Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Transl Med ; 17(1): 384, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752901

RESUMO

BACKGROUND: Alcohol withdrawal syndrome (AWS) is routinely treated with B-vitamins. However, the relationship between thiamine status and outcome is rarely examined. The aim of the present study was to examine the relationship between thiamine and magnesium status in patients with AWS. METHODS: Patients (n = 127) presenting to the Emergency Department with AWS were recruited to a prospective observational study. Blood samples were drawn to measure whole blood thiamine diphosphate (TDP) and serum magnesium concentrations. Routine biochemistry and haematology assays were also conducted. The Glasgow Modified Alcohol Withdrawal Score (GMAWS) measured severity of AWS. Seizure history and current medications were also recorded. RESULTS: The majority of patients (99%) had whole blood TDP concentration within/above the reference interval (275-675 ng/gHb) and had been prescribed thiamine (70%). In contrast, the majority of patients (60%) had low serum magnesium concentrations (< 0.75 mmol/L) and had not been prescribed magnesium (93%). The majority of patients (66%) had plasma lactate concentrations above 2.0 mmol/L. At 1 year, 13 patients with AWS had died giving a mortality rate of 11%. Male gender (p < 0.05), BMI < 20 kg/m2 (p < 0.01), GMAWS max ≥ 4 (p < 0.05), elevated plasma lactate (p < 0.01), low albumin (p < 0.05) and elevated serum CRP (p < 0.05) were associated with greater 1-year mortality. Also, low serum magnesium at time of recruitment to study and low serum magnesium at next admission were associated with higher 1-year mortality rates, (84% and 100% respectively; both p < 0.05). CONCLUSION: The prevalence of low circulating thiamine concentrations were rare and it was regularly prescribed in patients with AWS. In contrast, low serum magnesium concentrations were common and not prescribed. Low serum magnesium was associated more severe AWS and increased 1-year mortality.


Assuntos
Alcoolismo/complicações , Magnésio/sangue , Síndrome de Abstinência a Substâncias/sangue , Síndrome de Abstinência a Substâncias/mortalidade , Tiamina/sangue , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Síndrome de Abstinência a Substâncias/patologia
2.
ACS Chem Neurosci ; 11(17): 2624-2637, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32786313

RESUMO

The need for improved medications for the treatment of epilepsy and chronic pain is essential. Epileptic patients typically take multiple antiseizure drugs without complete seizure freedom, and chronic pain is not fully managed with current medications. A positive allosteric modulator (PAM) of α2/3-containing GABAA receptors (5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazole[1,5-α][1,4]diazepin-3-yl) oxazole or KRM-II-81 (8) is a lead compound in a series of imidazodiazepines. We previously reported that KRM-II-81 produces broad-based anticonvulsant and antinociceptive efficacy in rodent models and provides a wider margin over motoric side effects than that of other GABAA receptor PAMs. The present series of experiments was designed to fill key missing gaps in prior preclinical studies assessing whether KRM-II-81 could be further differentiated from nonselective GABAA receptor PAMs using the anticonvulsant diazepam (DZP) as a comparator. In multiple chemical seizure provocation models in mice, KRM-II-81 was either equally or more efficacious than DZP. Most strikingly, KRM-II-81 but not DZP blocked the development of seizure sensitivity to the chemoconvulsants cocaine and pentylenetetrazol in seizure kindling models. These and predecessor data have placed KRM-II-81 into consideration for clinical development requiring the manufacture of kilogram amounts of good manufacturing practice material. We describe here a novel synthetic route amenable to kilogram quantity production. The new biological and chemical data provide key steps forward in the development of KRM-II-81 (8) as an improved treatment option for patients suffering from epilepsy.


Assuntos
Anticonvulsivantes , Diazepam , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Humanos , Camundongos , Oxazóis , Receptores de GABA-A
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA