , Humanos , Animais , Vírus da Hepatite B/genética , Camundongos , Células Hep G2 , Hepatite B Crônica/virologia , Splicing de RNA , Mutação , RNA Viral/genética , RNA Viral/metabolismo , Microscopia CrioeletrônicaRESUMO
BACKGROUND: Hepatocellular carcinoma (HCC) is characterized by aggressive progression and elevated mortality rates. This study aimed to investigate the regulatory effects of RBBP7 on HCC pathogenesis and the underlying mechanisms. METHODS: The expression and clinical feature of RBBP7 were evaluated using bioinformatics analysis and the assessment of clinical HCC samples. CCK8 and colony formation were employed to estimate cell proliferation function of RBBP7. Aerobic glycolysis levels of RBBP7 were evaluated by measuring ATP levels, lactic acid production, glucose uptake capacity, and the expression of relevant enzymes (PFKM, PKM2, and LDHA). The phosphorylation levels in PI3K/AKT signaling were measured by western blotting. The regulatory effect of transcription factors of specificity protein 1 (SP1) on RBBP7 mRNA expression was confirmed in dual-luciferase reporter assays and chromatin immunoprecipitation experiments. The proliferation- and glycolysis-associated proteins were assessed using immunofluorescence staining in vivo. RESULTS: We found that RBBP7 is expressed at high levels in HCC and predicts poor survival. Functional assays showed that RBBP7 promoted HCC proliferation and glycolysis. Mechanistically, it was demonstrated that RBBP7 activates the PI3K/AKT pathway, a crucial pathway in glycolysis, contributing to the progression of HCC. The outcomes of the dual-luciferase assay further confirmed that SP1 is capable of activating the promoter of RBBP7. CONCLUSIONS: RBBP7, which is up-regulated by SP1, promotes HCC cell proliferation and glycolysis through the PI3K/AKT pathway. The findings of this study suggest that RBBP7 is a potential biomarker for HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Luciferases/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína 7 de Ligação ao Retinoblastoma/genética , Proteína 7 de Ligação ao Retinoblastoma/metabolismoRESUMO
BACKGROUND: Sp1, a transcription factor, regulates essential cellular processes and plays important tumorigenic roles across diverse cancers. However, comprehensive pan-cancer analyses of its expression and potential immunomodulatory roles remain unexplored. METHODS: Utilizing bioinformatics tools and public datasets, we examined the expression of Sp1 across normal tissues, tumors, and immune cells, and screened for pre- and post-transcriptional modifications, including genetic alterations, DNA methylation, and protein phosphorylation, affecting its expression or function. The association of Sp1 expression with immune cell infiltration, tumor mutational burden, and immune checkpoint signaling was also investigated. Single-cell transcriptome data was used to assess Sp1 expression in immune cells in gastric cancer (GC), and findings were corroborated using immunohistochemistry and multiplex immunofluorescence in an immunotherapy-treated patient cohort. The prognostic value of Sp1 in GC patients receiving immunotherapy was evaluated with Cox regression models. RESULTS: Elevated Sp1 levels were observed in various cancers compared to normal tissues, with notable prominence in GC. High Sp1 expression correlated with advanced stage, poor prognosis, elevated tumor mutational burden (TMB), and microsatellite instability (MSI) status, particularly in GC. Significant correlations between Sp1 levels and CD8+ T cell and the M1 phenotype of tumor-associated macrophages were further detected upon multiplex immunofluorescence in GC samples. Interestingly, we verified that GC patients with higher Sp1 levels exhibited improved response to immunotherapy. Moreover, Sp1 emerged as a prognostic and predictive biomarker for GC patients undergoing immunotherapy. CONCLUSIONS: Our pan-cancer analysis sheds light on the multifaceted role of Sp1 in tumorigenesis and underscores its potential as a prognostic and predictive biomarker for patients with GC undergoing immunotherapy.
RESUMO
Cutaneous squamous cell carcinoma (cSCC) ranks as the second most prevalent skin tumour (excluding melanoma). However, the molecular mechanisms driving cSCC progression remain elusive. This study aimed to investigate GBP1 expression in cSCC and elucidate its potential molecular mechanisms underlying cSCC development. GBP1 expression was assessed across public databases, cell lines and tissue samples. Various assays, including clone formation, CCK8 and EdU were employed to evaluate cell proliferation, while wound healing and transwell assays determined cell migration and invasion. Subcutaneous tumour assays were conducted to assess in vivo tumour proliferation, and molecular mechanisms were explored through western blotting, immunofluorescence and immunoprecipitation. Results identified GBP1 as an oncogene in cSCC, with elevated expression in both tumour tissues and cells, strongly correlating with tumour stage and grade. In vitro and in vivo investigations revealed that increased GBP1 expression significantly enhanced cSCC cell proliferation, migration and invasion. Mechanistically, GBP1 interaction with SP1 promoted STAT3 activation, contributing to malignant behaviours. In conclusion, the study highlights the crucial role of the GBP1/SP1/STAT3 signalling axis in regulating tumour progression in cSCC. These findings provide valuable insights into the molecular mechanisms of cSCC development and offer potential therapeutic targets for interventions against cSCC.
Assuntos
Carcinoma de Células Escamosas , Movimento Celular , Proliferação de Células , Proteínas de Ligação ao GTP , Invasividade Neoplásica , Fator de Transcrição STAT3 , Neoplasias Cutâneas , Fator de Transcrição Sp1 , Fator de Transcrição STAT3/metabolismo , Humanos , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Fator de Transcrição Sp1/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/genética , Linhagem Celular Tumoral , Animais , Camundongos , Transdução de Sinais , Feminino , Camundongos NusRESUMO
The primordial to primary follicle transition (PPT) in the ovary is critical to maintain sustainable reproductive resources in female mammals. However, it is unclear how granulosa cells (GCs) of the primary follicle participate in regulating PPT. This study focused on exploring the role of transcription factor Sp1 (SP1) in regulating PPT based on the fact that SP1 is pivotal for pregranulosa cell proliferation before primordial follicle formation. The results showed that mice fertility was prolonged when Sp1 was specifically depleted from GCs (GC- Sp1 -/- ). Besides, the PPT in GC- Sp1 -/- mice was reduced, resulting in more primordial follicles being preserved. Single-cell RNA-seq also indicated that the level of cholesterol metabolism was downregulated in GC- Sp1 -/- mice. Additionally, the PPT was promoted by either overexpression of ferredoxin-1 (FDX1), one of the key genes in mediating cholesterol metabolism or supplementing cholesterol for cultured fetal ovaries. Collectively, SP1 in GCs participates in the metabolism of cholesterol partially by regulating the transcription of Fdx1 during the PPT.
Assuntos
Células da Granulosa , Folículo Ovariano , Feminino , Camundongos , Animais , Folículo Ovariano/metabolismo , Células da Granulosa/metabolismo , Ovário/metabolismo , Mamíferos , Metabolismo dos LipídeosRESUMO
The dysfunction of CRALBP, a key regulator of the visual cycle, is associated with retinitis punctata albescens characterized by night vision loss and retinal degeneration. In this paper, we find that the expression of CRALBP is regulated by heat shock protein 90 (HSP90). Inhibition of HSP90α or HSP90ß expression by using the CRISPR-Cas9 technology downregulates CRALBP's mRNA and protein expression in ARPE-19 cells by triggering the degradation of transcription factor SP1 in the ubiquitin-proteasome pathway. SP1 can bind to CRALBP's promoter, and inhibition of SP1 by its inhibitor plicamycin or siRNA downregulates CRALBP's mRNA expression. In the zebrafish, inhibition of HSP90 by the intraperitoneal injection of IPI504 reduces the thickness of the retinal outer nuclear layer and Rlbp1b mRNA expression. Interestingly, the expression of HSP90, SP1, and CRALBP is correlatedly downregulated in the senescent ARPE-19 and Pig primary RPE cells in vitro and in the aged zebrafish and mouse retinal tissues in vivo. The aged mice exhibit the low night adaption activity. Taken together, these data indicate that the HSP90-SP1 is a novel regulatory axis of CRALBP transcriptional expression in RPE cells. The age-mediated downregulation of the HSP90-SP1-CRALBP axis is a potential etiology for the night vision reduction in senior people.
Assuntos
Visão Ocular , Peixe-Zebra , Camundongos , Animais , Suínos , Peixe-Zebra/metabolismo , Regulação para Baixo , Retina/metabolismo , Adaptação à Escuridão , Proteínas de Choque Térmico HSP90/metabolismoRESUMO
OBJECTIVE: The COL1A1 proximal promoter contains two GC-rich regions and two inverted CCAAT boxes. The transcription factors Sp1 and CBF bind to the GC sequence at -122 to -115 bp and the inverted CCAAT box at -101 to -96 bp, respectively, and stimulate COL1A1 transcriptional activity. METHODS: To further define the regulatory mechanisms controlling COL1A1 expression by Sp1 and CBF, we introduced 2, 4, 6, or 8 thymidine nucleotides (T-tracts) at position -111 bp of the COL1A1 gene promoter to increase the physical distance between these two binding sites and examined in vitro the transcriptional activities of the resulting constructs and their response to TGF-ß1.`. RESULTS: Insertion of 2 or 4 nucleotides decreased COL1A1 promoter activity by up to 70%. Furthermore, the expected increase in COL1A1 transcription in response to TGF-ß1 was abolished. Computer modeling of the modified DNA structure indicated that increasing the physical distance between the Sp1 and CBF binding sites introduces a rotational change in the DNA topology that disrupts the alignment of Sp1 and CBF binding sites and likely alters protein-protein interactions among these transcription factors or their associated co-activators. CONCLUSION: The topology of the COL1A1 proximal promoter is crucial in determining the transcriptional activity of the gene and its response to the stimulatory effects of TGF-ß1.
Assuntos
Fator de Crescimento Transformador beta1 , Fator de Crescimento Transformador beta , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/metabolismo , DNA , NucleotídeosRESUMO
Lung cancer is the leading cause of cancer-related deaths worldwide. Circular RNA (circRNA) circ_0088036 is a recently discovered circRNA known for its roles in rheumatoid arthritis. The study aimed to study the function of circ_0088036 in lung adenocarcinoma (LUAD). Circ_0088036 expressions were analyzed in the Gene Expression Omnibus (GEO) database. The relationship between circ_0088036 expressions and clinicopathological data of LUAD was assessed. The messenger RNA and protein levels were analyzed by quantitative real-time polymerase chain reaction and Western blot. Cell viability, apoptosis, and invasion were tested by Cell Counting Kit-8, flow cytometry, and transwell assay. The direct interaction between microRNA-203 (miR-203) and circ_0088036 or specificity protein 1 (SP1) was confirmed by dual-luciferase reporter assay, RNA pull-down, and RNA immunoprecipitation assays. Circ_0088036 was overexpressed in LUAD from the analysis of the GEO database. The poor prognosis was found in the patients with high expressions of circ_0088036. The level of Circ_0088036 was increased in LUAD tissues and cells. In terms of function, the deletion of circ_0088036 inhibited LUAD tumorigenesis in vitro by repressing cell growth, invasion, and epithelial-mesenchymal transition (EMT). In mechanism, circ_0088036 could competitively sponge miR-203, thereby affecting the expressions of the target gene SP1. In addition, lessening of miR-203 and enlarging of SP1 could eliminate the anticancer effect of short hairpin RNA-circ_0088036 on LUAD cells. Besides, the knockout of circ_0088036 hindered the growth of xenografted tumors in vivo. Circ_0088036 promoted the LUAD cell growth, invasion, and EMT via modulating the miR-203/SP1 axis in LUAD.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Humanos , Linhagem Celular Tumoral , Proliferação de Células , RNA CircularRESUMO
Helicobacter pylori (HP) infection is the main cause of most cases of gastritis. Quercetin has been shown to have anti-inflammatory, anti-bacterial, and antiviral activities and has been demonstrated to be involved in HP-induced gastric mucosa injury. Moreover, the secretory protein lipocalin-2 (LCN2) was elevated in HP-infected gastric mucosa. Thus, this work aimed to study the interaction between quercetin and LCN2 in HP-triggered gastric injury during gastritis. Human gastric epithelial cell line GES-1 cells were exposed to HP for functional experiments. Cell viability, apoptosis, and inflammation were evaluated by cell counting kit-8, flow cytometry, and enzyme-linked immunosorbent assay, respectively. Levels of genes and proteins were tested using quantitative reverse transcription polymerase chain reaction and western blotting analyses. The interaction between LCN2 and specificity protein 1 (SP1) was validated using chromatin immunoprecipitation assay and dual-luciferase reporter assay. Thereafter, we found quercetin treatment suppressed HP-induced GES-1 cell apoptotic and inflammatory injury and macrophage M1 polarization. LCN2 was highly expressed in HP-infected gastritis patients and HP-infected GES-1 cells, while quercetin reduced LCN2 expression in HP-infected GES-1 cells; moreover, LCN2 knockdown reversed HP-induced GES-1 cell injury and macrophage M1 polarization, and forced expression of LCN2 abolished the protective effects of quercetin on GES-1 cells under HP infection. Mechanistically, SP1 bound to LCN2 promoter and promoted its transcription. Also, SP1 overexpression counteracted the functions of quercetin on HP-stimulated GES-1 cells. In all, quercetin ameliorated HP-induced gastric epithelial cell apoptotic and inflammatory injuries, and macrophage M1 polarization via the SP1/LCN2 axis.
Assuntos
Gastrite , Helicobacter pylori , Humanos , Lipocalina-2/genética , Lipocalina-2/metabolismo , Lipocalina-2/farmacologia , Quercetina/farmacologia , Quercetina/uso terapêutico , Quercetina/metabolismo , Gastrite/tratamento farmacológico , Gastrite/metabolismo , Gastrite/microbiologia , Células EpiteliaisRESUMO
Esophageal cancer (EC) is one of the most recalcitrant cancers, with a 5-year survival rate of <30%. The hydroxyacyl-CoA dehydrogenase alpha subunit (HADHA) plays an essential role in long-chain fatty acid metabolism, and dysregulation of HADHA has been demonstrated to be involved in a series of metabolic diseases and cancers. However, its role in cancers remains controversial. HADHA has seldom been investigated in EC, and little is known about how HADHA regulates the malignant progression of EC. In this study, we find that HADHA is significantly upregulated in EC tissues and is correlated with poor survival. HADHA knockdown markedly inhibits EC cell proliferation both in vitro and in vivo. The loss of HADHA also induces EC cell apoptosis, causes cell cycle arrest and inhibits cell migration. Additionally, RNA profiling reveals that mTOR signaling is significantly suppressed after HADHA knockdown. Mechanistically, HADHA interacts with SP1 and induces MDM2 expression. In conclusion, both mTOR signaling and the SP1-MDM2 axis participate in the HADHA-induced malignant behavior of EC cells.
RESUMO
Testicular androgen is a master endocrine factor in the establishment of external genital sex differences. The degree of androgenic exposure during development is well known to determine the fate of external genitalia on a spectrum of female- to male-specific phenotypes. However, the mechanisms of androgenic regulation underlying sex differentiation are poorly defined. Here, we show that the genomic environment for the expression of male-biased genes is conserved to acquire androgen responsiveness in both sexes. Histone H3 at lysine 27 acetylation (H3K27ac) and H3K4 monomethylation (H3K4me1) are enriched at the enhancer of male-biased genes in an androgen-independent manner. Specificity protein 1 (Sp1), acting as a collaborative transcription factor of androgen receptor, regulates H3K27ac enrichment to establish conserved transcriptional competency for male-biased genes in both sexes. Genetic manipulation of MafB, a key regulator of male-specific differentiation, and Sp1 regulatory MafB enhancer elements disrupts male-type urethral differentiation. Altogether, these findings demonstrate conservation of androgen responsiveness in both sexes, providing insights into the regulatory mechanisms underlying sexual fate during external genitalia development.