Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Inform ; 148: 104534, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918622

RESUMO

This work continues along a visionary path of using Semantic Web standards such as RDF and ShEx to make healthcare data easier to integrate for research and leading-edge patient care. The work extends the ability to use ShEx schemas to validate FHIR RDF data, thereby enhancing the semantic web ecosystem for working with FHIR and non-FHIR data using the same ShEx validation framework. It updates FHIR's ShEx schemas to fix outstanding issues and reflect changes in the definition of FHIR RDF. In addition, it experiments with expressing FHIRPath constraints (which are not captured in the XML or JSON schemas) in ShEx schemas. These extended ShEx schemas were incorporated into the FHIR R5 specification and used to successfully validate FHIR R5 examples that are included with the FHIR specification, revealing several errors in the examples.


Assuntos
Ecossistema , Registros Eletrônicos de Saúde , Humanos , Atenção à Saúde
2.
J Biomed Inform ; 134: 104201, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36089199

RESUMO

BACKGROUND: Knowledge graphs (KGs) play a key role to enable explainable artificial intelligence (AI) applications in healthcare. Constructing clinical knowledge graphs (CKGs) against heterogeneous electronic health records (EHRs) has been desired by the research and healthcare AI communities. From the standardization perspective, community-based standards such as the Fast Healthcare Interoperability Resources (FHIR) and the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) are increasingly used to represent and standardize EHR data for clinical data analytics, however, the potential of such a standard on building CKG has not been well investigated. OBJECTIVE: To develop and evaluate methods and tools that expose the OMOP CDM-based clinical data repositories into virtual clinical KGs that are compliant with FHIR Resource Description Framework (RDF) specification. METHODS: We developed a system called FHIR-Ontop-OMOP to generate virtual clinical KGs from the OMOP relational databases. We leveraged an OMOP CDM-based Medical Information Mart for Intensive Care (MIMIC-III) data repository to evaluate the FHIR-Ontop-OMOP system in terms of the faithfulness of data transformation and the conformance of the generated CKGs to the FHIR RDF specification. RESULTS: A beta version of the system has been released. A total of more than 100 data element mappings from 11 OMOP CDM clinical data, health system and vocabulary tables were implemented in the system, covering 11 FHIR resources. The generated virtual CKG from MIMIC-III contains 46,520 instances of FHIR Patient, 716,595 instances of Condition, 1,063,525 instances of Procedure, 24,934,751 instances of MedicationStatement, 365,181,104 instances of Observations, and 4,779,672 instances of CodeableConcept. Patient counts identified by five pairs of SQL (over the MIMIC database) and SPARQL (over the virtual CKG) queries were identical, ensuring the faithfulness of the data transformation. Generated CKG in RDF triples for 100 patients were fully conformant with the FHIR RDF specification. CONCLUSION: The FHIR-Ontop-OMOP system can expose OMOP database as a FHIR-compliant RDF graph. It provides a meaningful use case demonstrating the potentials that can be enabled by the interoperability between FHIR and OMOP CDM. Generated clinical KGs in FHIR RDF provide a semantic foundation to enable explainable AI applications in healthcare.


Assuntos
Inteligência Artificial , Reconhecimento Automatizado de Padrão , Data Warehousing , Atenção à Saúde , Registros Eletrônicos de Saúde , Humanos
3.
BMC Biol ; 19(1): 12, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482803

RESUMO

BACKGROUND: Pandemics, even more than other medical problems, require swift integration of knowledge. When caused by a new virus, understanding the underlying biology may help finding solutions. In a setting where there are a large number of loosely related projects and initiatives, we need common ground, also known as a "commons." Wikidata, a public knowledge graph aligned with Wikipedia, is such a commons and uses unique identifiers to link knowledge in other knowledge bases. However, Wikidata may not always have the right schema for the urgent questions. In this paper, we address this problem by showing how a data schema required for the integration can be modeled with entity schemas represented by Shape Expressions. RESULTS: As a telling example, we describe the process of aligning resources on the genomes and proteomes of the SARS-CoV-2 virus and related viruses as well as how Shape Expressions can be defined for Wikidata to model the knowledge, helping others studying the SARS-CoV-2 pandemic. How this model can be used to make data between various resources interoperable is demonstrated by integrating data from NCBI (National Center for Biotechnology Information) Taxonomy, NCBI Genes, UniProt, and WikiPathways. Based on that model, a set of automated applications or bots were written for regular updates of these sources in Wikidata and added to a platform for automatically running these updates. CONCLUSIONS: Although this workflow is developed and applied in the context of the COVID-19 pandemic, to demonstrate its broader applicability it was also applied to other human coronaviruses (MERS, SARS, human coronavirus NL63, human coronavirus 229E, human coronavirus HKU1, human coronavirus OC4).


Assuntos
COVID-19/patologia , Genômica/métodos , Bases de Conhecimento , Proteômica/métodos , SARS-CoV-2/fisiologia , COVID-19/metabolismo , COVID-19/virologia , Coronavirus/genética , Coronavirus/fisiologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Genoma Viral , Humanos , Internet , Pandemias , SARS-CoV-2/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Fluxo de Trabalho
4.
J Biomed Inform ; 117: 103755, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33781919

RESUMO

Resource Description Framework (RDF) is one of the three standardized data formats in the HL7 Fast Healthcare Interoperability Resources (FHIR) specification and is being used by healthcare and research organizations to join FHIR and non-FHIR data. However, RDF previously had not been integrated into popular FHIR tooling packages, hindering the adoption of FHIR RDF in the semantic web and other communities. The objective of the study is to develop and evaluate a Java based FHIR RDF data transformation toolkit to facilitate the use and validation of FHIR RDF data. We extended the popular HAPI FHIR tooling to add RDF support, thus enabling FHIR data in XML or JSON to be transformed to or from RDF. We also developed an RDF Shape Expression (ShEx)-based validation framework to verify conformance of FHIR RDF data to the ShEx schemas provided in the FHIR specification for FHIR versions R4 and R5. The effectiveness of ShEx validation was demonstrated by testing it against 2693 FHIR R4 examples and 2197 FHIR R5 examples that are included in the FHIR specification. A total of 5 types of errors including missing properties, unknown element, missing resource Type, invalid attribute value, and unknown resource name in the R5 examples were revealed, demonstrating the value of the ShEx in the quality assurance of the evolving R5 development. This FHIR RDF data transformation and validation framework, based on HAPI and ShEx, is robust and ready for community use in adopting FHIR RDF, improving FHIR data quality, and evolving the FHIR specification.


Assuntos
Atenção à Saúde , Registros Eletrônicos de Saúde
5.
J Biomed Inform ; 67: 90-100, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28213144

RESUMO

BACKGROUND: HL7 Fast Healthcare Interoperability Resources (FHIR) is an emerging open standard for the exchange of electronic healthcare information. FHIR resources are defined in a specialized modeling language. FHIR instances can currently be represented in either XML or JSON. The FHIR and Semantic Web communities are developing a third FHIR instance representation format in Resource Description Framework (RDF). Shape Expressions (ShEx), a formal RDF data constraint language, is a candidate for describing and validating the FHIR RDF representation. OBJECTIVE: Create a FHIR to ShEx model transformation and assess its ability to describe and validate FHIR RDF data. METHODS: We created the methods and tools that generate the ShEx schemas modeling the FHIR to RDF specification being developed by HL7 ITS/W3C RDF Task Force, and evaluated the applicability of ShEx in the description and validation of FHIR to RDF transformations. RESULTS: The ShEx models contributed significantly to workgroup consensus. Algorithmic transformations from the FHIR model to ShEx schemas and FHIR example data to RDF transformations were incorporated into the FHIR build process. ShEx schemas representing 109 FHIR resources were used to validate 511 FHIR RDF data examples from the Standards for Trial Use (STU 3) Ballot version. We were able to uncover unresolved issues in the FHIR to RDF specification and detect 10 types of errors and root causes in the actual implementation. The FHIR ShEx representations have been included in the official FHIR web pages for the STU 3 Ballot version since September 2016. DISCUSSION: ShEx can be used to define and validate the syntax of a FHIR resource, which is complementary to the use of RDF Schema (RDFS) and Web Ontology Language (OWL) for semantic validation. CONCLUSION: ShEx proved useful for describing a standard model of FHIR RDF data. The combination of a formal model and a succinct format enabled comprehensive review and automated validation.


Assuntos
Algoritmos , Internet , Semântica , Registros Eletrônicos de Saúde , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA