Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 477
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 181(2): 424-441.e21, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32234521

RESUMO

KRAS mutant pancreatic ductal adenocarcinoma (PDAC) is characterized by a desmoplastic response that promotes hypovascularity, immunosuppression, and resistance to chemo- and immunotherapies. We show that a combination of MEK and CDK4/6 inhibitors that target KRAS-directed oncogenic signaling can suppress PDAC proliferation through induction of retinoblastoma (RB) protein-mediated senescence. In preclinical mouse models of PDAC, this senescence-inducing therapy produces a senescence-associated secretory phenotype (SASP) that includes pro-angiogenic factors that promote tumor vascularization, which in turn enhances drug delivery and efficacy of cytotoxic gemcitabine chemotherapy. In addition, SASP-mediated endothelial cell activation stimulates the accumulation of CD8+ T cells into otherwise immunologically "cold" tumors, sensitizing tumors to PD-1 checkpoint blockade. Therefore, in PDAC models, therapy-induced senescence can establish emergent susceptibilities to otherwise ineffective chemo- and immunotherapies through SASP-dependent effects on the tumor vasculature and immune system.


Assuntos
Envelhecimento/fisiologia , Carcinoma Ductal Pancreático/patologia , Remodelação Vascular/fisiologia , Animais , Linfócitos T CD8-Positivos/imunologia , Carcinoma Ductal Pancreático/microbiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Genes ras/genética , Humanos , Imunoterapia/métodos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Neoplasias Pancreáticas/patologia , Proteína do Retinoblastoma/imunologia , Transdução de Sinais/genética , Microambiente Tumoral , Remodelação Vascular/genética
2.
EMBO J ; 43(14): 2862-2877, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38858602

RESUMO

The RAS pathway is among the most frequently activated signaling nodes in cancer. However, the mechanisms that alter RAS activity in human pathologies are not entirely understood. The most prevalent post-translational modification within the GTPase core domain of NRAS and KRAS is ubiquitination at lysine 128 (K128), which is significantly decreased in cancer samples compared to normal tissue. Here, we found that K128 ubiquitination creates an additional binding interface for RAS GTPase-activating proteins (GAPs), NF1 and RASA1, thus increasing RAS binding to GAP proteins and promoting GAP-mediated GTP hydrolysis. Stimulation of cultured cancer cells with growth factors or cytokines transiently induces K128 ubiquitination and restricts the extent of wild-type RAS activation in a GAP-dependent manner. In KRAS mutant cells, K128 ubiquitination limits tumor growth by restricting RAL/ TBK1 signaling and negatively regulating the autocrine circuit induced by mutant KRAS. Reduction of K128 ubiquitination activates both wild-type and mutant RAS signaling and elicits a senescence-associated secretory phenotype, promoting RAS-driven pancreatic tumorigenesis.


Assuntos
Ligação Proteica , Proteínas Proto-Oncogênicas p21(ras) , Ubiquitinação , Humanos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Animais , Proteína p120 Ativadora de GTPase/metabolismo , Proteína p120 Ativadora de GTPase/genética , Camundongos , Linhagem Celular Tumoral , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética , Lisina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas ras/metabolismo , Proteínas ras/genética , Neurofibromina 1
3.
Trends Immunol ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39306559

RESUMO

During mammalian aging, senescent cells accumulate in the body. Recent evidence suggests that senescent cells potentially contribute to age-related neurodegenerative diseases in the central nervous system (CNS), including tauopathies such as Alzheimer's disease (AD). Senescent cells undergo irreversible cell cycle arrest and release an inflammatory 'senescence-associated secretory profile' (SASP), which can exert devastating effects on surrounding cells. Senescent markers and SASP factors have been detected in multiple brain cells in tauopathies, including microglia, astrocytes, and perhaps even post-mitotic neurons, possibly contributing to the initiation as well as progression of these diseases. Here, we discuss the implications of presenting a senescent phenotype in tauopathies and highlight a potential role for the NOD-like receptor protein 3 (NLRP3) inflammasome as a newfound mechanism implicated in senescence and SASP formation.

4.
Proc Natl Acad Sci U S A ; 121(18): e2311028121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657052

RESUMO

Increased cellular senescence burden contributes in part to age-related organ dysfunction and pathologies. In our study, using mouse models of natural aging, we observed structural and functional decline in the aged retina, which was accompanied by the accumulation of senescent cells and senescence-associated secretory phenotype factors. We further validated the senolytic and senomorphic properties of procyanidin C1 (PCC1) both in vitro and in vivo, the long-term treatment of which ameliorated age-related retinal impairment. Through high-throughput single-cell RNA sequencing (scRNA-seq), we comprehensively characterized the retinal landscape after PCC1 administration and deciphered the molecular basis underlying the senescence burden increment and elimination. By exploring the scRNA-seq database of age-related retinal disorders, we revealed the role of cellular senescence and the therapeutic potential of PCC1 in these pathologies. Overall, these results indicate the therapeutic effects of PCC1 on the aged retina and its potential use for treating age-related retinal disorders.


Assuntos
Envelhecimento , Catequina , Senescência Celular , Proantocianidinas , Retina , Animais , Retina/metabolismo , Retina/efeitos dos fármacos , Camundongos , Proantocianidinas/farmacologia , Proantocianidinas/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Senescência Celular/efeitos dos fármacos , Catequina/farmacologia , Catequina/metabolismo , Catequina/química , Biflavonoides/farmacologia , Senoterapia/farmacologia , Camundongos Endogâmicos C57BL , Humanos , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia
5.
Genes Dev ; 32(13-14): 909-914, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29967290

RESUMO

The senescence-associated secretory phenotype (SASP) is a major trait of senescent cells, but the molecular regulators of SASP factor secretion are poorly understood. Mass spectrometry analysis revealed that secretory carrier membrane protein 4 (SCAMP4) levels were strikingly elevated on the surface of senescent cells compared with proliferating cells. Interestingly, silencing SCAMP4 in senescent fibroblasts reduced the secretion of SASP factors, including interleukin 6 (IL6), IL8, growth differentiation factor 15 (GDF-15), C-X-C motif chemokine ligand 1 (CXCL1), and IL7, while, conversely, SCAMP4 overexpression in proliferating fibroblasts increased SASP factor secretion. Our results indicate that SCAMP4 accumulates on the surface of senescent cells, promotes SASP factor secretion, and critically enhances the SASP phenotype.


Assuntos
Proteínas de Transporte/metabolismo , Senescência Celular/genética , Fibroblastos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte/genética , Linhagem Celular , Proliferação de Células/fisiologia , Fibroblastos/citologia , Inativação Gênica , Humanos , Proteínas de Membrana/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo
6.
Semin Cancer Biol ; 101: 58-73, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38810814

RESUMO

Cancer is daunting pathology with remarkable breadth and scope, spanning genetics, epigenetics, proteomics, metalobomics and cell biology. Cellular senescence represents a stress-induced and essentially irreversible cell fate associated with aging and various age-related diseases, including malignancies. Senescent cells are characterized of morphologic alterations and metabolic reprogramming, and develop a highly active secretome termed as the senescence-associated secretory phenotype (SASP). Since the first discovery, senescence has been understood as an important barrier to tumor progression, as its induction in pre-neoplastic cells limits carcinogenesis. Paradoxically, senescent cells arising in the tumor microenvironment (TME) contribute to tumor progression, including augmented therapeutic resistance. In this article, we define typical forms of senescent cells commonly observed within the TME and how senescent cells functionally remodel their surrounding niche, affect immune responses and promote cancer evolution. Furthermore, we highlight the recently emerging pipelines of senotherapies particularly senolytics, which can selectively deplete senescent cells from affected organs in vivo and impede tumor progression by restoring therapeutic responses and securing anticancer efficacies. Together, co-targeting cancer cells and their normal but senescent counterparts in the TME holds the potential to achieve increased therapeutic benefits and restrained disease relapse in future clinical oncology.


Assuntos
Senescência Celular , Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Senescência Celular/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Fenótipo Secretor Associado à Senescência , Senoterapia/farmacologia
7.
Circulation ; 150(5): 374-389, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38991046

RESUMO

BACKGROUND: The heart comprises many types of cells such as cardiomyocytes, endothelial cells (ECs), fibroblasts, smooth muscle cells, pericytes, and blood cells. Every cell type responds to various stressors (eg, hemodynamic overload and ischemia) and changes its properties and interrelationships among cells. To date, heart failure research has focused mainly on cardiomyocytes; however, other types of cells and their cell-to-cell interactions might also be important in the pathogenesis of heart failure. METHODS: Pressure overload was imposed on mice by transverse aortic constriction and the vascular structure of the heart was examined using a tissue transparency technique. Functional and molecular analyses including single-cell RNA sequencing were performed on the hearts of wild-type mice and EC-specific gene knockout mice. Metabolites in heart tissue were measured by capillary electrophoresis-time of flight-mass spectrometry system. The vaccine was prepared by conjugating the synthesized epitope peptides with keyhole limpet hemocyanin and administered to mice with aluminum hydroxide as an adjuvant. Tissue samples from heart failure patients were used for single-nucleus RNA sequencing to examine gene expression in ECs and perform pathway analysis in cardiomyocytes. RESULTS: Pressure overload induced the development of intricately entwined blood vessels in murine hearts, leading to the accumulation of replication stress and DNA damage in cardiac ECs. Inhibition of cell proliferation by a cyclin-dependent kinase inhibitor reduced DNA damage in ECs and ameliorated transverse aortic constriction-induced cardiac dysfunction. Single-cell RNA sequencing analysis revealed upregulation of Igfbp7 (insulin-like growth factor-binding protein 7) expression in the senescent ECs and downregulation of insulin signaling and oxidative phosphorylation in cardiomyocytes of murine and human failing hearts. Overexpression of Igfbp7 in the murine heart using AAV9 (adeno-associated virus serotype 9) exacerbated cardiac dysfunction, while EC-specific deletion of Igfbp7 and the vaccine targeting Igfbp7 ameliorated cardiac dysfunction with increased oxidative phosphorylation in cardiomyocytes under pressure overload. CONCLUSIONS: Igfbp7 produced by senescent ECs causes cardiac dysfunction and vaccine therapy targeting Igfbp7 may be useful to prevent the development of heart failure.


Assuntos
Insuficiência Cardíaca , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina , Camundongos Knockout , Animais , Insuficiência Cardíaca/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Camundongos , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Camundongos Endogâmicos C57BL , Masculino , Modelos Animais de Doenças
8.
Circ Res ; 133(1): 25-44, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37264926

RESUMO

BACKGROUND: ERK5 (extracellular signal-regulated kinase 5) is a dual kinase transcription factor containing an N-terminal kinase domain and a C-terminal transcriptional activation domain. Many ERK5 kinase inhibitors have been developed and tested to treat cancer and inflammatory diseases. However, recent data have raised questions about the role of the catalytic activity of ERK5 in proliferation and inflammation. We aimed to investigate how ERK5 reprograms myeloid cells to the proinflammatory senescent phenotype, subsequently leading to atherosclerosis. METHODS: A ERK5 S496A (dephosphorylation mimic) knock in (KI) mouse model was generated using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9), and atherosclerosis was characterized by hypercholesterolemia induction. The plaque phenotyping in homozygous ERK5 S496A KI and wild type (WT) mice was studied using imaging mass cytometry. Bone marrow-derived macrophages were isolated from hypercholesterolemic mice and characterized using RNA sequencing and functional in vitro approaches, including senescence, mitochondria reactive oxygen species, and inflammation assays, as well as by metabolic extracellular flux analysis. RESULTS: We show that atherosclerosis was inhibited in ERK5 S496A KI mice. Furthermore, ERK5 S496 phosphorylation mediates both senescence-associated secretory phenotype and senescence-associated stemness by upregulating AHR (aryl hydrocarbon receptor) in plaque and bone marrow-derived macrophages isolated from hypercholesterolemic mice. We also discovered that ERK5 S496 phosphorylation could induce NRF2 (NFE2-related factor 2) SUMOylation at a novel K518 site to inhibit NRF2 transcriptional activity without altering ERK5 catalytic activity and mediates oxidized LDL (low-density lipoprotein)-induced senescence-associated secretory phenotype. Specific ERK5 kinase inhibitors (AX15836 and XMD8-92) also inhibited ERK5 S496 phosphorylation, suggesting the involvement of ERK5 S496 phosphorylation in the anti-inflammatory effects of these ERK5 kinase inhibitors. CONCLUSIONS: We discovered a novel mechanism by which the macrophage ERK5-NRF2 axis develops a unique senescence-associated secretory phenotype/stemness phenotype by upregulating AHR to engender atherogenesis. The finding of senescence-associated stemness phenotype provides a molecular explanation to resolve the paradox of senescence in proliferative plaque by permitting myeloid cells to escape the senescence-induced cell cycle arrest during atherosclerosis formation.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Aterosclerose/metabolismo , Inflamação , Proteína Quinase 7 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
9.
J Cell Mol Med ; 28(16): e70017, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39159071

RESUMO

Acute myeloid leukaemia (AML) is a common and highly aggressive haematological malignancy in adults. Senescence-associated secretory phenotype (SASP) plays important roles in tumorigenesis and progression of tumour. However, the prognostic value of SASP in patients with AML has not been clarified. The present study aims to explore the prognostic value of SASP and develop a prognostic risk signature for AML. The RNA-sequencing data was collected from the TCGA, GTEx and TARGET databases. Subsequently, differentially expressed gene analysis, univariate Cox regression and LASSO regression were applied to identified prognostic SASP-related genes and construct a prognostic risk-scoring model. The risk score of each patient were calculated and patients were divided into high- or low-risk groups by the median risk score. This novel prognostic signature included 11 genes: G6PD, CDK4, RPS6KA1, UBC, H2BC12, KIR2DL4, HSF1, IFIT3, PIM1, RUNX3 and TRIM21. The patients with AML in the high-risk group had shorter OS, demonstrating that the risk score acted as a prognostic predictor, which was validated in the TAGET-AML dataset. Univariate and multivariate analysis revealed the risk score was an independent prognostic factor in patients with AML. Furthermore, the present study revealed that the risk score was associated with immune landscape, immune checkpoint gene expression and chemotherapeutic efficacy. In the present study, we constructed and validated a unique SASP-related prognostic model to assess therapeutic effect and prognosis in patients with AML, which might contribute to understanding the role of SASP in AML and guiding the treatment for AML.


Assuntos
Biomarcadores Tumorais , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/mortalidade , Prognóstico , Feminino , Biomarcadores Tumorais/genética , Masculino , Perfilação da Expressão Gênica , Pessoa de Meia-Idade , Regulação Leucêmica da Expressão Gênica , Transcriptoma/genética , Adulto , Fatores de Risco
10.
Am J Physiol Endocrinol Metab ; 327(4): E552-E562, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39196800

RESUMO

Type 1 diabetes (T1D) is a chronic metabolic disease resulting from an autoimmune destruction of pancreatic beta cells. Beta cells activate various stress responses during the development of T1D, including senescence, which involves cell cycle arrest, prosurvival signaling, and a proinflammatory secretome termed the senescence-associated secretory phenotype (SASP). We previously identified growth and differentiation factor 15 (GDF15) as a major SASP factor in human islets and human EndoC-ßH5 beta cells in a model of DNA damage-mediated senescence that recapitulates features of senescent beta cells in T1D. Soluble GDF15 has been shown to exert protective effects on human and mouse beta cells during various forms of stress relevant to T1D; therefore, we hypothesized that secreted GDF15 may play a prosurvival role during DNA damage-mediated senescence in human beta cells. We found that elevated GDF15 secretion was associated with endogenous senescent beta cells in an islet preparation from a T1D donor, supporting the validity of our DNA damage model. Using antibody-based neutralization, we found that secreted endogenous GDF15 was not required for senescent human islet or EndoC cell viability. Rather, neutralization of GDF15 led to reduced expression of specific senescence-associated genes, including GDF15 itself and the prosurvival gene BCL2-like protein 1 (BCL2L1). Taken together, these data suggest that SASP factor GDF15 is not required to sustain senescent human islet viability, but it is required to maintain senescence-associated transcriptional responses.NEW & NOTEWORTHY Beta cell senescence is an emerging contributor to the pathogenesis of type 1 diabetes, but candidate therapeutic targets have not been identified in human beta cells. In this study, we examined the role of a secreted factor, GDF15, and found that although it is not required to maintain viability during senescence, it is required to fine-tune gene expression programs involved in the senescence response during DNA damage in human beta cells.


Assuntos
Senescência Celular , Dano ao DNA , Diabetes Mellitus Tipo 1 , Fator 15 de Diferenciação de Crescimento , Células Secretoras de Insulina , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Humanos , Células Secretoras de Insulina/metabolismo , Senescência Celular/genética , Senescência Celular/fisiologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/genética , Fenótipo Secretor Associado à Senescência , Células Cultivadas , Sobrevivência Celular , Transcrição Gênica
11.
Annu Rev Pharmacol Toxicol ; 61: 779-803, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-32997601

RESUMO

Senescence is the consequence of a signaling mechanism activated in stressed cells to prevent proliferation of cells with damage. Senescent cells (Sncs) often develop a senescence-associated secretory phenotype to prompt immune clearance, which drives chronic sterile inflammation and plays a causal role in aging and age-related diseases. Sncs accumulate with age and at anatomical sites of disease. Thus, they are regarded as a logical therapeutic target. Senotherapeutics are a new class of drugs that selectively kill Sncs (senolytics) or suppress their disease-causing phenotypes (senomorphics/senostatics). Since 2015, several senolytics went from identification to clinical trial. Preclinical data indicate that senolytics alleviate disease in numerous organs, improve physical function and resilience, and suppress all causes of mortality, even if administered to the aged. Here, we review the evidence that Sncs drive aging and disease, the approaches to identify and optimize senotherapeutics, and the current status of preclinical and clinical testing of senolytics.


Assuntos
Senescência Celular , Preparações Farmacêuticas , Idoso , Envelhecimento , Humanos , Fenótipo , Transdução de Sinais
12.
Am J Transplant ; 24(3): 391-405, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37913871

RESUMO

In clinical organ transplantation, donor and recipient ages may differ substantially. Old donor organs accumulate senescent cells that have the capacity to induce senescence in naïve cells. We hypothesized that the engraftment of old organs may induce senescence in younger recipients, promoting age-related pathologies. When performing isogeneic cardiac transplants between age-mismatched C57BL/6 old donor (18 months) mice and young and middle-aged C57BL/6 (3- or 12- month-old) recipients , we observed augmented frequencies of senescent cells in draining lymph nodes, adipose tissue, livers, and hindlimb muscles 30 days after transplantation. These observations went along with compromised physical performance and impaired spatial learning and memory abilities. Systemic levels of the senescence-associated secretory phenotype factors, including mitochondrial DNA (mt-DNA), were elevated in recipients. Of mechanistic relevance, injections of mt-DNA phenocopied effects of age-mismatched organ transplantation on accelerating aging. Single treatment of old donor animals with senolytics prior to transplantation attenuated mt-DNA release and improved physical capacities in young recipients. Collectively, we show that transplanting older organs induces senescence in transplant recipients, resulting in compromised physical and cognitive capacities. Depleting senescent cells with senolytics, in turn, represents a promising approach to improve outcomes of older organs.


Assuntos
Senescência Celular , Transplante de Órgãos , Animais , Camundongos , Senoterapia , Camundongos Endogâmicos C57BL , Transplante de Órgãos/efeitos adversos , DNA/farmacologia , Envelhecimento/fisiologia
13.
Immunol Cell Biol ; 102(9): 847-859, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39044372

RESUMO

Therapy-induced senescence can regulate both the innate and adaptive immune systems, thereby affecting therapeutic efficacy. Bleomycin is a major component of combined chemotherapy regimens, utilized for the treatment of multiple tumors, whereas pulmonary toxicity severely restricts its clinical benefits. As a member of the bleomycin family, boningmycin (BON) exhibits potent anticancer activity with minimal pulmonary toxicity, making it a potential alternative to bleomycin. Low concentrations of BON can induce senescence, but the impact of BON-induced senescence on anticancer immunity remains unclear. This study investigates the effects of BON-induced senescence on PD-L1 expression and the underlying mechanisms in human cancer cells. Firstly, the elevation of PD-L1 protein during BON-induced senescence was confirmed by a senescence ß-galactosidase staining assay, detection of the senescence-associated secretory phenotype (SASP), western blot and flow cytometry in human lung cancer NCI-H460 cells and breast cancer MDA-MB-231 cells. Subsequently, it was shown that the increase in PD-L1 protein is mediated by SASP, as evidenced by the use of conditional media, knockdown of cyclic GMP-AMP synthase and inhibition of stimulator of interferon genes. Ultimately, it was demonstrated that SASP-mediated PD-L1 up-regulation is dependent on the activation of the JAK/STAT pathway through the use of specific inhibitors and siRNAs. These findings clarify the impact of BON-induced senescence on PD-L1 expression and may contribute to the optimization of the therapeutic efficacy of bleomycin-related compounds and the clinical transformation of BON.


Assuntos
Antígeno B7-H1 , Bleomicina , Senescência Celular , Janus Quinases , Transdução de Sinais , Regulação para Cima , Humanos , Antígeno B7-H1/metabolismo , Senescência Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Bleomicina/farmacologia , Bleomicina/análogos & derivados , Regulação para Cima/efeitos dos fármacos , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
14.
Mol Hum Reprod ; 30(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38603629

RESUMO

Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women of reproductive age, but its pathology has not been fully characterized and the optimal treatment strategy remains unclear. Cellular senescence is a permanent state of cell-cycle arrest that can be induced by multiple stresses. Senescent cells contribute to the pathogenesis of various diseases, owing to an alteration in secretory profile, termed 'senescence-associated secretory phenotype' (SASP), including with respect to pro-inflammatory cytokines. Senolytics, a class of drugs that selectively eliminate senescent cells, are now being used clinically, and a combination of dasatinib and quercetin (DQ) has been extensively used as a senolytic. We aimed to investigate whether cellular senescence is involved in the pathology of PCOS and whether DQ treatment has beneficial effects in patients with PCOS. We obtained ovaries from patients with or without PCOS, and established a mouse model of PCOS by injecting dehydroepiandrosterone. The expression of the senescence markers p16INK4a, p21, p53, γH2AX, and senescence-associated ß-galactosidase and the SASP-related factor interleukin-6 was significantly higher in the ovaries of patients with PCOS and PCOS mice than in controls. To evaluate the effects of hyperandrogenism and DQ on cellular senescence in vitro, we stimulated cultured human granulosa cells (GCs) with testosterone and treated them with DQ. The expression of markers of senescence and a SASP-related factor was increased by testosterone, and DQ reduced this increase. DQ reduced the expression of markers of senescence and a SASP-related factor in the ovaries of PCOS mice and improved their morphology. These results indicate that cellular senescence occurs in PCOS. Hyperandrogenism causes cellular senescence in GCs in PCOS, and senolytic treatment reduces the accumulation of senescent GCs and improves ovarian morphology under hyperandrogenism. Thus, DQ might represent a novel therapy for PCOS.


Assuntos
Senescência Celular , Células da Granulosa , Síndrome do Ovário Policístico , Quercetina , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Feminino , Senescência Celular/efeitos dos fármacos , Humanos , Animais , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/patologia , Quercetina/farmacologia , Camundongos , Fenótipo Secretor Associado à Senescência , Adulto , Dasatinibe/farmacologia , Modelos Animais de Doenças , Senoterapia/farmacologia , Hiperandrogenismo/patologia , Hiperandrogenismo/metabolismo , Interleucina-6/metabolismo , Desidroepiandrosterona/farmacologia
15.
Diabet Med ; : e15408, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995865

RESUMO

BACKGROUND/AIMS: As a microvascular complication, diabetic kidney disease is the leading cause of chronic kidney disease and end-stage renal disease worldwide. While the underlying pathophysiology driving transition of diabetic kidney disease to renal failure is yet to be fully understood, recent studies suggest that cellular senescence is central in disease development and progression. Consequently, understanding the molecular mechanisms which initiate and drive senescence in response to the diabetic milieu is crucial in developing targeted therapies that halt progression of renal disease. METHODS: To understand the mechanistic pathways underpinning cellular senescence in the context of diabetic kidney disease, we reviewed the literature using PubMed for English language articles that contained key words related to senescence, inflammation, fibrosis, senescence-associated secretory phenotype (SASP), autophagy, and diabetes. RESULTS: Aberrant accumulation of metabolically active senescent cells is a notable event in the progression of diabetic kidney disease. Through autocrine- and paracrine-mediated mechanisms, resident senescent cells potentiate inflammation and fibrosis through increased expression and secretion of pro-inflammatory cytokines, chemoattractants, recruitment of immune cells, myofibroblast activation, and extracellular matrix remodelling. Compounds that eliminate senescent cells and/or target the SASP - including senolytic and senomorphics drugs - demonstrate promising results in reducing the senescent cell burden and associated pro-inflammatory effect. CONCLUSIONS: Here we evidence the link between senescence and diabetic kidney disease and highlight underlying molecular mechanisms and potential therapeutic targets that could be exploited to delay disease progression and improve outcomes for individuals with the disease. Trials are now required to translate their therapeutic potential to a clinical setting.

16.
Circ J ; 88(3): 277-284, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-37880106

RESUMO

Aging is a major risk factor for cardiovascular diseases (CVDs) and accumulating evidence indicates that biological aging has a significant effect on the onset and progression of CVDs. In recent years, therapies targeting senescent cells (senotherapies), particularly senolytics that selectively eliminate senescent cells, have been developed and show promise for treating geriatric syndromes and age-associated diseases, including CVDs. In 2 pilot studies published in 2019 the senolytic combination, dasatinib plus quercetin, improved physical function in patients with idiopathic pulmonary fibrosis and eliminated senescent cells from adipose tissue in patients with diabetic kidney disease. More than 30 clinical trials using senolytics are currently underway or planned. In preclinical CVD models, senolytics appear to improve heart failure, ischemic heart disease, valvular heart disease, atherosclerosis, aortic aneurysm, vascular dysfunction, dialysis arteriovenous fistula patency, and pre-eclampsia. Because senotherapies are completely different strategies from existing treatment paradigms, they might alleviate diseases for which there are no current effective treatments or they could be used in addition to current therapies to enhance efficacy. Moreover, senotherapies might delay, prevent, alleviate or treat multiple diseases in the elderly and reduce polypharmacy, because senotherapies target fundamental aging mechanisms. We comprehensively summarize the preclinical evidence about senotherapies for CVDs and discuss future prospects for their clinical application.


Assuntos
Doenças Cardiovasculares , Senescência Celular , Humanos , Idoso , Doenças Cardiovasculares/tratamento farmacológico , Senoterapia , Diálise Renal , Envelhecimento
17.
Immun Ageing ; 21(1): 13, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317257

RESUMO

Obesity, which is the accumulation of fat in adipose tissue, has adverse impacts on human health. Obesity-related metabolic dysregulation has similarities to the metabolic alterations observed in aging. It has been shown that the adipocytes of obese individuals undergo cellular aging, known as senescence. Senescence can be transmitted to other normal cells through a series of chemical factors referred to as the senescence-associated secretory phenotype (SASP). Most of these factors are pro-inflammatory compounds. The immune system removes these senescent T-cells, but immunosenescence, which is the senescence of immune cells, disrupts the clearance of senescent T-cells. Immunosenescence occurs as a result of aging or indirectly through transmission from senescent tissues. The significant occurrence of senescence in obesity is expected to cause immunosenescence and impairs the immune response to resolve inflammation. The sustained and chronic inflammation disrupts insulin's metabolic actions in metabolic tissues. Therefore, this review focuses on the role of senescent adipocyte cells in obesity-associated immunosenescence and subsequent metabolic dysregulation. Moreover, the article suggests novel therapeutic approaches to improve metabolic syndrome by targeting senescent T-cells or using senotherapeutics.

18.
Immun Ageing ; 21(1): 28, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715114

RESUMO

BACKGROUND: Ageing leads to altered immune responses, resulting in higher susceptibility to certain infections in the elderly. Immune ageing is a heterogeneous process also associated with inflammaging, a low-grade chronic inflammation. Altered cytotoxic T cell responses and cytokine storm have previously been described in severe COVID-19 cases, however the parameters responsible for such immune response failures are not well known. The aim of our study was to characterize CD8+ T cells and cytokines associated with ageing, in a cohort of patients aged over 70 years stratified by COVID-19 severity. RESULTS: One hundred and four patients were included in the study. We found that, in older people, COVID-19 severity was associated with (i) higher level of GM-CSF, CXCL10 (IP-10), VEGF, IL-1ß, CCL2 (MCP-1) and the neutrophil to lymphocyte ratio (NLR), (ii) increased terminally differentiated CD8+T cells, and (ii) decreased early precursors CD8+ T stem cell-like memory cells (TSCM) and CD27+CD28+. The cytokines mentioned above were found at higher concentrations in the COVID-19+ older cohort compared to a younger cohort in which they were not associated with disease severity. CONCLUSIONS: Our results highlight the particular importance of the myeloid lineage in COVID-19 severity among older people. As GM-CSF and CXCL10 were not associated with COVID-19 severity in younger patients, they may represent disease severity specific markers of ageing and should be considered in older people care.

19.
Subcell Biochem ; 103: 31-44, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37120463

RESUMO

Age-related chronic inflammation is characterized as the unresolved low-grade inflammatory process underlying the ageing process and various age-related diseases. In this chapter, we review the age-related changes in the oxidative stress-sensitive pro-inflammatory NF-κB signaling pathways causally linked with chronic inflammation during ageing based on senoinflammation schema. We describe various age-related dysregulated pro- and anti-inflammatory cytokines, chemokines, and senescence-associated secretory phenotype (SASP), and alterations of inflammasome, specialized pro-resolving lipid mediators (SPM), and autophagy as major players in the chronic inflammatory intracellular signaling network. A better understanding of the molecular, cellular, and systemic mechanisms involved in chronic inflammation in the ageing process would provide further insights into the potential anti-inflammatory strategies.


Assuntos
Senescência Celular , Transdução de Sinais , Humanos , Estresse Oxidativo , Inflamação/metabolismo , NF-kappa B/metabolismo
20.
Childs Nerv Syst ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38789691

RESUMO

Understanding the molecular and cellular mechanisms driving pediatric low-grade glioma (pLGG)-the most prevalent brain tumor in children-is essential for the identification and evaluation of novel effective treatments. This review explores the intricate relationship between the mitogen-activated protein kinase (MAPK) pathway, oncogene-induced senescence (OIS), the senescence-associated secretory phenotype (SASP), and the tumor microenvironment (TME), integrating these elements into a unified framework termed the MAPK/OIS/SASP/TME (MOST) axis. This integrated approach seeks to deepen our understanding of pLGG and improve therapeutic interventions by examining the MOST axis' critical influence on tumor biology and response to treatment. In this review, we assess the axis' capacity to integrate various biological processes, highlighting new targets for pLGG treatment, and the need for characterized in vitro and in vivo preclinical models recapitulating pLGG's complexity to test targets. The review underscores the need for a comprehensive strategy in pLGG research, positioning the MOST axis as a pivotal approach in understanding pLGG. This comprehensive framework will open promising avenues for patient care and guide future research towards inventive treatment options.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA