Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 365: 121538, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38905798

RESUMO

The current study focuses on analyzing the impacts of climate change and land use/land cover (LULC) changes on sediment yield in the Puthimari basin, an Eastern Himalayan sub-watershed of the Brahmaputra, using a hybrid SWAT-ANN model approach. The analysis was meticulously segmented into three distinct time spans: 2025-2049, 2050-2074, and 2075-2099. This innovative method integrates insights from multiple climate models under two Representative Concentration Pathways (RCP4.5 and RCP8.5), along with LULC projections generated through the Cellular Automata Markov model. By combining the strengths of the Soil and Water Assessment Tool (SWAT) and artificial neural network (ANN) techniques, the study aims to improve the accuracy of sediment yield simulations in response to changing environmental conditions. The non-linear autoregressive with external input (NARX) method was adopted for the ANN component of the hybrid model. The adoption of the hybrid SWAT-ANN approach appears to be particularly effective in improving the accuracy of sediment yield simulation compared to using the SWAT model alone, as evidenced by the higher coefficient of determination value of 0.74 for the hybrid model compared to 0.35 for the standalone SWAT model. In the context of the RCP4.5 scenario, during 2075-99, the study noted a 29.34% increase in sediment yield, accompanied by simultaneous rises of 42.74% in discharge and 27.43% in rainfall during the Indian monsoon season, spanning from June to September. In contrast, under the RCP8.5 scenario, for the same period, the increases in sediment yield, discharge, and rainfall for the monsoon season were determined to be 116.56%, 103.28%, and 64.72%, respectively. The present study's comprehensive analysis of the factors influencing sediment supply in the Puthimari River basin fills an important knowledge gap and provides valuable insights for designing proactive flood and erosion management strategies. The findings from this research are crucial for understanding the vulnerability of the Puthimari basin to climate and land use changes, and by incorporating these findings into policy and decision-making processes, stakeholders can work towards enhancing resilience and sustainability in the face of future hydrological and environmental challenges.


Assuntos
Mudança Climática , Sedimentos Geológicos , Redes Neurais de Computação , Monitoramento Ambiental/métodos , Modelos Teóricos , Solo/química
2.
J Environ Manage ; 357: 120688, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38552511

RESUMO

The strategic reduction and remediation of degraded land is a global environmental priority. This is a particular priority in the Great Barrier Reef catchment area, Australia, where gully erosion a significant contributor to land degradation and water quality deterioration. Urgent action through the prioritisation and remediation of gully erosion sites is imperative to safeguard this UNESCO World Heritage site. In this study, we analyze a comprehensive dataset of 22,311 mapped gullies within a 3480 km2 portion of the lower Burdekin Basin, northeast Australia. Utilizing high-resolution lidar datasets, two independent methods - Minimum Contemporary Estimate (MCE) and Lifetime Average Estimate (LAE) - were developed to derive relative erosion rates. These methods, employing different data processing approaches and addressing different timeframes across the gully lifetime, yield erosion rates varying by up to several orders of magnitude. Despite some expected divergence, both methods exhibit strong, positive correlations with each other and additional validation data. There is a 43% agreement between the methods for the highest yielding 2% of gullies, although 80.5% of high-yielding gullies identified by either method are located within a 1 km proximity of each other. Importantly, distributions from both methods independently reveal that ∼80% of total volume of gully erosion in the study area is produced from only 20% of all gullies. Moreover, the top 2% of gullies generate 30% of the sediment loss and the majority of gullies do not significantly contribute to the overall catchment sediment yield. These results underscore the opportunity to achieve significant environmental outcomes through targeted gully management by prioritising a small cohort of high yielding gullies. Further insights and implications for management frameworks are discussed in the context of the characteristics of this cohort. Overall, this research provides a basis for informed decision-making in addressing gully erosion and advancing environmental conservation efforts.


Assuntos
Conservação dos Recursos Naturais , Solo , Humanos , Conservação dos Recursos Naturais/métodos , Qualidade da Água , Austrália
3.
Environ Res ; 237(Pt 1): 116859, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37562739

RESUMO

The characterization of a rainfall simulator provides an excellent opportunity to study the potential of soil erosivity without waiting for natural rain. But, precise instrumentation is required to estimate the parameters, which is seldom available. To overcome this problem, the empirical and conceptual relationships obtained through physically-based modeling help to correlate the rain parameters contributing to soil erosion. The present laboratory study used five pressurized nozzles of different capacities and a Laser Precipitation Monitor (LPM) to generate different rain intensities (21.0-79.0 mm h-1) and to register drop size distribution, respectively. The sediment transportation induced by rain and runoff was measured with an erosion flume of 2.50 × 1.25 × 0.56 m with an adjustable longitudinal slope. The spatial uniformity, drop size distribution, drop velocity, and kinetic energy were used to evaluate the simulator's performance. The different rain erosivity parameters were correlated and tested statistically using linear and non-linear regression analysis. The rain simulation experiments of different intensities at different pressure ranges were performed on flat, 5, 10, and 15% slopes of the erosion flume to evaluate rain characteristics and record the surface runoff and sediment yield. The median drop sizes produced during the simulator ranged from 0.38 to 2.11 mm, coinciding with natural rain. The empirical relationships were developed to correlate surface discharge and sediment yield with rain intensity by optimizing the parameters for further study of experimental field plots of different slopes. The observed and estimated rain erosivity parameters showed a significant relationship (R2 = 0.75 to 0.93; P < 0.001) in multiple regression analysis, and the metrics used to test the developed regression equations showed lower MAE, MSE, and RMSE errors indicating the adequacy of the relationships. The results indicated that the simulator helps to understand the complex task of soil erosion with hydrologic and geomorphic processes in laboratory experimentation with sufficient accuracy in measuring sediment transport events.

4.
J Environ Manage ; 344: 118378, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37356332

RESUMO

Soil erosion has become a worldwide problem that threatens the environment and the future of economic and social development. The purpose of this study is to investigate the contribution of steep slopes and gullies to erosion in high precipitation tropical areas of the Ethiopian highlands. A trapezoidal weir was installed at the head and tail of the gully to monitor the discharge and sediment concentration from 2017 to 2020. Sediment yield and runoff are heavily influenced by the amount and timing of precipitation. The coefficients of variation for total sediment loads ranged from 65.1 to 96.1% at the head and 17.1-78.1% at the tail; the lowest coefficients were found in 2018 and the highest in 2020. Furthermore, 85% of the sediment at the tail comes from the gully, according to the four-year sediment budget. Further, a hysteretic analysis of suspended sediment concentration and runoff revealed that hilly sediment sources are limited (clockwise), then sediment can be transported through the gully via bank failures (counterclockwise). Study findings contributed to a classification of runoff patterns and an investigation of suspended sediment dynamics. In the gully tail, sediment yield was higher than in the head, suggesting gully sediment contributed more to sediment yield than large upland catchments. As a result of the study, we have been able to develop practical recommendations for managing gully erosion in the future.


Assuntos
Conservação dos Recursos Naturais , Solo , Monitoramento Ambiental , Etiópia , Erosão do Solo
5.
Environ Monit Assess ; 195(6): 716, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37222946

RESUMO

Sediment yield estimation along with identification of soil erosion mechanisms is essential for developing sophisticated management approaches, assessing, and balancing different management scenarios and prioritizing better soil and water conservation planning and management. At the watershed scale, land management practices are commonly utilized to minimize sediment loads. The goal of this research was to estimate sediment yield and prioritize the spatial dispersion of sediment-producing hotspot areas in the Nashe catchment using the Soil and Water Assessment Tool (SWAT). Moreover, to reduce catchment sediment output, this study also aims to assess the effectiveness of certain management practices. For calibration and validation of the model, monthly stream flow and sediment data were utilized. The model performance indicators show good agreement between measured and simulated stream flow and sediment yields. The study examined four best management practice (BMP) scenarios for the catchment's designated sub-watersheds: S0 (baseline scenario), S1 (filter strip), S2 (stone/soil bunds), S3 (contouring), and S4 (terracing). According to the SWAT model result, the watershed's mean yearly sediment output was 25.96 t/ha. yr. under baseline circumstances. The model also revealed areas producing the maximum sediment quantities indicating the model's effectiveness for implementing and evaluating the sensitivity of sediment yield to various management strategies. At the watershed scale, treating the watershed with various management scenarios S1, S2, S3, and S4 decreased average annual sediment yield by 34.88%, 57.98%, 39.55%, and 54.77%, respectively. The implementations of the soil/stone bund and terracing scenarios resulted in the maximum sediment yield reduction. The findings of this study will help policymakers to make better and well-informed decisions regarding suitable land use activities and best management strategies.


Assuntos
Conservação dos Recursos Hídricos , Monitoramento Ambiental , Etiópia , Calibragem , Solo , Água
6.
Environ Monit Assess ; 196(1): 56, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38110592

RESUMO

Soil erosion is a significant problem in the agriculture sector and the environment globally. Susceptible soil erosion zones must be identified and erosion rates evaluated to decrease land degradation problems and increase crop productivity by protecting soil fertility. Therefore, a research study has been carried out in the Ponnaniyar River basin, an ungauged tributary of the Cauvery basin in India, primarily used for agriculture. The main purpose of this study is to assess soil erosion (SE) and sediment yield (SY) for the future in an ungauged basin by utilizing the projected land use/land cover (LULC) map of the study area. Additionally, Landsat 8 satellite dataset was only used for the classification and prediction of LULC to eliminate the variation between the resolution, bands and its wavelength of different satellites datasets. To achieve the goals of this study, three phases were followed. First, the LULC of the study area was classified using a Random Trees Classifier (RTC), a machine learning technique, followed by the projection of land cover using a Cellular Automata-based Artificial Neural Network (CA-ANN) model. The driving factors for this model include digital elevation model (DEM), slope, distance to roads, settlements, and water bodies. The accuracy level of the projected LULC map was determined by comparing it with the classified LULC map of the study area, and the results showed an overall accuracy (OA) of 85.35 percentage and a kappa coefficient (K) of 0.74, respectively. Second, the projected LULC map was used in the land management factor (C) and conversation practice factor (P) of the Revised Universal Soil Loss Equation (RUSLE) model to assess soil erosion. The model was integrated with the sediment delivery ratio (SDR) to estimate sediment yield within the study area. The accuracy of the generated erosion map based on the classified and projected LULC for the year 2022 was determined using the receiver operating characteristic curve (ROC) curve, and it was found to be in satisfactory agreement. Finally, for effective soil and water conservation measures, the basin was divided into 13 sub-watersheds (SWs) using terrain analysis in geographical information system (GIS). The SWs were prioritized based on the mean soil loss in the 4-year interval from 2014 to 2030 and integrated using the weighted average method to determine the final prioritization. From these findings, SW 11, SW 9, SW 12, and SW 1 are extremely affected by soil erosion, and immediate implementation of water harvesting structures is required for soil conservation. Also, this research might be useful for decision-makers and policymakers in land management.


Assuntos
Modelos Teóricos , Erosão do Solo , Monitoramento Ambiental/métodos , Solo/química , Água , Conservação dos Recursos Naturais/métodos
7.
Environ Monit Assess ; 195(6): 729, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37227511

RESUMO

In the present study, suspended sediment load (SSL), sediment yield and erosion rates in Pindari Glacier basin (PGB) and Kafni Glacier basin (KGB) have been estimated using daily discharge and suspended sediment concentration (SSC) data for three ablation seasons (2017-2019). For this, one meteorological observatory and two gauging sites have been established at Dwali (confluence point), and water samples have been collected twice in a day for high flow period (July to September) and daily for lean period (May, June and October). An area-velocity method and stage-discharge relationship has been established to convert water level into discharge (m3 s-1). For estimating SSC (mg/l), collected water samples have been filtered, dried, analysed and confirmed with an automatic suspended solid indicator. Further, SSL, sediment yield and erosion rates have been computed using SSC data. The results reveal that mean annual discharge in PGB (35.06 m3 s-1) has been found approximately 1.7 times higher than KGB (20.47 m3 s-1). The average SSC and SSL in PGB have been observed about 396.07 mg/l and 1928.34 tonnes, and in KGB, it is about 359.67 mg/l and 1040.26 tonnes, respectively. The SSC and SSL have followed the pattern of discharge. A significant correlation of SSC and SSL has been found with discharge in both the glacierized basins (p < 0.01). Interestingly, average annual sediment yield in PGB (3196.53 t/km2/yr) and KGB (3087.23 t/km2/yr) have been found almost identical. Likewise, the erosion rates in PGB and KGB have been witnessed about 1.18 and 1.14 mm/yr, respectively. Sediment yield and erosion rates in PGB and KGB have been found in correspondence with other basins of Central Himalaya. These findings will be beneficial for engineers and water resource managers in the management of water resources and hydropower projects in high-altitude areas and in the planning and designing of water structures (dams, reservoirs etc.) in downstream areas.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Sedimentos Geológicos/análise , Monitoramento Ambiental/métodos , Água/análise , Recursos Hídricos , Índia
8.
J Environ Manage ; 317: 115414, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35751249

RESUMO

Grazing is a major cause of soil erosion and land degradation across many parts of Ethiopia. This study examined the effects of exclosure on subsurface water levels, soil erosion, and the relationship between daily rainfall and subsurface water levels. Piezometers were used to measure subsurface water levels in the exclosure area during 2017-2020. We found that sediment yield, runoff, and the volume of subsurface water vary greatly depending on the exclosure and temporal practices used. Exclosure of grazing land was the most effective sustainable land management practice in reducing runoff and sediment yield. In 2019 and 2020, the subsurface water level continued to rise at piezometers with exclosure, which shows that exclosure contributed to the subsurface water level rising. In addition, piezometers in grazing land and the exclosure indicate that runoff trapped by acacia decurrens trees can contribute to significant differences in subsurface water levels. Higher runoff coefficients were observed in 2017 and 2018 than in 2019 and 2020, indicating that the exclosure greatly affects runoff; therefore, its implementation is vital to reduce runoff and enhance water conservation. Sediment yields measured for 2017, 2018, 2019, and 2020 were 140.45, 133.15, 101.03, and 74.39 g L-1 day-1, respectively. In 2017 and 2018, sediment yield increased, while in 2019 and 2020 sediment yield decreased because of an exclosure around the gully's cross-section and communal grazing. This study shows that erosion is reduced by exclosure, possibly due to the restoration of protective vegetation cover. This study revealed that a minimum of human and livestock intervention during the study period considerably increased groundwater levels and decreased soil erosion. Generally, the results of this study indicated that exclosure has a considerable impact on runoff and sediment. Therefore, exclosure implementation is vital to reduce runoff and sediment and enhance water conservation, thus supporting the development of effective communal grazing land management measures on the study sites and other similar environmental settings.


Assuntos
Chuva , Movimentos da Água , Etiópia , Sedimentos Geológicos , Humanos , Solo , Água
9.
Environ Monit Assess ; 193(9): 595, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34426857

RESUMO

In addition to soil losses on hillslopes, unpaved rural roads, especially when poorly designed and maintained, can be a significant contributor to the erosive processes seen at the catchment scale. In areas with deep soils, the solutions primarily focus on channeling excess surface runoff into settling ponds or terraces. However, few studies have addressed runoff control from roads on steep slopes in areas of shallow soil. Modeling hydrological processes at the catchment scale is a useful strategy for choosing the most effective and least costly conservation practices to control surface runoff. This study applies a mathematical model to a monitored catchment in southern Brazil to better understand the effects of conservation practices on unpaved roads and their impact on the hydrological and erosive dynamics of a small rural catchment. We calibrated the LISEM model using data from eight stormwater events and evaluated how three different road conservation scenarios-low (LI), medium (MI), and high intensity (HI)-contributed to sediment yield (SY), surface runoff volume (Qe), and peak flow (Qp) reduction. The LI and MI scenarios involved installation of hydraulic structures to control the road surface runoff (i.e. road ditch graveling, diversion weirs and grass waterways) while the HI scenario added surface runoff control practices (grass strips) to surrounding crop fields, in addition to the practices included in the MI scenario. Based on these scenarios, the results showed a Qe reduction at the catchment outlet from - 3.5% (LI) to - 22.5% (HI). The Qp and SY varied from + 6.0% (LI) to - 292.5% (HI) and from + 20.0% (LI) to - 963.9% (HI), respectively. These results show that the low- and medium-intensity practices were not effective in controlling surface runoff from roads, based on the Qe, Qb, and SY observed at the catchment's outlet. On the other hand, when MI scenarios were complemented with practices to control surface runoff in the cultivated areas, a significant reduction in surface runoff (Qe and Qp) and SY was verified.


Assuntos
Monitoramento Ambiental , Solo , Hidrologia , Modelos Teóricos , Poaceae
10.
Environ Monit Assess ; 193(11): 754, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34713350

RESUMO

The ecosystem, biodiversity, and anthropological existence in the Chitral district are in danger due to the sediments and soil erosion stemming from the changes in the land-cover and climate. This research aims to practice the RUSLE model with the changes in the land-cover and climate in upcoming situations for 2030 and 2040 to evaluate soil erosion annually as per the spatial dissemination and the tendency of sediment yield. The multilayer perceptron (MLP), an artificial neural network (ANN), besides the Markov chain analysis was used to model upcoming land-cover. The Max Planck Institute model, which demonstrated a revised bias as well as downscaled grid size under the Representative Concentration Pathways (RCPs), was used for examining the future changes in the climate. The modeled land-cover showed that the areas that are primarily comprised of natural trees and shrubs were transformed largely to agriculture and build-up areas. The average rainfall in the future under different RCP situations was elevated compared to the rainfall through historical time. The continuous variability in the R and C factors affects the probable soil erosion rate and sediment yield. Under RCP8.5 for both future years of 2030 and 2040, the extreme erosion rate was assessed at around 500 and 550 t/ha/year. Additionally, under the different RCP scenarios in 2030 and 2040, the outcomes of sediment yield were more significant than the sediment yield through historical time. The results showed that lower regions of the Chitral district are at risk of amplified soil erosion and sediment yield presently, as shown by the historical data and in the future. The produced soil erosion maps using ArcGIS 10.2 can play a valuable role in managing sustainable development, conservation of the watershed of the Chitral River, and reducing soil loss. Effective measures to overcome these concerns and mitigate the possible effects need to be planned and practiced, particularly the decrease in the storage volume of the reservoirs situated on the river.


Assuntos
Mudança Climática , Ecossistema , Conservação dos Recursos Naturais , Monitoramento Ambiental , Solo , Erosão do Solo
11.
J Soils Sediments ; 21(4): 1875-1889, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720744

RESUMO

PURPOSE: Intensive livestock grazing has been associated with an increased risk of soil erosion and concomitant negative impacts on the ecological status of watercourses. Whilst various mitigation options are promoted for reducing livestock impacts, there is a paucity of data on the relationship between stocking rates and quantified sediment losses. This evidence gap means there is uncertainty regarding the cost-benefit of policy preferred best management. METHODS: Sediment yields from 15 hydrologically isolated field scale catchments on a heavily instrumented ruminant livestock farm in the south west UK were investigated over ~ 26 months spread across 6 years. Sediment yields were compared to cattle and sheep stocking rates on long-term, winter (November-April), and monthly timescales. The impacts of livestock on soil vegetation cover and bulk density were also examined. Cattle were tracked using GPS collars to determine how grazing related to soil damage. RESULTS: No observable impact of livestock stocking rates of 0.15-1.00 UK livestock units (LU) ha-1 for sheep, and 0-0.77 LU ha-1 for cattle on sediment yields was observed at any of the three timescales. Cattle preferentially spent time close to specific fences where soils were visually damaged. However, there was no indication that livestock have a significant effect on soil bulk density on a field scale. Livestock were housed indoors during winters when most rainfall occurs, and best management practices were used which when combined with low erodibility clayey soils likely limited sediment losses. CONCLUSION: A combination of clayey soils and soil trampling in only a small proportion of the field areas lead to little impact from grazing livestock. Within similar landscapes with best practice livestock grazing management, additional targeted measures to reduce erosion are unlikely to yield a significant cost-benefit. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11368-021-02909-y.

12.
Entropy (Basel) ; 23(12)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34945921

RESUMO

Many regions around the globe are subjected to precipitation-data scarcity that often hinders the capacity of hydrological modeling. The entropy theory and the principle of maximum entropy can help hydrologists to extract useful information from the scarce data available. In this work, we propose a new method to assess sub-daily precipitation features such as duration and intensity based on daily precipitation using the principle of maximum entropy. Particularly in arid and semiarid regions, such sub-daily features are of central importance for modeling sediment transport and deposition. The obtained features were used as input to the SYPoME model (sediment yield using the principle of maximum entropy). The combined method was implemented in seven catchments in Northeast Brazil with drainage areas ranging from 10-3 to 10+2 km2 in assessing sediment yield and delivery ratio. The results show significant improvement when compared with conventional deterministic modeling, with Nash-Sutcliffe efficiency (NSE) of 0.96 and absolute error of 21% for our method against NSE of -4.49 and absolute error of 105% for the deterministic approach.

13.
J Environ Manage ; 260: 110128, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32090827

RESUMO

Considering scenarios of future changes in land use have the potential to support policy-makers in drafting environmental laws to reconcile the demands of multiple land uses. The Pantanal, one of the largest wetlands in the world, has been undergoing rapid land use changes, and does not yet have any integrated environmental legislation on Legal Reserve for entire region (LR - minimum percentage of native vegetation required within private properties). The aim of this paper was to generate future vegetation loss scenarios for the Pantanal based on four LR values: (i) BAU: Business as usual, which considers existing laws: Native Vegetation Protection Law and State Decree; (ii) LRE: LR elimination owing to a bill recently proposed; (iii) LR50: which considers the bill proposing 50% of LR for the Pantanal; and (iv) LR80: our proposed levels of 80% of LR for the lowlands and 35% for the plateau (following values in the Amazon). Based on native vegetation loss from each scenario, we estimated the soil loss and sediment yield to rivers. Our results show that LRE would increase native vegetation loss in the Pantanal by as much as 139% when compared to the BAU, whereas increasing LR levels would reduce conversion values by 29% (LR80). Elimination of the LR would increase soil erosion and sediment production by up to 7% and 10%, respectively, compared to BAU. Based on native vegetation loss from each scenario, we estimated the soil loss and sediment yield to rivers with our data showing more than 90% of the sediment transported to the lowland originating from the plateau. The LR80 indicates a reduction in soil nutrient replacement costs of 10% compared to BAU, while in the LR50 these costs decrease by 1.5%, and in the LRE would increase of 8%. Our results show that abolishing current protections would have substantial impacts on avulsion processes, on several economic activities (tourism, fishery, cattle raising, etc.) and negative impacts for biodiversity conservation and would bring losses to agriculture in the Pantanal. Hence, our study brings clearly evidence of LR importance and need to expand it in this sensitive wetland.


Assuntos
Agricultura , Ecossistema , Animais , Bovinos , Conservação dos Recursos Naturais , Rios , Solo , Áreas Alagadas
14.
Environ Monit Assess ; 192(11): 733, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33123779

RESUMO

Human-induced agricultural and developmental activities cause substantial alteration to the natural geography of a landscape; thereby accelerates the geologic soil erosion process. This necessitates quantification of catchment-scale soil erosion under both retrospective and future scenarios for efficient conservation of soil resources. Here, we present a revised universal soil loss equation (RUSLE) based soil erosion estimation framework at an unprecedentedly high spatial resolution (30 × 30 m) to quantify the average annual soil loss and sediment yield from an agriculture-dominated river basin. The input parameters were derived by using the observed rainfall data, soil characteristics (soil texture, hydraulic conductivity, organic matter content), and topographic characteristics (slope length and percent slope) derived from digital elevation model (DEM) and satellite imageries. The developed approach was evaluated in the Brahmani River basin (BRB) of eastern India, wherein the different RUSLE inputs, viz., rainfall erosivity (R factor), soil erodibility (K factor), topographic (LS factor), crop cover (C factor), and management practice (P factor) factors have the magnitude of 1937 to 4867 MJ mm ha-1 h-1 year-1, 0.023 to 0.039 t h ha MJ-1 ha-1 mm-1, 0.03 to 74, 0.16 to 1, and 0 to 1, respectively. The estimated average annual soil loss over the BRB ranged from 0 to 319.55 t ha-1 year-1, and subsequent erosion categorization revealed that 54.2% of basin area comes under extreme soil erosion zones in the baseline period. Similarly, the sediment yield estimates varied in the range of 0.96 to 133.31 t ha-1 year-1, and 35.81% area were identified as high soil erosion potential zones. The extent of erosion under climate change scenario was assessed using the outputs of HadGEM2-ES climate model for the future time scales of 2030, 2050, 2070, and 2080 under the four representative concentration pathways (RCPs) 2.6, 4.5, 6.0, and 8.5. The severity of soil erosion under climate change is expected to have a mixed impact in the range of -25 to 25% than the baseline scenario. The outcomes of this study will serve as a valuable tool for decision-makers while implementing management policies over the BRB, and can be well extended to any global catchment-scale applications.


Assuntos
Mudança Climática , Solo , Conservação dos Recursos Naturais , Monitoramento Ambiental , Sistemas de Informação Geográfica , Índia , Modelos Teóricos , Estudos Retrospectivos
15.
Environ Monit Assess ; 192(11): 679, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33025331

RESUMO

In this study, the impacts of land use/land cover (LULC) and climate change on the streamflow and sediment yield were investigated for the Payaswani River Basin, Western Ghats, India. The LULC was determined using Landsat images, and climate data were procured from five general circulation models for representative concentration pathway (RCP) 4.5 (moderate emission) and 8.5 (high emission). The land change modeler was used to derive the future LULC and its changes from 1988 (historical) to 2030 (future) by using the transition matrix method. The SWAT model was used to assess the impacts of LULC and climate change for the streamflow and sediment yield. The results showed that decrease in forests and grasslands and increase in plantation, agricultural, and urban areas from 1988 to 2030 would lead to an increase in the mean streamflow (11.23%) and sediment yield (17.41%). Under RCP 4.5, climate change would decrease the streamflow by 2.38% in 2030. However, under RCP 8.5, climate change would increase the streamflow by 0.12% in 2030. The sediment yield under RCP 4.5 and 8.5 would increase by 1.23% and 3.33%, respectively. In comparison with the baseline condition, by 2030 future changes in the LULC and climate would increase the streamflow by 7.05% and 11.71% under RCP 4.5 and 8.5, respectively. The sediment yield would increase by 7.92% and 27.11% under RCP 4.5 and 8.5, respectively. The streamflow and sediment yield were predicted to increase in the summer and winter but decrease in the monsoon season.


Assuntos
Mudança Climática , Rios , Monitoramento Ambiental , Previsões , Índia
16.
Environ Res ; 171: 470-483, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30739021

RESUMO

Spatially distributed modelling of sediment and phosphorus fluxes on a scale of thousands of square kilometers always involves a compromise between the quality of the data input and the complexity of the model that can be applied. WaTEM/SEDEM offers an approach that allows us to target on spatially focused outputs that can easily be implemented in the decision-making process for effective watershed control. The results for a study area covering the watersheds of 58 large reservoirs threatened by eutrophication within the Czech Republic are presented here as an example of the available analyses. The total area of the watersheds is 27,472 km2. After building a complex river topology scheme and estimating the trap efficiencies in all reservoirs within the river networks, we are able to estimate the total transport efficiency of each river unit for any outlet point (terminal reservoir). The sources of the greatest amounts of sediment (phosphorus) can be identified on the scale of single parcels. According the model, the total soil loss in the study area is 7487 Gg year-1 (2.73 Mg ha-1 year-1). The total sediment entry into the river systems in the target area is 1705 Gg year-1 (15.2% of the total soil loss). The total deposition in the 9890 water reservoirs of various sizes in the target area is 1139 Gg year-1. This means that the deposition in the landscape is 5.1× higher than the deposition in the reservoirs within the study area. The mean annual sediment transport by all watershed outlets is 566 Gg year-1. The cost of dredging the sediment would be about 12.8 million EUR year-1. There is great spatial variability in the deposition and transport processes, but it is imperative to provide strengthened soil protection directly on-site, especially in watersheds where the sediment delivery ratio is much higher than the average value. Phosphorus transported by water erosion is an important element in the balances of phosphorus sources in basins. Sewage waters usually play the predominant role in triggering the eutrophication effect, but there are also reservoirs where erosion-based phosphorus plays a major role.


Assuntos
Monitoramento Ambiental , Fósforo/análise , Rios/química , Solo , Poluentes Químicos da Água/análise , República Tcheca , Sedimentos Geológicos
17.
J Environ Manage ; 252: 109605, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31610443

RESUMO

Observations from four small watersheds by the Reedy River in upstate South Carolina, USA, were used to evaluate the effects of urban development due to residential construction on streamflow and sediment yield, and to assess the effectiveness of Best Management Practices (BMPs). Paired watershed studies were used to quantify changes in flow magnitudes and sediment outputs at the watershed scale. A novel method based on the Revised Universal Soil Loss Equation was developed to quantify the contribution from each land use to watershed sediment yield. Area-normalized stormflows and peak flows in developed watersheds were 2-9 times greater than those from an undeveloped reference watershed. Sediment yield (SY) and event mean concentration (EMC) were 6 times greater in a developed watershed that had no ongoing construction. In actively developing watersheds, however, SY and EMC were 60-90 times greater compared to the reference. Sediment contribution factor (10-2 kg h MJ-1 mm-1), defined as SY per unit rainfall erosivity, for each land use with 95% confidence interval was: Forest = 4 ±â€¯2, Pasture = 2 ±â€¯2, Full Development = 18 ±â€¯11, Active Development = 440 ±â€¯120. These values can be used to predict long-term change in sediment yield due to a future land-use change. Significant increases in flow and sediment occurred despite the use of BMPs, so improvements to their implementation and/or proper maintenance may be necessary to ensure that their protective goals are met.


Assuntos
Monitoramento Ambiental , Rios , Florestas , Sedimentos Geológicos , Solo , South Carolina
18.
J Environ Manage ; 250: 109403, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31499466

RESUMO

The world is experiencing serious soil losses. Soil erosion has become an important environmental problem in certain regions and is strongly affected by climate and land use changes. By selecting and reviewing 13 extensively used soil water erosion models (SWEMs) from the published literature, we summarize the current model-based knowledge on how climate factors (e.g., rainfall, freeze-thaw cycles, rainstorms, temperature and atmospheric CO2 concentrations) and land use change impact soil erosion worldwide. This study also provides a critical review of the application of these 13 SWEMs. By comparing model structures, features, prediction accuracies, and erosion processes, we recommend the most suitable SWEMs for different regions of the globe (Asia, Europe, Africa and the America) based on the evaluations of 13 SWEMs. Future soil erosion could be simulated using the RUSLE, LISEM, WEPP v2010.1, SWAT, EPIC, KINEROS and AGNPS models in Asia; the RUSLE, WEPP v2010.1, SWAT, EPIC, WATEM-SEDEM, MEFIDIS, AGNPS and AnnAGNPS models in Europe; the RUSLE, LISEM, SWAT, and AGNPS models in Africa; and the WEPP v2010.1, SWAT, EPIC, KINEROS, AGNPS and AnnAGNPS models in America. Finally, the limitations and challenges of the 13 SWEMs are highlighted.


Assuntos
Solo , Água , África , Ásia , Clima , Europa (Continente)
19.
Environ Monit Assess ; 191(12): 757, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31741091

RESUMO

Landuse change significantly alters the hydrologic characteristics of the land surface within a watershed. In the present study, the impact of landuse change (2006-2016) on runoff and sediment yield has been assessed in Patiala-Ki-Rao watershed (5140 ha) located in Shivalik foot-hills, using remote sensing, geographical information system (GIS), and Water Erosion Prediction Project (WEPP) watershed model. The watershed has seven major landuse classes, namely agriculture, built-up, fallow land, forest, grass land, streams, and water bodies. The landuse change analysis indicated that the area under all the landuses decreased except built-up that increased by 372.27 ha (112.04%). Forest is the most affected landuse among all watershed landuses that shrinked by 194.90 ha followed by agriculture (64.57 ha), grass land (50.81 ha), streams (30.42 ha), fallow land (21.86 ha), and water bodies (9.72 ha). Runoff and sediment yield for the landuse of the years 2006 and 2016 were simulated by the WEPP model using two climate scenarios (2006 and 2016). The simulated runoff, sediment yield, and sediment delivery ratio increased by 18.62%, 48.04%, and 32.23% under Climate-2006 and 26.78%, 30.23%, and 16.09% under Climate-2016 due to change in landuse during a period of 10 years. This clearly indicates that landuse change in 10 years has greatly influenced the hydrology of the watershed and requires urgent land allocation policy in place for sustainable development in the area.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/análise , Rios/química , Movimentos da Água , Agricultura , Clima , Hidrologia , Índia , Modelos Teóricos , Poaceae , Água
20.
Environ Monit Assess ; 191(11): 676, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31654216

RESUMO

In steep dry-tropical islands, rural and urban development can lead to accelerated soil erosion and the delivery of land-based materials into marine ecosystems. The objective of this paper was to compare stream water composition, clay minerology, and sediment yield between a partially urbanized (Coral Bay) and an undisturbed (Lameshur) coastal watersheds in St. John, US Virgin Islands (USVI). The saturation index of streamflow water samples was calculated using "The Geochemist's Workbench" software and most likely precipitated minerals from observed storm events was then compared with X-ray diffraction on soil clay mineralogy. The spatial distribution on both annual mean (2010) erosion rates and storm event-wise (Hurricane Otto) sediment yield among the two study watersheds were modeled using the revised and modified universal soil loss equations (RUSLE; MUSLE), respectively. Cations concentration in stream flow water samples and sediment yield were higher for the partially urbanized (Coral Bay) compared to the undisturbed (Lameshur) watershed. Our findings suggest that rural/urban development may increase stream water cations concentration and inputs of sediment to downstream ecosystems. Future studies evaluating the effect of management practices such as pavement or other stabilization of dirt roads and their impact on stream water quality and quantity and sediment yield are crucial for the proper sediment management in the study watersheds and potentially in other rural-urbanizing tropical watersheds.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Solo/química , Reforma Urbana/estatística & dados numéricos , Urbanização , Animais , Antozoários , Ecossistema , Ilhas Virgens Americanas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA