Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 382
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 173(4): 934-945.e12, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29606354

RESUMO

Fusion is thought to open a pore to release vesicular cargoes vital for many biological processes, including exocytosis, intracellular trafficking, fertilization, and viral entry. However, fusion pores have not been observed and thus proved in live cells. Its regulatory mechanisms and functions remain poorly understood. With super-resolution STED microscopy, we observed dynamic fusion pore behaviors in live (neuroendocrine) cells, including opening, expansion, constriction, and closure, where pore size may vary between 0 and 490 nm within 26 milliseconds to seconds (vesicle size: 180-720 nm). These pore dynamics crucially determine the efficiency of vesicular cargo release and vesicle retrieval. They are generated by competition between pore expansion and constriction. Pharmacology and mutation experiments suggest that expansion and constriction are mediated by F-actin-dependent membrane tension and calcium/dynamin, respectively. These findings provide the missing live-cell evidence, proving the fusion-pore hypothesis, and establish a live-cell dynamic-pore theory accounting for fusion, fission, and their regulation.


Assuntos
Membrana Celular/metabolismo , Endocitose/fisiologia , Fusão de Membrana/fisiologia , Actinas/metabolismo , Animais , Cálcio/metabolismo , Bovinos , Membrana Celular/química , Células Cromafins/citologia , Células Cromafins/metabolismo , Dinaminas/metabolismo , Estimulação Elétrica , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Masculino , Microscopia Confocal , Modelos Biológicos , Técnicas de Patch-Clamp , Vesículas Secretórias/fisiologia
2.
Cell ; 172(5): 1108-1121.e15, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29474910

RESUMO

The extracellular space (ECS) of the brain has an extremely complex spatial organization, which has defied conventional light microscopy. Consequently, despite a marked interest in the physiological roles of brain ECS, its structure and dynamics remain largely inaccessible for experimenters. We combined 3D-STED microscopy and fluorescent labeling of the extracellular fluid to develop super-resolution shadow imaging (SUSHI) of brain ECS in living organotypic brain slices. SUSHI enables quantitative analysis of ECS structure and reveals dynamics on multiple scales in response to a variety of physiological stimuli. Because SUSHI produces sharp negative images of all cellular structures, it also enables unbiased imaging of unlabeled brain cells with respect to their anatomical context. Moreover, the extracellular labeling strategy greatly alleviates problems of photobleaching and phototoxicity associated with traditional imaging approaches. As a straightforward variant of STED microscopy, SUSHI provides unprecedented access to the structure and dynamics of live brain ECS and neuropil.


Assuntos
Encéfalo/diagnóstico por imagem , Espaço Extracelular/metabolismo , Imageamento Tridimensional , Animais , Movimento Celular , Corantes/metabolismo , Fenômenos Eletrofisiológicos , Epilepsia/patologia , Epilepsia/fisiopatologia , Feminino , Glutamatos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Neurópilo , Osmose , Sinapses/metabolismo
3.
Mol Cell ; 82(13): 2401-2414.e9, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35597236

RESUMO

Activated CD8+ T lymphocytes differentiate into heterogeneous subsets. Using super-resolution imaging, we found that prior to the first division, dynein-dependent vesicular transport polarized active TORC1 toward the microtubule-organizing center (MTOC) at the proximal pole. This active TORC1 was physically associated with active eIF4F, required for the translation of c-myc mRNA. As a consequence, c-myc-translating polysomes polarized toward the cellular pole proximal to the immune synapse, resulting in localized c-myc translation. Upon division, the TORC1-eIF4A complex preferentially sorted to the proximal daughter cell, facilitating asymmetric c-Myc synthesis. Transient disruption of eIF4A activity at first division skewed long-term cell fate trajectories to memory-like function. Using a genetic barcoding approach, we found that first-division sister cells often displayed differences in transcriptional profiles that largely correlated with c-Myc and TORC1 target genes. Our findings provide mechanistic insights as to how distinct T cell fate trajectories can be established during the first division.


Assuntos
Linfócitos T CD8-Positivos , Fator de Iniciação 4F em Eucariotos , Diferenciação Celular , Ativação Linfocitária , Alvo Mecanístico do Complexo 1 de Rapamicina/genética
4.
Proc Natl Acad Sci U S A ; 121(31): e2310120121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39058579

RESUMO

The axon initial segment (AIS) is a critical compartment in neurons. It converts postsynaptic input into action potentials that subsequently trigger information transfer to target neurons. This process relies on the presence of several voltage-gated sodium (NaV) and potassium (KV) channels that accumulate in high densities at the AIS. TRAAK is a mechanosensitive leak potassium channel that was recently localized to the nodes of Ranvier. Here, we uncover that TRAAK is also present in AISs of hippocampal and cortical neurons in the adult rat brain as well as in AISs of cultured rat hippocampal neurons. We show that the AIS localization is driven by a C-terminal ankyrin G-binding sequence that organizes TRAAK in a 190 nm spaced periodic pattern that codistributes with periodically organized ankyrin G. We furthermore uncover that while the identified ankyrin G-binding motif is analogous to known ankyrin G-binding motifs in NaV1 and KV7.2/KV7.3 channels, it was acquired by convergent evolution. Our findings identify TRAAK as an AIS ion channel that convergently acquired an ankyrin G-binding motif and expand the role of ankyrin G to include the nanoscale organization of ion channels at the AIS.


Assuntos
Anquirinas , Segmento Inicial do Axônio , Hipocampo , Células Piramidais , Animais , Anquirinas/metabolismo , Ratos , Células Piramidais/metabolismo , Segmento Inicial do Axônio/metabolismo , Hipocampo/metabolismo , Hipocampo/citologia , Axônios/metabolismo , Motivos de Aminoácidos , Canais de Potássio/metabolismo , Ligação Proteica
5.
Proc Natl Acad Sci U S A ; 121(26): e2321579121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38900795

RESUMO

Cellular membranes exhibit a multitude of highly curved morphologies such as buds, nanotubes, cisterna-like sheets defining the outlines of organelles. Here, we mimic cell compartmentation using an aqueous two-phase system of dextran and poly(ethylene glycol) encapsulated in giant vesicles. Upon osmotic deflation, the vesicle membrane forms nanotubes, which undergo surprising morphological transformations at the liquid-liquid interfaces inside the vesicles. At these interfaces, the nanotubes transform into cisterna-like double-membrane sheets (DMS) connected to the mother vesicle via short membrane necks. Using super-resolution (stimulated emission depletion) microscopy and theoretical considerations, we construct a morphology diagram predicting the tube-to-sheet transformation, which is driven by a decrease in the free energy. Nanotube knots can prohibit the tube-to-sheet transformation by blocking water influx into the tubes. Because both nanotubes and DMSs are frequently formed by cellular membranes, understanding the formation and transformation between these membrane morphologies provides insight into the origin and evolution of cellular organelles.


Assuntos
Nanotubos , Polietilenoglicóis , Nanotubos/química , Polietilenoglicóis/química , Membrana Celular/metabolismo , Dextranos/química , Dextranos/metabolismo
6.
J Biol Chem ; 300(10): 107693, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39159821

RESUMO

Tight junctions play a pivotal role in the functional integrity of the human body by forming barriers that compartmentalize tissues and protect the body from external threats. Essential components of tight junctions are the transmembrane claudin proteins, which can polymerize into tight junction strands and meshworks. This study delves into the structural determinants of claudin polymerization, using the close homology yet strong difference in polymerization capacity between claudin-3 and claudin-4. Through a combination of sequence alignment and structural modeling, critical residues in the second extracellular segment are pinpointed. Molecular dynamics simulations provide insights into the interactions of and the conformational changes induced by the identified extracellular segment 2 residues. Live-stimulated emission depletion imaging demonstrates that introduction of these residues from claudin-3 into claudin-4 significantly enhances polymerization in nonepithelial cells. In tight junction-deficient epithelial cells, mutated claudin-4 not only influences tight junction morphology but also partially restores barrier function. Understanding the structural basis of claudin polymerization is crucial, as it offers insights into the dynamic nature of tight junctions. This knowledge could be applied to targeted therapeutic interventions, offer insight to repair or prevent barrier defects associated with pathological conditions, or introduce temporary barrier openings during drug delivery.

7.
Proc Natl Acad Sci U S A ; 119(52): e2215799119, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36534799

RESUMO

Capturing mitochondria's intricate and dynamic structure poses a daunting challenge for optical nanoscopy. Different labeling strategies have been demonstrated for live-cell stimulated emission depletion (STED) microscopy of mitochondria, but orthogonal strategies are yet to be established, and image acquisition has suffered either from photodamage to the organelles or from rapid photobleaching. Therefore, live-cell nanoscopy of mitochondria has been largely restricted to two-dimensional (2D) single-color recordings of cancer cells. Here, by conjugation of cyclooctatetraene (COT) to a benzo-fused cyanine dye, we report a mitochondrial inner membrane (IM) fluorescent marker, PK Mito Orange (PKMO), featuring efficient STED at 775 nm, strong photostability, and markedly reduced phototoxicity. PKMO enables super-resolution (SR) recordings of IM dynamics for extended periods in immortalized mammalian cell lines, primary cells, and organoids. Photostability and reduced phototoxicity of PKMO open the door to live-cell three-dimensional (3D) STED nanoscopy of mitochondria for 3D analysis of the convoluted IM. PKMO is optically orthogonal with green and far-red markers, allowing multiplexed recordings of mitochondria using commercial STED microscopes. Using multi-color STED microscopy, we demonstrate that imaging with PKMO can capture interactions of mitochondria with different cellular components such as the endoplasmic reticulum (ER) or the cytoskeleton, Bcl-2-associated X protein (BAX)-induced apoptotic process, or crista phenotypes in genetically modified cells, all at sub-100 nm resolution. Thereby, this work offers a versatile tool for studying mitochondrial IM architecture and dynamics in a multiplexed manner.


Assuntos
Corantes Fluorescentes , Mitocôndrias , Humanos , Animais , Células HeLa , Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo , Mamíferos
8.
Proc Natl Acad Sci U S A ; 119(32): e2203027119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914173

RESUMO

The elucidation of protein interaction networks is critical to understanding fundamental biology as well as developing new therapeutics. Proximity labeling platforms (PLPs) are state-of-the-art technologies that enable the discovery and delineation of biomolecular networks through the identification of protein-protein interactions. These platforms work via catalytic generation of reactive probes at a biological region of interest; these probes then diffuse through solution and covalently "tag" proximal biomolecules. The physical distance that the probes diffuse determines the effective labeling radius of the PLP and is a critical parameter that influences the scale and resolution of interactome mapping. As such, by expanding the degrees of labeling resolution offered by PLPs, it is possible to better capture the various size scales of interactomes. At present, however, there is little quantitative understanding of the labeling radii of different PLPs. Here, we report the development of a superresolution microscopy-based assay for the direct quantification of PLP labeling radii. Using this assay, we provide direct extracellular measurements of the labeling radii of state-of-the-art antibody-targeted PLPs, including the peroxidase-based phenoxy radical platform (269 ± 41 nm) and the high-resolution iridium-catalyzed µMap technology (54 ± 12 nm). Last, we apply these insights to the development of a molecular diffusion-based approach to tuning PLP resolution and introduce a new aryl-azide-based µMap platform with an intermediate labeling radius (80 ± 28 nm).


Assuntos
Microscopia , Mapas de Interação de Proteínas , Azidas/química , Catálise
9.
Proc Natl Acad Sci U S A ; 119(45): e2203499119, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322761

RESUMO

Correct spatiotemporal distribution of organelles and vesicles is crucial for healthy cell functioning and is regulated by intracellular transport mechanisms. Controlled transport of bulky mitochondria is especially important in polarized cells such as neurons that rely on these organelles to locally produce energy and buffer calcium. Mitochondrial transport requires and depends on microtubules that fill much of the available axonal space. How mitochondrial transport is affected by their position within the microtubule bundles is not known. Here, we found that anterograde transport, driven by kinesin motors, is susceptible to the molecular conformation of tubulin in neurons both in vitro and in vivo. Anterograde velocities negatively correlate with the density of elongated tubulin dimers like guanosine triphosphate (GTP)-tubulin. The impact of the tubulin conformation depends primarily on where a mitochondrion is positioned, either within or at the rim of microtubule bundle. Increasing elongated tubulin levels lowers the number of motile anterograde mitochondria within the microtubule bundle and increases anterograde transport speed at the microtubule bundle rim. We demonstrate that the increased kinesin velocity and density on microtubules consisting of elongated dimers add to the increased mitochondrial dynamics. Our work indicates that the molecular conformation of tubulin contributes to the regulation of mitochondrial motility and as such to the local distribution of mitochondria along axons.


Assuntos
Transporte Axonal , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Cinesinas , Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Axônios/metabolismo , Conformação Molecular
10.
Dev Dyn ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984461

RESUMO

BACKGROUND: Mouse nodal immotile cilia mechanically sense the bending direction for left-right (L-R) determination and activate the left-side-specific signaling cascade, leading to increased Nodal activity. Asymmetric distribution of Pkd2, a crucial channel for L-R determination, on immotile cilia has been reported recently. However, the causal relationship between the asymmetric Pkd2 distribution and direction-dependent flow sensing is not well understood. Furthermore, the underlying molecular mechanism directing this asymmetric Pkd2 distribution remains unclear. RESULTS: The effects of several recombinant proteins and inhibitors on the Pkd2 distribution were analyzed using super-resolution microscopy. Notably, bone morphogenetic protein 4 (BMP4) affected the Pkd2 distribution. Additionally, three-dimensional manipulation of nodal immotile cilia using optical tweezers revealed that excess BMP4 caused defects in the mechanosensing ability of the cilia. CONCLUSIONS: Experimental data together with model calculations suggest that BMP4 regulates the asymmetric distribution of Pkd2 in nodal immotile cilia, thereby affecting the ability of these cilia to sense the bending direction for L-R determination. This study, for the first time, provides insight into the relationship between the asymmetric protein distribution in cilia and their function.

11.
Chromosoma ; 132(3): 191-209, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37000292

RESUMO

Super-resolution microscopy (SRM) is a prime tool to study chromatin organisation at near biomolecular resolution in the native cellular environment. With fluorescent labels DNA, chromatin-associated proteins and specific epigenetic states can be identified with high molecular specificity. The aim of this review is to introduce the field of diffraction-unlimited SRM to enable an informed selection of the most suitable SRM method for a specific chromatin-related research question. We will explain both diffraction-unlimited approaches (coordinate-targeted and stochastic-localisation-based) and list their characteristic spatio-temporal resolutions, live-cell compatibility, image-processing, and ability for multi-colour imaging. As the increase in resolution, compared to, e.g. confocal microscopy, leads to a central role of the sample quality, important considerations for sample preparation and concrete examples of labelling strategies applicable to chromatin research are discussed. To illustrate how SRM-based methods can significantly improve our understanding of chromatin functioning, and to serve as an inspiring starting point for future work, we conclude with examples of recent applications of SRM in chromatin research.


Assuntos
Cromatina , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Microscopia Confocal
12.
Small ; 20(29): e2400238, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38385800

RESUMO

The performance of Stimulated Emission Depletion (STED) microscopy depends critically on the fluorescent probe. Ultrasmall Au nanoclusters (Au NCs) exhibit large Stokes shift, and good stimulated emission response, which are potentially useful for STED imaging. However, Au NCs are polydispersed in size, sensitive to the surrounding environment, and difficult to control surface functional group stoichiometry, which results in reduced density and high heterogeneity in the labeling of biological structures. Here, this limitation is overcome by developing a method to encapsulate ultrasmall Au NCs with DNA cages, which yielded monodispersed, and monofunctionalized Au NCs that are long-term stable. Moreover, the DNA-caging also greatly improved the fluorescence quantum yield and photostability of Au NCs. In STED imaging, the DNA-caged Au NCs yielded ≈40 nm spatial resolution and are able to resolve microtubule line shapes with good labeling density and homogeneity. In contrast, without caging, the Au NCs-DNA conjugates only achieved ≈55 nm resolution and yielded spotted, poorly resolved microtubule structures, due to the presence of aggregates. Overall, a method is developed to achieve precise surface functionalization and greatly improve the monodispersity, stability, as well as optical properties of Au NCs, providing a promising class of fluorescent probes for STED imaging.


Assuntos
DNA , Ouro , Nanopartículas Metálicas , Ouro/química , DNA/química , Nanopartículas Metálicas/química , Microscopia de Fluorescência/métodos , Humanos
13.
Histochem Cell Biol ; 161(2): 99-132, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38244103

RESUMO

Peroxisomes are highly dynamic, oxidative organelles with key metabolic functions in cellular lipid metabolism, such as the ß-oxidation of fatty acids and the synthesis of myelin sheath lipids, as well as the regulation of cellular redox balance. Loss of peroxisomal functions causes severe metabolic disorders in humans. Furthermore, peroxisomes also fulfil protective roles in pathogen and viral defence and immunity, highlighting their wider significance in human health and disease. This has sparked increasing interest in peroxisome biology and their physiological functions. This review presents an update and a continuation of three previous review articles addressing the unsolved mysteries of this remarkable organelle. We continue to highlight recent discoveries, advancements, and trends in peroxisome research, and address novel findings on the metabolic functions of peroxisomes, their biogenesis, protein import, membrane dynamics and division, as well as on peroxisome-organelle membrane contact sites and organelle cooperation. Furthermore, recent insights into peroxisome organisation through super-resolution microscopy are discussed. Finally, we address new roles for peroxisomes in immune and defence mechanisms and in human disorders, and for peroxisomal functions in different cell/tissue types, in particular their contribution to organ-specific pathologies.


Assuntos
Metabolismo dos Lipídeos , Peroxissomos , Humanos , Peroxissomos/metabolismo , Oxirredução
14.
J Microsc ; 296(2): 133-138, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38145966

RESUMO

Correlative super-resolution microscopy has the potential to accurately visualize and validate new biological structures past the diffraction limit. However, combining different super-resolution modalities, such as deterministic stimulated emission depletion (STED) and stochastic single-molecule localization microscopy (SMLM), is a challenging endeavour. For correlative STED and SMLM, the following poses a significant challenge: (1) the photobleaching of the fluorophores in STED; (2) the subsequent reactivation of the fluorophores for SMLM and (3) finding the right fluorochrome and imaging buffer for both imaging modalities. Here, we highlight how the deep ultraviolet (DBUE) wavelengths of the Mercury (Hg) arc lamp can help recover STED bleaching and allow for the reactivation of single molecules for SMLM imaging. We also show that Alexa Fluor 594 and the commercially available Prolong Diamond to be excellent fluorophores and imaging media for correlative STED and SMLM.


Assuntos
Microscopia de Fluorescência , Imagem Individual de Molécula , Raios Ultravioleta , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos , Corantes Fluorescentes , Fotodegradação , Animais , Humanos
15.
J Microsc ; 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39392013

RESUMO

Super-resolution (SR) microscopy is a cutting-edge method that can provide detailed structural information with high resolution. However, the thickness of the specimen has been a major limitation for SR methods, and large biological structures have posed a challenge. To overcome this, the key step is to optimise sample preparation to ensure optical homogeneity and clarity, which can enhance the capabilities of SR methods for the acquisition of thicker structures. Oocytes are the largest cells in the mammalian body and are crucial objects in reproductive biology. They are especially useful for studying membrane proteins. However, oocytes are extremely fragile and sensitive to mechanical manipulation and osmotic shocks, making sample preparation a critical and challenging step. We present an innovative, simple and sensitive approach to oocyte sample preparation for 3D STED acquisition. This involves alcohol dehydration and mounting into a high refractive index medium. This extended preparation procedure allowed us to successfully obtain a unique two-channel 3D STED SR image of an entire mouse oocyte. By optimising sample preparation, it is possible to overcome current limitations of SR methods and obtain high-resolution images of large biological structures, such as oocytes, in order to study fundamental biological processes. Lay Abstract: Super-resolution (SR) microscopy is a cutting-edge tool that allows scientists to view incredibly fine details in biological samples. However, it struggles with larger, thicker specimens, as they need to be optically clear and uniform for the best imaging results. In this study, we refined the sample preparation process to make it more suitable for SR microscopy. Our method includes carefully dehydrating biological samples with alcohol and then transferring them into a mounting medium that enhances optical clarity. This improved protocol enables high-resolution imaging of thick biological structures, which was previously challenging. By optimizing this preparation method, we hope to expand the use of SR microscopy for studying large biological samples, helping scientists better understand complex biological structures.

16.
Bioorg Chem ; 150: 107554, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38878753

RESUMO

Plasma membranes are vital biological structures, serving as protective barriers and participating in various cellular processes. In the field of super-resolution optical microscopy, stimulated emission depletion (STED) nanoscopy has emerged as a powerful method for investigating plasma membrane-related phenomena. However, many applications of STED microscopy are critically restricted by the limited availability of suitable fluorescent probes. This paper reports on the development of two amphiphilic membrane probes, SHE-2H and SHE-2N, specially designed for STED nanoscopy. SHE-2N, in particular, demonstrates quick and stable plasma membrane labelling with negligible intracellular redistribution. Both probes exhibit outstanding photostability and resolution improvement in STED nanoscopy, and are also suited for two-photon excitation microscopy. Furthermore, microscopy experiments and cytotoxicity tests revealed no noticeable cytotoxicity of probe SHE-2N at concentration used for fluorescence imaging. Spectral analysis and fluorescence lifetime measurements conducted on probe SHE-2N using giant unilamellar vesicles, revealed that emission spectra and fluorescence lifetimes exhibited minimal sensitivity to lipid composition variations. These novel probes significantly augment the arsenal of tools available for high-resolution plasma membrane research, enabling a more profound exploration of cellular processes and dynamics.


Assuntos
Membrana Celular , Cumarínicos , Corantes Fluorescentes , Membrana Celular/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Cumarínicos/química , Cumarínicos/farmacologia , Humanos , Estrutura Molecular , Sobrevivência Celular/efeitos dos fármacos , Tensoativos/química , Tensoativos/farmacologia , Microscopia de Fluorescência
17.
Cell Mol Life Sci ; 80(1): 25, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36602635

RESUMO

Desmoglein 3 (Dsg3) is a desmosomal cadherin mediating cell adhesion within desmosomes and is the antigen of the autoimmune blistering skin disease pemphigus vulgaris. Therefore, understanding of the complex desmosome turnover process is of high biomedical relevance. Recently, super resolution microscopy was used to characterize desmosome composition and turnover. However, studies were limited because adhesion measurements on living cells were not possible in parallel. Before desmosomal cadherins are incorporated into nascent desmosomes, they are not bound to intermediate filaments but were suggested to be associated with the actin cytoskeleton. However, direct proof that adhesion of a pool of desmosomal cadherins is dependent on actin is missing. Here, we applied single-molecule force spectroscopy measurements with the novel single molecule hybrid-technique STED/SMFS-AFM to investigate the cytoskeletal anchorage of Dsg3 on living keratinocytes for the first time. By application of pharmacological agents we discriminated two different Dsg3 pools, only one of which is anchored to actin filaments. We applied the actin polymerization inhibitor Latrunculin B to modify the actin cytoskeleton and the PKCα activator PMA to modulate intermediate filament anchorage. On the cellular surface Dsg3 adhesion was actin-dependent. In contrast, at cell-cell contacts, Dsg3 adhesion was independent from actin but rather is regulated by PKC which is well established to control desmosome turn-over via intermediate filament anchorage. Taken together, using the novel STED/SMFS-AFM technique, we demonstrated the existence of two Dsg3 pools with different cytoskeletal anchorage mechanisms.


Assuntos
Doenças Autoimunes , Pênfigo , Humanos , Desmogleína 3/metabolismo , Actinas/metabolismo , Desmossomos/metabolismo , Queratinócitos/metabolismo , Pênfigo/metabolismo , Caderinas/metabolismo , Adesão Celular , Doenças Autoimunes/metabolismo
18.
BMC Biol ; 21(1): 113, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37221592

RESUMO

BACKGROUND: Post mortem human brain tissue is an essential resource to study cell types, connectivity as well as subcellular structures down to the molecular setup of the central nervous system especially with respect to the plethora of brain diseases. A key method is immunostaining with fluorescent dyes, which allows high-resolution imaging in three dimensions of multiple structures simultaneously. Although there are large collections of formalin-fixed brains, research is often limited because several conditions arise that complicate the use of human brain tissue for high-resolution fluorescence microscopy. RESULTS: In this study, we developed a clearing approach for immunofluorescence-based analysis of perfusion- and immersion-fixed post mortem human brain tissue, termed human Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging / Immunostaining / In situ hybridization-compatible Tissue-hYdrogel (hCLARITY). hCLARITY is optimized for specificity by reducing off-target labeling and yields very sensitive stainings in human brain sections allowing for super-resolution microscopy with unprecedented imaging of pre- and postsynaptic compartments. Moreover, hallmarks of Alzheimer's disease were preserved with hCLARITY, and importantly classical 3,3'-diaminobenzidine (DAB) or Nissl stainings are compatible with this protocol. hCLARITY is very versatile as demonstrated by the use of more than 30 well performing antibodies and allows for de- and subsequent re-staining of the same tissue section, which is important for multi-labeling approaches, e.g., in super-resolution microscopy. CONCLUSIONS: Taken together, hCLARITY enables research of the human brain with high sensitivity and down to sub-diffraction resolution. It therefore has enormous potential for the investigation of local morphological changes, e.g., in neurodegenerative diseases.


Assuntos
Encéfalo , Sistema Nervoso Central , Humanos , Microscopia de Fluorescência , Acrilamida , Corantes Fluorescentes
19.
Sensors (Basel) ; 24(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38610307

RESUMO

An analysis of the membrane organization and intracellular trafficking of lipids often relies on multiphoton (MP) and super-resolution microscopy of fluorescent lipid probes. A disadvantage of particularly intrinsically fluorescent lipid probes, such as the cholesterol and ergosterol analogue, dehydroergosterol (DHE), is their low MP absorption cross-section, resulting in a low signal-to-noise ratio (SNR) in live-cell imaging. Stimulated emission depletion (STED) microscopy of membrane probes like Nile Red enables one to resolve membrane features beyond the diffraction limit but exposes the sample to a lot of excitation light and suffers from a low SNR and photobleaching. Here, dynamic mode decomposition (DMD) and its variant, higher-order DMD (HoDMD), are applied to efficiently reconstruct and denoise the MP and STED microscopy data of lipid probes, allowing for an improved visualization of the membranes in cells. HoDMD also allows us to decompose and reconstruct two-photon polarimetry images of TopFluor-cholesterol in model and cellular membranes. Finally, DMD is shown to not only reconstruct and denoise 3D-STED image stacks of Nile Red-labeled cells but also to predict unseen image frames, thereby allowing for interpolation images along the optical axis. This important feature of DMD can be used to reduce the number of image acquisitions, thereby minimizing the light exposure of biological samples without compromising image quality. Thus, DMD as a computational tool enables gentler live-cell imaging of fluorescent probes in cellular membranes by MP and STED microscopy.


Assuntos
Corantes Fluorescentes , Microscopia , Membrana Celular , Colesterol , Lipídeos
20.
Int J Mol Sci ; 25(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38542157

RESUMO

We present novel workflows for Q-FISH nanoscopy with the potential for prognostic applications and resolving novel chromatin compaction changes. DNA-fluorescence in situ hybridization (DNA-FISH) is a routine application to visualize telomeres, repetitive terminal DNA sequences, in cells and tissues. Telomere attrition is associated with inherited and acquired diseases, including cancer and cardiomyopathies, and is frequently analyzed by quantitative (Q)-FISH microscopy. Recently, nanoscopic imaging techniques have resolved individual telomere dimensions and their compaction as a prognostic marker, in part leading to conflicting conclusions still unresolved to date. Here, we developed a comprehensive Q-FISH nanoscopy workflow to assess telomeres with PNA telomere probes and 3D-Stimulated Emission Depletion (STED) microscopy combined with Dynamic Intensity Minimum (DyMIN) scanning. We achieved single-telomere resolution at high, unprecedented telomere coverage. Importantly, our approach revealed a decrease in telomere signal density during mitotic cell division compared to interphase. Innovatively expanding FISH-STED applications, we conducted double FISH targeting of both telomere- and chromosome-specific sub-telomeric regions and accomplished FISH-STED in human cardiac biopsies. In summary, this work further advanced Q-FISH nanoscopy, detected a new aspect of telomere compaction related to the cell cycle, and laid the groundwork for future applications in complex cell types such as post-mitotic neurons and muscle cells.


Assuntos
DNA , Telômero , Humanos , Hibridização in Situ Fluorescente/métodos , Telômero/genética , Ciclo Celular/genética , Divisão Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA