Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Dokl Biol Sci ; 509(1): 124-127, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37208580

RESUMO

Biodiversity in the Laptev Sea was assessed for gutless marine worms of the family Siboglinidae (Annelida), whose metabolism is provided by symbiotic bacteria that oxidize hydrogen sulfide and methane. Seven siboglinid species were found within the geographical boundaries of the Laptev Sea, and another species was found in an adjacent sector of the Arctic Basin. The largest number of finds and the greatest biological diversity of siboglinids were observed in the eastern part of the Laptev Sea in a field of numerous methane flares. One find was made in the estuary area of the Lena River at a depth of 25 m. A possible association of siboglinids with methane seepage areas is discussed.


Assuntos
Anelídeos , Poliquetos , Animais , Filogenia , Metano , Biodiversidade
2.
Heliyon ; 9(3): e14232, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36967935

RESUMO

We used ancient DNA (aDNA) extraction methods to sequence museum voucher samples of Oligobrachia webbi, a frenulate siboglinid polychaete described from a northern Norwegian fjord over fifty years ago. Our sequencing results indicate a genetic match with the cryptic seep species, Oligobrachia haakonmosbiensis (99% pairwise identity for 574 bp mtCOI fragments). Due to its similarity with O. webbi, the identity of O. haakonmosbiensis has been a matter of debate since its description, which we have now resolved. Furthermore, our results demonstrate that chemosynthesis-based siboglinids, that constitute the bulk of the biomass at Arctic seeps are not seep specialists. Our data on sediment geochemistry and carbon and nitrogen content reveal reduced conditions in fjords/sounds, similar to those at seep systems. Accumulation and decomposition of both terrestrial and marine organic matter results in the buildup of methane and sulfide that apparently can sustain chemosymbiotic fauna. The occurrence of fjords and by extension, highly reducing habitats, could have led to Arctic chemosymbiotic species being relatively generalist with their habitat, as opposed to being seep or vent specialists. Our stable isotope analyses indicate the incorporation of photosynthetically derived carbon in some individuals, which aligns with experiments conducted on frenulates before the discovery of chemosynthesis that demonstrated their ability to take up organic molecules from the surrounding sediment. Since reduced gases in non-seep environments are ultimately sourced from photosynthetic processes, we suggest that the extreme seasonality of the Arctic has resulted in Arctic chemosymbiotic animals seasonally changing their degree of reliance on chemosynthetic partners. Overall, the role of chemosynthesis in Arctic benthos and marine ecosystems and links to photosynthesis may be complex, and more extensive than currently known.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA