Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(1): 26-38, 2024 Jan.
Artigo em Zh | MEDLINE | ID: mdl-38403335

RESUMO

The 29 plant species in the Kadsura genus of the Schisandraceae family are mainly distributed in eastern and southeas-tern Asia. Ten species of plants in this genus are distributed in China, some of which are folk medicinal plants with activating blood circulation, relieving pain, dispelling wind, and dehumidifying effects. Their main constituents are lignans and triterpenes. The current pharmacology and clinical studies have shown that their extracts and constituents have anti-rheumatoid arthritis, liver protection, antioxidation, anti-inflammatory, and other biological activities. The rheumatologic and liver diseases can also be treated with the plants in the clinic. The new chemical constituents reported in the last decade(2012 to date) from the plants of Kadsura genus in China, as well as their pharmacological effects and clinical applications in recent years were reviewed, so as to provide a theoretical basis for further research on the genus.


Assuntos
Medicamentos de Ervas Chinesas , Kadsura , Lignanas , Plantas Medicinais , Lignanas/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , China , Extratos Vegetais , Compostos Fitoquímicos , Etnofarmacologia
2.
Phytochemistry ; 221: 114053, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479587

RESUMO

Schisandra lignans are the main bioactive compounds found in Schisandra chinensis fruits, such as schisandrol lignans and schisandrin lignans, which play important roles in organ protection or other clinical roles. Pinoresinol-lariciresinol reductase (PLR) plays a pivotal role in plant lignan biosynthesis, however, limited research has been conducted on S. chinensis PLR to date. This study identified five genes as ScPLR, successfully cloned their coding sequences, and elucidated their catalytic capabilities. ScPLR3-5 could recognize both pinoresinol and lariciresinol as substrates, and convert them into lariciresinol and secoisolariciresinol, respectively, while ScPLR2 exclusively catalyzed the conversion of (+)-pinoresinol into (+)-lariciresinol. Transcript-metabolite correlation analysis indicated that ScPLR2 exhibited unique properties that differed from the other members. Molecular docking and site-directed mutagenesis revealed that Phe271 and Leu40 in the substrate binding motif were crucial for the catalytic activity of ScPLR2. This study serves as a foundation for understanding the essential enzymes involved in schisandra lignan biosynthesis.


Assuntos
Ciclo-Octanos , Furanos , Lignanas , Compostos Policíclicos , Schisandra , Schisandra/química , Schisandra/metabolismo , Simulação de Acoplamento Molecular , Oxirredutases/metabolismo , Lignanas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA