Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38400265

RESUMO

Activities of daily living (ADLs) are fundamental routine tasks that the majority of physically and mentally healthy people can independently execute. In this paper, we present a semantic framework for detecting problems in ADLs execution, monitored through smart home sensors. In the context of this work, we conducted a pilot study, gathering raw data from various sensors and devices installed in a smart home environment. The proposed framework combines multiple Semantic Web technologies (i.e., ontology, RDF, triplestore) to handle and transform these raw data into meaningful representations, forming a knowledge graph. Subsequently, SPARQL queries are used to define and construct explicit rules to detect problematic behaviors in ADL execution, a procedure that leads to generating new implicit knowledge. Finally, all available results are visualized in a clinician dashboard. The proposed framework can monitor the deterioration of ADLs performance for people across the dementia spectrum by offering a comprehensive way for clinicians to describe problematic behaviors in the everyday life of an individual.


Assuntos
Atividades Cotidianas , Semântica , Humanos , Projetos Piloto , Software
2.
Sensors (Basel) ; 24(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38544003

RESUMO

The modern healthcare landscape is overwhelmed by data derived from heterogeneous IoT data sources and Electronic Health Record (EHR) systems. Based on the advancements in data science and Machine Learning (ML), an improved ability to integrate and process the so-called primary and secondary data fosters the provision of real-time and personalized decisions. In that direction, an innovative mechanism for processing and integrating health-related data is introduced in this article. It describes the details of the mechanism and its internal subcomponents and workflows, together with the results from its utilization, validation, and evaluation in a real-world scenario. It also highlights the potential derived from the integration of primary and secondary data into Holistic Health Records (HHRs) and from the utilization of advanced ML-based and Semantic Web techniques to improve the quality, reliability, and interoperability of the examined data. The viability of this approach is evaluated through heterogeneous healthcare datasets pertaining to personalized risk identification and monitoring related to pancreatic cancer. The key outcomes and innovations of this mechanism are the introduction of the HHRs, which facilitate the capturing of all health determinants in a harmonized way, and a holistic data ingestion mechanism for advanced data processing and analysis.


Assuntos
Registros Eletrônicos de Saúde , Neoplasias Pancreáticas , Humanos , Saúde Holística , Reprodutibilidade dos Testes , Semântica , Aprendizado de Máquina
3.
BMC Bioinformatics ; 24(1): 69, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849882

RESUMO

BACKGROUND: Information provided by high-throughput sequencing platforms allows the collection of content-rich data about biological sequences and their context. Sequence alignment is a bioinformatics approach to identifying regions of similarity in DNA, RNA, or protein sequences. However, there is no consensus about the specific common terminology and representation for sequence alignments. Thus, automatically linking the wide existing knowledge about the sequences with the alignments is challenging. RESULTS: The Sequence Alignment Ontology (SALON) defines a helpful vocabulary for representing and semantically annotating pairwise and multiple sequence alignments. SALON is an OWL 2 ontology that supports automated reasoning for alignments validation and retrieving complementary information from public databases under the Open Linked Data approach. This will reduce the effort needed by scientists to interpret the sequence alignment results. CONCLUSIONS: SALON defines a full range of controlled terminology in the domain of sequence alignments. It can be used as a mediated schema to integrate data from different sources and validate acquired knowledge.


Assuntos
Biologia Computacional , Alinhamento de Sequência , Sequência de Aminoácidos , Consenso , Bases de Dados Factuais
4.
Annu Rev Phys Chem ; 73: 97-116, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-34882434

RESUMO

As the volume of data associated with scientific research has exploded over recent years, the use of digital infrastructures to support this research and the data underpinning it has increased significantly. Physical chemists have been making use of eScience infrastructures since their conception, but in the last five years their usage has increased even more. While these infrastructures have not greatly affected the chemistry itself, they have in some cases had a significant impact on how the research is undertaken. The combination of the human effort of collaboration to create open source software tools and semantic resources, the increased availability of hardware for the laboratories, and the range of data management tools available has made the life of a physical chemist significantly easier. This review considers the different aspects of eScience infrastructures and explores how they have improved the way in which we can conduct physical chemistry research.


Assuntos
Semântica , Software , Físico-Química , Humanos
5.
J Biomed Inform ; 148: 104534, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918622

RESUMO

This work continues along a visionary path of using Semantic Web standards such as RDF and ShEx to make healthcare data easier to integrate for research and leading-edge patient care. The work extends the ability to use ShEx schemas to validate FHIR RDF data, thereby enhancing the semantic web ecosystem for working with FHIR and non-FHIR data using the same ShEx validation framework. It updates FHIR's ShEx schemas to fix outstanding issues and reflect changes in the definition of FHIR RDF. In addition, it experiments with expressing FHIRPath constraints (which are not captured in the XML or JSON schemas) in ShEx schemas. These extended ShEx schemas were incorporated into the FHIR R5 specification and used to successfully validate FHIR R5 examples that are included with the FHIR specification, revealing several errors in the examples.


Assuntos
Ecossistema , Registros Eletrônicos de Saúde , Humanos , Atenção à Saúde
6.
J Appl Clin Med Phys ; 24(10): e14127, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37624227

RESUMO

PURPOSE: Radiation Oncology Learning Health System (RO-LHS) is a promising approach to improve the quality of care by integrating clinical, dosimetry, treatment delivery, research data in real-time. This paper describes a novel set of tools to support the development of a RO-LHS and the current challenges they can address. METHODS: We present a knowledge graph-based approach to map radiotherapy data from clinical databases to an ontology-based data repository using FAIR concepts. This strategy ensures that the data are easily discoverable, accessible, and can be used by other clinical decision support systems. It allows for visualization, presentation, and data analyses of valuable information to identify trends and patterns in patient outcomes. We designed a search engine that utilizes ontology-based keyword searching, synonym-based term matching that leverages the hierarchical nature of ontologies to retrieve patient records based on parent and children classes, connects to the Bioportal database for relevant clinical attributes retrieval. To identify similar patients, a method involving text corpus creation and vector embedding models (Word2Vec, Doc2Vec, GloVe, and FastText) are employed, using cosine similarity and distance metrics. RESULTS: The data pipeline and tool were tested with 1660 patient clinical and dosimetry records resulting in 504 180 RDF (Resource Description Framework) tuples and visualized data relationships using graph-based representations. Patient similarity analysis using embedding models showed that the Word2Vec model had the highest mean cosine similarity, while the GloVe model exhibited more compact embeddings with lower Euclidean and Manhattan distances. CONCLUSIONS: The framework and tools described support the development of a RO-LHS. By integrating diverse data sources and facilitating data discovery and analysis, they contribute to continuous learning and improvement in patient care. The tools enhance the quality of care by enabling the identification of cohorts, clinical decision support, and the development of clinical studies and machine learning programs in radiation oncology.


Assuntos
Ontologias Biológicas , Sistema de Aprendizagem em Saúde , Radioterapia (Especialidade) , Criança , Humanos , Bases de Conhecimento
7.
Knowl Inf Syst ; 65(5): 1989-2016, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36643405

RESUMO

In the last decade, a large number of knowledge graph (KG) completion approaches were proposed. Albeit effective, these efforts are disjoint, and their collective strengths and weaknesses in effective KG completion have not been studied in the literature. We extend Plumber, a framework that brings together the research community's disjoint efforts on KG completion. We include more components into the architecture of Plumber  to comprise 40 reusable components for various KG completion subtasks, such as coreference resolution, entity linking, and relation extraction. Using these components, Plumber dynamically generates suitable knowledge extraction pipelines and offers overall 432 distinct pipelines. We study the optimization problem of choosing optimal pipelines based on input sentences. To do so, we train a transformer-based classification model that extracts contextual embeddings from the input and finds an appropriate pipeline. We study the efficacy of Plumber for extracting the KG triples using standard datasets over three KGs: DBpedia, Wikidata, and Open Research Knowledge Graph. Our results demonstrate the effectiveness of Plumber in dynamically generating KG completion pipelines, outperforming all baselines agnostic of the underlying KG. Furthermore, we provide an analysis of collective failure cases, study the similarities and synergies among integrated components and discuss their limitations.

8.
Educ Inf Technol (Dordr) ; : 1-50, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37361737

RESUMO

Wikidata is a free, multilingual, open knowledge-base that stores structured, linked data. It has grown rapidly and as of December 2022 contains over 100 million items and millions of statements, making it the largest semantic knowledge-base in existence. Changing the interaction between people and knowledge, Wikidata offers various learning opportunities, leading to new applications in sciences, technology and cultures. These learning opportunities stem in part from the ability to query this data and ask questions that were difficult to answer in the past. They also stem from the ability to visualize query results, for example on a timeline or a map, which, in turn, helps users make sense of the data and draw additional insights from it. Research on the semantic web as learning platform and on Wikidata in the context of education is almost non-existent, and we are just beginning to understand how to utilize it for educational purposes. This research investigates the Semantic Web as a learning platform, focusing on Wikidata as a prime example. To that end, a methodology of multiple case studies was adopted, demonstrating Wikidata uses by early adopters. Seven semi-structured, in-depth interviews were conducted, out of which 10 distinct projects were extracted. A thematic analysis approach was deployed, revealing eight main uses, as well as benefits and challenges to engaging with the platform. The results shed light on Wikidata's potential as a lifelong learning process, enabling opportunities for improved Data Literacy and a worldwide social impact.

9.
BMC Bioinformatics ; 23(Suppl 6): 281, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35836130

RESUMO

BACKGROUND: Model card reports aim to provide informative and transparent description of machine learning models to stakeholders. This report document is of interest to the National Institutes of Health's Bridge2AI initiative to address the FAIR challenges with artificial intelligence-based machine learning models for biomedical research. We present our early undertaking in developing an ontology for capturing the conceptual-level information embedded in model card reports. RESULTS: Sourcing from existing ontologies and developing the core framework, we generated the Model Card Report Ontology. Our development efforts yielded an OWL2-based artifact that represents and formalizes model card report information. The current release of this ontology utilizes standard concepts and properties from OBO Foundry ontologies. Also, the software reasoner indicated no logical inconsistencies with the ontology. With sample model cards of machine learning models for bioinformatics research (HIV social networks and adverse outcome prediction for stent implantation), we showed the coverage and usefulness of our model in transforming static model card reports to a computable format for machine-based processing. CONCLUSIONS: The benefit of our work is that it utilizes expansive and standard terminologies and scientific rigor promoted by biomedical ontologists, as well as, generating an avenue to make model cards machine-readable using semantic web technology. Our future goal is to assess the veracity of our model and later expand the model to include additional concepts to address terminological gaps. We discuss tools and software that will utilize our ontology for potential application services.


Assuntos
Ontologias Biológicas , Semântica , Inteligência Artificial , Biologia Computacional , Aprendizado de Máquina , Software
10.
BMC Bioinformatics ; 23(1): 69, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35164667

RESUMO

BACKGROUND: Gene ontology (GO) enrichment analysis is frequently undertaken during exploration of various -omics data sets. Despite the wide array of tools available to biologists to perform this analysis, meaningful visualisation of the overrepresented GO in a manner which is easy to interpret is still lacking. RESULTS: Monash Gene Ontology (MonaGO) is a novel web-based visualisation system that provides an intuitive, interactive and responsive interface for performing GO enrichment analysis and visualising the results. MonaGO supports gene lists as well as GO terms as inputs. Visualisation results can be exported as high-resolution images or restored in new sessions, allowing reproducibility of the analysis. An extensive comparison between MonaGO and 11 state-of-the-art GO enrichment visualisation tools based on 9 features revealed that MonaGO is a unique platform that simultaneously allows interactive visualisation within one single output page, directly accessible through a web browser with customisable display options. CONCLUSION: MonaGO combines dynamic clustering and interactive visualisation as well as customisation options to assist biologists in obtaining meaningful representation of overrepresented GO terms, producing simplified outputs in an unbiased manner. MonaGO will facilitate the interpretation of GO analysis and will assist the biologists into the representation of the results.


Assuntos
Software , Análise por Conglomerados , Ontologia Genética , Probabilidade , Reprodutibilidade dos Testes
11.
Plant Cell Physiol ; 63(3): 433-440, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-34918130

RESUMO

The advancement of metabolomics in terms of techniques for measuring small molecules has enabled the rapid detection and quantification of numerous cellular metabolites. Metabolomic data provide new opportunities to gain a deeper understanding of plant metabolism that can improve the health of both plants and humans that consume them. Although major public repositories for general metabolomic data have been established, the community still has shortcomings related to data sharing, especially in terms of data reanalysis, reusability and reproducibility. To address these issues, we developed the RIKEN Plant Metabolome MetaDatabase (RIKEN PMM, http://metabobank.riken.jp/pmm/db/plantMetabolomics), which stores mass spectrometry-based (e.g. gas chromatography-MS-based) metabolite profiling data of plants together with their detailed, structured experimental metadata, including sampling and experimental procedures. Our metadata are described as Linked Open Data based on the Resource Description Framework using standardized and controlled vocabularies, such as the Metabolomics Standards Initiative Ontology, which are to be integrated with various life and biomedical science data using the World Wide Web. RIKEN PMM implements intuitive and interactive operations for plant metabolome data, including raw data (netCDF format), mass spectra (NIST MSP format) and metabolite annotations. The feature is suitable not only for biologists who are interested in metabolomic phenotypes, but also for researchers who would like to investigate life science in general through plant metabolomic approaches.


Assuntos
Metaboloma , Metabolômica , Bases de Dados Factuais , Cromatografia Gasosa-Espectrometria de Massas , Metabolômica/métodos , Plantas/metabolismo , Reprodutibilidade dos Testes
12.
J Biomed Inform ; 134: 104201, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36089199

RESUMO

BACKGROUND: Knowledge graphs (KGs) play a key role to enable explainable artificial intelligence (AI) applications in healthcare. Constructing clinical knowledge graphs (CKGs) against heterogeneous electronic health records (EHRs) has been desired by the research and healthcare AI communities. From the standardization perspective, community-based standards such as the Fast Healthcare Interoperability Resources (FHIR) and the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) are increasingly used to represent and standardize EHR data for clinical data analytics, however, the potential of such a standard on building CKG has not been well investigated. OBJECTIVE: To develop and evaluate methods and tools that expose the OMOP CDM-based clinical data repositories into virtual clinical KGs that are compliant with FHIR Resource Description Framework (RDF) specification. METHODS: We developed a system called FHIR-Ontop-OMOP to generate virtual clinical KGs from the OMOP relational databases. We leveraged an OMOP CDM-based Medical Information Mart for Intensive Care (MIMIC-III) data repository to evaluate the FHIR-Ontop-OMOP system in terms of the faithfulness of data transformation and the conformance of the generated CKGs to the FHIR RDF specification. RESULTS: A beta version of the system has been released. A total of more than 100 data element mappings from 11 OMOP CDM clinical data, health system and vocabulary tables were implemented in the system, covering 11 FHIR resources. The generated virtual CKG from MIMIC-III contains 46,520 instances of FHIR Patient, 716,595 instances of Condition, 1,063,525 instances of Procedure, 24,934,751 instances of MedicationStatement, 365,181,104 instances of Observations, and 4,779,672 instances of CodeableConcept. Patient counts identified by five pairs of SQL (over the MIMIC database) and SPARQL (over the virtual CKG) queries were identical, ensuring the faithfulness of the data transformation. Generated CKG in RDF triples for 100 patients were fully conformant with the FHIR RDF specification. CONCLUSION: The FHIR-Ontop-OMOP system can expose OMOP database as a FHIR-compliant RDF graph. It provides a meaningful use case demonstrating the potentials that can be enabled by the interoperability between FHIR and OMOP CDM. Generated clinical KGs in FHIR RDF provide a semantic foundation to enable explainable AI applications in healthcare.


Assuntos
Inteligência Artificial , Reconhecimento Automatizado de Padrão , Data Warehousing , Atenção à Saúde , Registros Eletrônicos de Saúde , Humanos
13.
BMC Med Inform Decis Mak ; 22(1): 33, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-35123470

RESUMO

BACKGROUND: Semantic similarity is a valuable tool for analysis in biomedicine. When applied to phenotype profiles derived from clinical text, they have the capacity to enable and enhance 'patient-like me' analyses, automated coding, differential diagnosis, and outcome prediction. While a large body of work exists exploring the use of semantic similarity for multiple tasks, including protein interaction prediction, and rare disease differential diagnosis, there is less work exploring comparison of patient phenotype profiles for clinical tasks. Moreover, there are no experimental explorations of optimal parameters or better methods in the area. METHODS: We develop a platform for reproducible benchmarking and comparison of experimental conditions for patient phentoype similarity. Using the platform, we evaluate the task of ranking shared primary diagnosis from uncurated phenotype profiles derived from all text narrative associated with admissions in the medical information mart for intensive care (MIMIC-III). RESULTS: 300 semantic similarity configurations were evaluated, as well as one embedding-based approach. On average, measures that did not make use of an external information content measure performed slightly better, however the best-performing configurations when measured by area under receiver operating characteristic curve and Top Ten Accuracy used term-specificity and annotation-frequency measures. CONCLUSION: We identified and interpreted the performance of a large number of semantic similarity configurations for the task of classifying diagnosis from text-derived phenotype profiles in one setting. We also provided a basis for further research on other settings and related tasks in the area.


Assuntos
Doenças Raras , Semântica , Humanos , Fenótipo , Curva ROC
14.
Sensors (Basel) ; 22(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35161807

RESUMO

Combinatorial fusion algorithm (CFA) is a machine learning and artificial intelligence (ML/AI) framework for combining multiple scoring systems using the rank-score characteristic (RSC) function and cognitive diversity (CD). When measuring the relevance of a publication or document with respect to the 17 Sustainable Development Goals (SDGs) of the United Nations, a classification scheme is used. However, this classification process is a challenging task due to the overlapping goals and contextual differences of those diverse SDGs. In this paper, we use CFA to combine a topic model classifier (Model A) and a semantic link classifier (Model B) to improve the precision of the classification process. We characterize and analyze each of the individual models using the RSC function and CD between Models A and B. We evaluate the classification results from combining the models using a score combination and a rank combination, when compared to the results obtained from human experts. In summary, we demonstrate that the combination of Models A and B can improve classification precision only if these individual models perform well and are diverse.


Assuntos
Inteligência Artificial , Desenvolvimento Sustentável , Saúde Global , Humanos , Aprendizado de Máquina , Nações Unidas
15.
Artif Intell Law (Dordr) ; 30(2): 147-161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35132296

RESUMO

This paper reflects my address as IAAIL president at ICAIL 2021. It is aimed to give my vision of the status of the AI and Law discipline, and possible future perspectives. In this respect, I go through different seasons of AI research (of AI and Law in particular): from the Winter of AI, namely a period of mistrust in AI (throughout the eighties until early nineties), to the Summer of AI, namely the current period of great interest in the discipline with lots of expectations. One of the results of the first decades of AI research is that "intelligence requires knowledge". Since its inception the Web proved to be an extraordinary vehicle for knowledge creation and sharing, therefore it's not a surprise if the evolution of AI has followed the evolution of the Web. I argue that a bottom-up approach, in terms of machine/deep learning and NLP to extract knowledge from raw data, combined with a top-down approach, in terms of legal knowledge representation and models for legal reasoning and argumentation, may represent a promotion for the development of the Semantic Web, as well as of AI systems. Finally, I provide my insight in the potential of AI development, which takes into account technological opportunities and theoretical limits.

16.
Glycobiology ; 31(7): 741-750, 2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-33677548

RESUMO

Recent years have seen great advances in the development of glycoproteomics protocols and methods resulting in a sustainable increase in the reporting proteins, their attached glycans and glycosylation sites. However, only very few of these reports find their way into databases or data repositories. One of the major reasons is the absence of digital standard to represent glycoproteins and the challenging annotations with glycans. Depending on the experimental method, such a standard must be able to represent glycans as complete structures or as compositions, store not just single glycans but also represent glycoforms on a specific glycosylation side, deal with partially missing site information if no site mapping was performed, and store abundances or ratios of glycans within a glycoform of a specific site. To support the above, we have developed the GlycoConjugate Ontology (GlycoCoO) as a standard semantic framework to describe and represent glycoproteomics data. GlycoCoO can be used to represent glycoproteomics data in triplestores and can serve as a basis for data exchange formats. The ontology, database providers and supporting documentation are available online (https://github.com/glycoinfo/GlycoCoO).


Assuntos
Glicoproteínas , Polissacarídeos , Glicoproteínas/metabolismo , Glicosilação , Polissacarídeos/metabolismo
17.
Brief Bioinform ; 20(4): 1477-1491, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-29579141

RESUMO

MOTIVATION: Searching for precise terms and terminological definitions in the biomedical data space is problematic, as researchers find overlapping, closely related and even equivalent concepts in a single or multiple ontologies. Search engines that retrieve ontological resources often suggest an extensive list of search results for a given input term, which leads to the tedious task of selecting the best-fit ontological resource (class or property) for the input term and reduces user confidence in the retrieval engines. A systematic evaluation of these search engines is necessary to understand their strengths and weaknesses in different search requirements. RESULT: We have implemented seven comparable Information Retrieval ranking algorithms to search through ontologies and compared them against four search engines for ontologies. Free-text queries have been performed, the outcomes have been judged by experts and the ranking algorithms and search engines have been evaluated against the expert-based ground truth (GT). In addition, we propose a probabilistic GT that is developed automatically to provide deeper insights and confidence to the expert-based GT as well as evaluating a broader range of search queries. CONCLUSION: The main outcome of this work is the identification of key search factors for biomedical ontologies together with search requirements and a set of recommendations that will help biomedical experts and ontology engineers to select the best-suited retrieval mechanism in their search scenarios. We expect that this evaluation will allow researchers and practitioners to apply the current search techniques more reliably and that it will help them to select the right solution for their daily work. AVAILABILITY: The source code (of seven ranking algorithms), ground truths and experimental results are available at https://github.com/danielapoliveira/bioont-search-benchmark.


Assuntos
Ontologias Biológicas/estatística & dados numéricos , Algoritmos , Biologia Computacional , Sistemas Inteligentes , Humanos , Armazenamento e Recuperação da Informação , Modelos Estatísticos , Ferramenta de Busca
18.
J Biomed Inform ; 117: 103755, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33781919

RESUMO

Resource Description Framework (RDF) is one of the three standardized data formats in the HL7 Fast Healthcare Interoperability Resources (FHIR) specification and is being used by healthcare and research organizations to join FHIR and non-FHIR data. However, RDF previously had not been integrated into popular FHIR tooling packages, hindering the adoption of FHIR RDF in the semantic web and other communities. The objective of the study is to develop and evaluate a Java based FHIR RDF data transformation toolkit to facilitate the use and validation of FHIR RDF data. We extended the popular HAPI FHIR tooling to add RDF support, thus enabling FHIR data in XML or JSON to be transformed to or from RDF. We also developed an RDF Shape Expression (ShEx)-based validation framework to verify conformance of FHIR RDF data to the ShEx schemas provided in the FHIR specification for FHIR versions R4 and R5. The effectiveness of ShEx validation was demonstrated by testing it against 2693 FHIR R4 examples and 2197 FHIR R5 examples that are included in the FHIR specification. A total of 5 types of errors including missing properties, unknown element, missing resource Type, invalid attribute value, and unknown resource name in the R5 examples were revealed, demonstrating the value of the ShEx in the quality assurance of the evolving R5 development. This FHIR RDF data transformation and validation framework, based on HAPI and ShEx, is robust and ready for community use in adopting FHIR RDF, improving FHIR data quality, and evolving the FHIR specification.


Assuntos
Atenção à Saúde , Registros Eletrônicos de Saúde
19.
BMC Med Inform Decis Mak ; 21(Suppl 7): 275, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753474

RESUMO

BACKGROUND: Fast food with its abundance and availability to consumers may have health consequences due to the high calorie intake which is a major contributor to life threatening diseases. Providing nutritional information has some impact on consumer decisions to self regulate and promote healthier diets, and thus, government regulations have mandated the publishing of nutritional content to assist consumers, including for fast food. However, fast food nutritional information is fragmented, and we realize a benefit to collate nutritional data to synthesize knowledge for individuals. METHODS: We developed the ontology of fast food facts as an opportunity to standardize knowledge of fast food and link nutritional data that could be analyzed and aggregated for the information needs of consumers and experts. The ontology is based on metadata from 21 fast food establishment nutritional resources and authored in OWL2 using Protégé. RESULTS: Three evaluators reviewed the logical structure of the ontology through natural language translation of the axioms. While there is majority agreement (76.1% pairwise agreement) of the veracity of the ontology, we identified 103 out of the 430 statements that were erroneous. We revised the ontology and publicably published the initial release of the ontology. The ontology has 413 classes, 21 object properties, 13 data properties, and 494 logical axioms. CONCLUSION: With the initial release of the ontology of fast food facts we discuss some future visions with the continued evolution of this knowledge base, and the challenges we plan to address, like the management and publication of voluminous amount of semantically linked fast food nutritional data.


Assuntos
Formação de Conceito , Web Semântica , Fast Foods , Humanos , Idioma , Metadados
20.
Sensors (Basel) ; 21(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34450877

RESUMO

Indoor navigation systems incorporating augmented reality allow users to locate places within buildings and acquire more knowledge about their environment. However, although diverse works have been introduced with varied technologies, infrastructure, and functionalities, a standardization of the procedures for elaborating these systems has not been reached. Moreover, while systems usually handle contextual information of places in proprietary formats, a platform-independent model is desirable, which would encourage its access, updating, and management. This paper proposes a methodology for developing indoor navigation systems based on the integration of Augmented Reality and Semantic Web technologies to present navigation instructions and contextual information about the environment. It comprises four modules to define a spatial model, data management (supported by an ontology), positioning and navigation, and content visualization. A mobile application system was developed for testing the proposal in academic environments, modeling the structure, routes, and places of two buildings from independent institutions. The experiments cover distinct navigation tasks by participants in both scenarios, recording data such as navigation time, position tracking, system functionality, feedback (answering a survey), and a navigation comparison when the system is not used. The results demonstrate the system's feasibility, where the participants show a positive interest in its functionalities.


Assuntos
Realidade Aumentada , Computadores de Mão , Gerenciamento de Dados , Humanos , Web Semântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA