RESUMO
The cystic fibrosis transmembrane conductance regulator (CFTR) is a crucial ion channel whose loss of function leads to cystic fibrosis, whereas its hyperactivation leads to secretory diarrhea. Small molecules that improve CFTR folding (correctors) or function (potentiators) are clinically available. However, the only potentiator, ivacaftor, has suboptimal pharmacokinetics and inhibitors have yet to be clinically developed. Here, we combine molecular docking, electrophysiology, cryo-EM, and medicinal chemistry to identify CFTR modulators. We docked â¼155 million molecules into the potentiator site on CFTR, synthesized 53 test ligands, and used structure-based optimization to identify candidate modulators. This approach uncovered mid-nanomolar potentiators, as well as inhibitors, that bind to the same allosteric site. These molecules represent potential leads for the development of more effective drugs for cystic fibrosis and secretory diarrhea, demonstrating the feasibility of large-scale docking for ion channel drug discovery.
Assuntos
Aminofenóis , Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Simulação de Acoplamento Molecular , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Aminofenóis/farmacologia , Aminofenóis/química , Aminofenóis/uso terapêutico , Descoberta de Drogas , Microscopia Crioeletrônica , Quinolonas/farmacologia , Quinolonas/química , Quinolonas/uso terapêutico , Sítio Alostérico/efeitos dos fármacos , Animais , LigantesRESUMO
Complex microbiomes are part of the food we eat and influence our own microbiome, but their diversity remains largely unexplored. Here, we generated the open access curatedFoodMetagenomicData (cFMD) resource by integrating 1,950 newly sequenced and 583 public food metagenomes. We produced 10,899 metagenome-assembled genomes spanning 1,036 prokaryotic and 108 eukaryotic species-level genome bins (SGBs), including 320 previously undescribed taxa. Food SGBs displayed significant microbial diversity within and between food categories. Extension to >20,000 human metagenomes revealed that food SGBs accounted on average for 3% of the adult gut microbiome. Strain-level analysis highlighted potential instances of food-to-gut transmission and intestinal colonization (e.g., Lacticaseibacillus paracasei) as well as SGBs with divergent genomic structures in food and humans (e.g., Streptococcus gallolyticus and Limosilactobabillus mucosae). The cFMD expands our knowledge on food microbiomes, their role in shaping the human microbiome, and supports future uses of metagenomics for food quality, safety, and authentication.
Assuntos
Microbioma Gastrointestinal , Metagenoma , Humanos , Metagenoma/genética , Microbioma Gastrointestinal/genética , Microbiota/genética , Microbiologia de Alimentos , Metagenômica/métodos , Bactérias/genética , Bactérias/classificaçãoRESUMO
Duplication is a foundation of molecular evolution and a driver of genomic and complex diseases. Here, we develop a genome editing tool named Amplification Editing (AE) that enables programmable DNA duplication with precision at chromosomal scale. AE can duplicate human genomes ranging from 20 bp to 100 Mb, a size comparable to human chromosomes. AE exhibits activity across various cell types, encompassing diploid, haploid, and primary cells. AE exhibited up to 73.0% efficiency for 1 Mb and 3.4% for 100 Mb duplications, respectively. Whole-genome sequencing and deep sequencing of the junctions of edited sequences confirm the precision of duplication. AE can create chromosomal microduplications within disease-relevant regions in embryonic stem cells, indicating its potential for generating cellular and animal models. AE is a precise and efficient tool for chromosomal engineering and DNA duplication, broadening the landscape of precision genome editing from an individual genetic locus to the chromosomal scale.
Assuntos
Duplicação Gênica , Edição de Genes , Genoma Humano , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , DNA/genética , Animais , Células-Tronco Embrionárias/metabolismo , Cromossomos Humanos/genéticaRESUMO
A comprehensive understanding of physio-pathological processes necessitates non-invasive intravital three-dimensional (3D) imaging over varying spatial and temporal scales. However, huge data throughput, optical heterogeneity, surface irregularity, and phototoxicity pose great challenges, leading to an inevitable trade-off between volume size, resolution, speed, sample health, and system complexity. Here, we introduce a compact real-time, ultra-large-scale, high-resolution 3D mesoscope (RUSH3D), achieving uniform resolutions of 2.6 × 2.6 × 6 µm3 across a volume of 8,000 × 6,000 × 400 µm3 at 20 Hz with low phototoxicity. Through the integration of multiple computational imaging techniques, RUSH3D facilitates a 13-fold improvement in data throughput and an orders-of-magnitude reduction in system size and cost. With these advantages, we observed premovement neural activity and cross-day visual representational drift across the mouse cortex, the formation and progression of multiple germinal centers in mouse inguinal lymph nodes, and heterogeneous immune responses following traumatic brain injury-all at single-cell resolution, opening up a horizon for intravital mesoscale study of large-scale intercellular interactions at the organ level.
Assuntos
Imageamento Tridimensional , Animais , Imageamento Tridimensional/métodos , Camundongos , Camundongos Endogâmicos C57BL , Linfonodos , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Masculino , Microscopia Intravital/métodosRESUMO
Advanced solid cancers are complex assemblies of tumor, immune, and stromal cells characterized by high intratumoral variation. We use highly multiplexed tissue imaging, 3D reconstruction, spatial statistics, and machine learning to identify cell types and states underlying morphological features of known diagnostic and prognostic significance in colorectal cancer. Quantitation of these features in high-plex marker space reveals recurrent transitions from one tumor morphology to the next, some of which are coincident with long-range gradients in the expression of oncogenes and epigenetic regulators. At the tumor invasive margin, where tumor, normal, and immune cells compete, T cell suppression involves multiple cell types and 3D imaging shows that seemingly localized 2D features such as tertiary lymphoid structures are commonly interconnected and have graded molecular properties. Thus, while cancer genetics emphasizes the importance of discrete changes in tumor state, whole-specimen imaging reveals large-scale morphological and molecular gradients analogous to those in developing tissues.
Assuntos
Adenocarcinoma , Neoplasias Colorretais , Humanos , Adenocarcinoma/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Processamento de Imagem Assistida por Computador , Oncogenes , Microambiente TumoralRESUMO
Individual neurons in visual cortex provide the brain with unreliable estimates of visual features. It is not known whether the single-neuron variability is correlated across large neural populations, thus impairing the global encoding of stimuli. We recorded simultaneously from up to 50,000 neurons in mouse primary visual cortex (V1) and in higher order visual areas and measured stimulus discrimination thresholds of 0.35° and 0.37°, respectively, in an orientation decoding task. These neural thresholds were almost 100 times smaller than the behavioral discrimination thresholds reported in mice. This discrepancy could not be explained by stimulus properties or arousal states. Furthermore, behavioral variability during a sensory discrimination task could not be explained by neural variability in V1. Instead, behavior-related neural activity arose dynamically across a network of non-sensory brain areas. These results imply that perceptual discrimination in mice is limited by downstream decoders, not by neural noise in sensory representations.
Assuntos
Discriminação Psicológica/fisiologia , Neurônios/fisiologia , Córtex Visual Primário/fisiologia , Percepção Visual , Animais , Nível de Alerta , Conjuntos de Dados como Assunto , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa , Estimulação Luminosa , Córtex Visual Primário/citologia , Limiar SensorialRESUMO
The 3D organization of chromatin regulates many genome functions. Our understanding of 3D genome organization requires tools to directly visualize chromatin conformation in its native context. Here we report an imaging technology for visualizing chromatin organization across multiple scales in single cells with high genomic throughput. First we demonstrate multiplexed imaging of hundreds of genomic loci by sequential hybridization, which allows high-resolution conformation tracing of whole chromosomes. Next we report a multiplexed error-robust fluorescence in situ hybridization (MERFISH)-based method for genome-scale chromatin tracing and demonstrate simultaneous imaging of more than 1,000 genomic loci and nascent transcripts of more than 1,000 genes together with landmark nuclear structures. Using this technology, we characterize chromatin domains, compartments, and trans-chromosomal interactions and their relationship to transcription in single cells. We envision broad application of this high-throughput, multi-scale, and multi-modal imaging technology, which provides an integrated view of chromatin organization in its native structural and functional context.
Assuntos
Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromossomos Humanos/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Hibridização in Situ Fluorescente/métodos , Análise de Célula Única/métodos , Algoritmos , Linhagem Celular , Núcleo Celular/genética , Cromatina/genética , Cromossomos Humanos/genética , DNA/genética , DNA/metabolismo , Genômica , Humanos , Processamento de Imagem Assistida por Computador , Conformação Molecular , Imagem Multimodal , Região Organizadora do Nucléolo/genética , Região Organizadora do Nucléolo/metabolismo , RNA/genética , RNA/metabolismo , SoftwareRESUMO
Plasmodium gene functions in mosquito and liver stages remain poorly characterized due to limitations in the throughput of phenotyping at these stages. To fill this gap, we followed more than 1,300 barcoded P. berghei mutants through the life cycle. We discover 461 genes required for efficient parasite transmission to mosquitoes through the liver stage and back into the bloodstream of mice. We analyze the screen in the context of genomic, transcriptomic, and metabolomic data by building a thermodynamic model of P. berghei liver-stage metabolism, which shows a major reprogramming of parasite metabolism to achieve rapid growth in the liver. We identify seven metabolic subsystems that become essential at the liver stages compared with asexual blood stages: type II fatty acid synthesis and elongation (FAE), tricarboxylic acid, amino sugar, heme, lipoate, and shikimate metabolism. Selected predictions from the model are individually validated in single mutants to provide future targets for drug development.
Assuntos
Genoma de Protozoário , Estágios do Ciclo de Vida/genética , Fígado/metabolismo , Fígado/parasitologia , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/genética , Alelos , Amino Açúcares/biossíntese , Animais , Culicidae/parasitologia , Eritrócitos/parasitologia , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/metabolismo , Técnicas de Inativação de Genes , Genótipo , Modelos Biológicos , Mutação/genética , Parasitos/genética , Parasitos/crescimento & desenvolvimento , Fenótipo , Plasmodium berghei/metabolismo , Ploidias , ReproduçãoRESUMO
We report here a simple and global strategy to map out gene functions and target pathways of drugs, toxins, or other small molecules based on "homomer dynamics" protein-fragment complementation assays (hdPCA). hdPCA measures changes in self-association (homomerization) of over 3,500 yeast proteins in yeast grown under different conditions. hdPCA complements genetic interaction measurements while eliminating the confounding effects of gene ablation. We demonstrate that hdPCA accurately predicts the effects of two longevity and health span-affecting drugs, the immunosuppressant rapamycin and the type 2 diabetes drug metformin, on cellular pathways. We also discovered an unsuspected global cellular response to metformin that resembles iron deficiency and includes a change in protein-bound iron levels. This discovery opens a new avenue to investigate molecular mechanisms for the prevention or treatment of diabetes, cancers, and other chronic diseases of aging.
Assuntos
Ferro/metabolismo , Metaloproteínas/metabolismo , Metformina/farmacologia , Saccharomyces cerevisiae/metabolismo , Sirolimo/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Teste de Complementação Genética , Humanos , Metaloproteínas/genética , Saccharomyces cerevisiae/genéticaRESUMO
The construction of a predictive model of an entire eukaryotic cell that describes its dynamic structure from atomic to cellular scales is a grand challenge at the intersection of biology, chemistry, physics, and computer science. Having such a model will open new dimensions in biological research and accelerate healthcare advancements. Developing the necessary experimental and modeling methods presents abundant opportunities for a community effort to realize this goal. Here, we present a vision for creation of a spatiotemporal multi-scale model of the pancreatic ß-cell, a relevant target for understanding and modulating the pathogenesis of diabetes.
Assuntos
Células Secretoras de Insulina/metabolismo , Modelos Biológicos , Biologia Computacional , Descoberta de Drogas , Humanos , Células Secretoras de Insulina/citologia , Proteínas/química , Proteínas/metabolismoRESUMO
Metabolism is highly complex and involves thousands of different connected reactions; it is therefore necessary to use mathematical models for holistic studies. The use of mathematical models in biology is referred to as systems biology. In this review, the principles of systems biology are described, and two different types of mathematical models used for studying metabolism are discussed: kinetic models and genome-scale metabolic models. The use of different omics technologies, including transcriptomics, proteomics, metabolomics, and fluxomics, for studying metabolism is presented. Finally, the application of systems biology for analyzing global regulatory structures, engineering the metabolism of cell factories, and analyzing human diseases is discussed.
Assuntos
Genoma , Metabolômica/estatística & dados numéricos , Modelos Biológicos , Modelos Estatísticos , Biologia de Sistemas/estatística & dados numéricos , Transcriptoma , Bactérias/genética , Bactérias/metabolismo , Fungos/genética , Fungos/metabolismo , Humanos , Cinética , Engenharia Metabólica , Metabolômica/métodos , Proteômica , Biologia de Sistemas/métodosRESUMO
Functional genomics efforts face tradeoffs between number of perturbations examined and complexity of phenotypes measured. We bridge this gap with Perturb-seq, which combines droplet-based single-cell RNA-seq with a strategy for barcoding CRISPR-mediated perturbations, allowing many perturbations to be profiled in pooled format. We applied Perturb-seq to dissect the mammalian unfolded protein response (UPR) using single and combinatorial CRISPR perturbations. Two genome-scale CRISPR interference (CRISPRi) screens identified genes whose repression perturbs ER homeostasis. Subjecting â¼100 hits to Perturb-seq enabled high-precision functional clustering of genes. Single-cell analyses decoupled the three UPR branches, revealed bifurcated UPR branch activation among cells subject to the same perturbation, and uncovered differential activation of the branches across hits, including an isolated feedback loop between the translocon and IRE1α. These studies provide insight into how the three sensors of ER homeostasis monitor distinct types of stress and highlight the ability of Perturb-seq to dissect complex cellular responses.
Assuntos
Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endorribonucleases , Retroalimentação , Humanos , Modelos Moleculares , Proteínas Serina-Treonina Quinases , RNA Guia de Cinetoplastídeos/metabolismo , Transcrição Gênica , Resposta a Proteínas não DobradasRESUMO
Humoral immunity depends on efficient activation of B cells and their subsequent differentiation into antibody-secreting cells (ASCs). The transcription factor NFκB cRel is critical for B cell proliferation, but incorporating its known regulatory interactions into a mathematical model of the ASC differentiation circuit prevented ASC generation in simulations. Indeed, experimental ectopic cRel expression blocked ASC differentiation by inhibiting the transcription factor Blimp1, and in wild-type (WT) cells cRel was dynamically repressed during ASC differentiation by Blimp1 binding the Rel locus. Including this bi-stable circuit of mutual cRel-Blimp1 antagonism into a multi-scale model revealed that dynamic repression of cRel controls the switch from B cell proliferation to ASC generation phases and hence the respective cell population dynamics. Our studies provide a mechanistic explanation of how dysregulation of this bi-stable circuit might result in pathologic B cell population phenotypes and thus offer new avenues for diagnostic stratification and treatment.
Assuntos
Linfócitos B/imunologia , Diferenciação Celular/imunologia , Proliferação de Células/fisiologia , NF-kappa B/imunologia , Animais , Células Produtoras de Anticorpos/imunologia , Linhagem Celular , Feminino , Regulação da Expressão Gênica/imunologia , Células HEK293 , Humanos , Imunidade Humoral/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Tumor mutational burden (TMB), the total number of somatic mutations in the tumor, and copy number burden (CNB), the corresponding measure of aneuploidy, are established fundamental somatic features and emerging biomarkers for immunotherapy. However, the genetic and non-genetic influences on TMB/CNB and, critically, the manner by which they influence patient outcomes remain poorly understood. Here, we present a large germline-somatic study of TMB/CNB with >23,000 individuals across 17 cancer types, of which 12,000 also have extensive clinical, treatment, and overall survival (OS) measurements available. We report dozens of clinical associations with TMB/CNB, observing older age and male sex to have a strong effect on TMB and weaker impact on CNB. We additionally identified significant germline influences on TMB/CNB, including fine-scale European ancestry and germline polygenic risk scores (PRSs) for smoking, tanning, white blood cell counts, and educational attainment. We quantify the causal effect of exposures on somatic mutational processes using Mendelian randomization. Many of the identified features associated with TMB/CNB were additionally associated with OS for individuals treated at a single tertiary cancer center. For individuals receiving immunotherapy, we observed a complex relationship between PRSs for educational attainment, self-reported college attainment, TMB, and survival, suggesting that the influence of this biomarker may be substantially modified by socioeconomic status. While the accumulation of somatic alterations is a stochastic process, our work demonstrates that it can be shaped by host characteristics including germline genetics.
Assuntos
Neoplasias , Humanos , Masculino , Mutação/genética , Neoplasias/genética , Neoplasias/patologia , Imunoterapia , Biomarcadores Tumorais/genética , Células Germinativas/patologiaRESUMO
The geometric shape and arrangement of individual cells play a role in shaping organ functions. However, analyzing multicellular features and exploring their connectomes in centimeter-scale plant organs remain challenging. Here, we established a set of frameworks named Large-Volume Fully Automated Cell Reconstruction (LVACR), enabling the exploration of three-dimensional (3D) cytological features and cellular connectivity in plant tissues. Through benchmark testing, our framework demonstrated superior efficiency in cell segmentation and aggregation, successfully addressing the inherent challenges posed by light sheet fluorescence microscopy (LSFM) imaging. Using LVACR, we successfully established a cell atlas of different plant tissues. Cellular morphology analysis revealed differences of cell clusters and shapes in between different poplar (P. simonii Carr. and P. canadensis Moench.) seeds, whereas topological analysis revealed that they maintained conserved cellular connectivity. Furthermore, LVACR spatiotemporally demonstrated an initial burst of cell proliferation, accompanied by morphological transformations at an early stage in developing the shoot apical meristem. During subsequent development, cell differentiation produced anisotropic features, thereby resulting in various cell shapes. Overall, our findings provided valuable insights into the precise spatial arrangement and cellular behavior of multicellular organisms, thus enhancing our understanding of the complex processes underlying plant growth and differentiation.
RESUMO
The CRISPR-Cas9 system has successfully been adapted to edit the genome of various organisms. However, our ability to predict the editing outcome at specific sites is limited. Here, we examined indel profiles at over 1,000 genomic sites in human cells and uncovered general principles guiding CRISPR-mediated DNA editing. We find that precision of DNA editing (i.e., recurrence of a specific indel) varies considerably among sites, with some targets showing one highly preferred indel and others displaying numerous infrequent indels. Editing precision correlates with editing efficiency and a preference for single-nucleotide homologous insertions. Precise targets and editing outcome can be predicted based on simple rules that mainly depend on the fourth nucleotide upstream of the protospacer adjacent motif (PAM). Indel profiles are robust, but they can be influenced by chromatin features. Our findings have important implications for clinical applications of CRISPR technology and reveal general patterns of broken end joining that can provide insights into DNA repair mechanisms.
Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA/genética , Deleção de Genes , Edição de Genes/métodos , Mutagênese Insercional , Proteína 9 Associada à CRISPR/metabolismo , Proliferação de Células , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , DNA/metabolismo , Células HEK293 , Células Hep G2 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Motivos de Nucleotídeos , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismoRESUMO
Global warming increases available sensible and latent heat energy, increasing the thermodynamic potential wind intensity of tropical cyclones (TCs). Supported by theory, observations, and modeling, this causes a shift in mean TC intensity, which tends to manifest most clearly at the greatest intensities. The Saffir-Simpson scale for categorizing damage based on the wind intensity of TCs was introduced in the early 1970s and remains the most commonly used metric for public communication of the level of wind hazard that a TC poses. Because the scale is open-ended and does not extend beyond category 5 (70 m/s windspeed or greater), the level of wind hazard conveyed by the scale remains constant regardless of how far the intensity extends beyond 70 m/s. This may be considered a weakness of the scale, particularly considering that the destructive potential of the wind increases exponentially. Here, we consider how this weakness becomes amplified in a warming world by elucidating the past and future increases of peak wind speeds in the most intense TCs. A simple extrapolation of the Saffir-Simpson scale is used to define a hypothetical category 6, and we describe the frequency of TCs, both past and projected under global warming, that would fall under this category. We find that a number of recent storms have already achieved this hypothetical category 6 intensity and based on multiple independent lines of evidence examining the highest simulated and potential peak wind speeds, more such storms are projected as the climate continues to warm.
RESUMO
We unveil the multifractal behavior of Ising spin glasses in their low-temperature phase. Using the Janus II custom-built supercomputer, the spin-glass correlation function is studied locally. Dramatic fluctuations are found when pairs of sites at the same distance are compared. The scaling of these fluctuations, as the spin-glass coherence length grows with time, is characterized through the computation of the singularity spectrum and its corresponding Legendre transform. A comparatively small number of site pairs controls the average correlation that governs the response to a magnetic field. We explain how this scenario of dramatic fluctuations (at length scales smaller than the coherence length) can be reconciled with the smooth, self-averaging behavior that has long been considered to describe spin-glass dynamics.
RESUMO
Impulsivity is a personality construct frequently employed to explain and predict important human behaviors. Major inconsistencies in its definition and measurement, however, have led some researchers to call for an outright rejection of impulsivity as a psychological construct. We address this highly unsatisfactory state with a large-scale, preregistered study (N = 1,676) in which each participant completed 48 measures of impulsivity derived from 10 self-report scales and 10 behavioral tasks and reported frequencies of seven impulsivity-related behaviors (e.g., impulsive buying and social media usage); a subsample (N = 196) then completed a retest session 3 mo later. We found that correlations between self-report measures were substantially higher than those between behavioral tasks and between self-report measures and behavioral tasks. Bifactor analysis of these measures exacted one general factor of impulsivity I, akin to the general intelligence factor g, and six specific factors. Factor I was related mainly to self-report measures, had high test-retest reliability, and could predict impulsivity-related behaviors better than existing measures. We further developed a scale named the adjustable impulsivity scale (AIMS) to measure I. AIMS possesses excellent psychometric properties that are largely retained in shorter versions and could predict impulsivity-related behaviors equally well as I. These findings collectively support impulsivity as a stable, measurable, and predictive trait, indicating that it may be too early to reject it as a valid and useful psychological construct. The bifactorial structure of impulsivity and AIMS, meanwhile, significantly advance the conceptualization and measurement of construct impulsivity.
Assuntos
Comportamento Impulsivo , Humanos , Masculino , Feminino , Adulto , Autorrelato , Personalidade , Adulto Jovem , Adolescente , Reprodutibilidade dos Testes , Pessoa de Meia-IdadeRESUMO
Hydrogen, the lightest and most abundant element in the universe, plays essential roles in a variety of clean energy technologies and industrial processes. For over a century, it has been known that hydrogen can significantly degrade the mechanical properties of materials, leading to issues like hydrogen embrittlement. A major challenge that has significantly limited scientific advances in this field is that light atoms like hydrogen are difficult to image, even with state-of-the-art microscopic techniques. To address this challenge, here, we introduce Atom-H, a versatile and generalizable machine learning-based framework for imaging hydrogen atoms at the atomic scale. Using a high-resolution electron microscope image as input, Atom-H accurately captures the distribution of hydrogen atoms and local stresses at lattice defects, including dislocations, grain boundaries, cracks, and phase boundaries. This provides atomic-scale insights into hydrogen-governed mechanical behaviors in metallic materials, including pure metals like Ni, Fe, Ti and alloys like FeCr. The proposed framework has an immediate impact on current research into hydrogen embrittlement and is expected to have far-reaching implications for mapping "invisible" atoms in other scientific disciplines.