Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 904
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37955660

RESUMO

The awake cortex is characterized by a higher level of ongoing spontaneous activity, but it has a better detectability of weak sensory inputs than the anesthetized cortex. However, the computational mechanism underlying this paradoxical nature of awake neuronal activity remains to be elucidated. Here, we propose a hypothetical stochastic resonance, which improves the signal-to-noise ratio (SNR) of weak sensory inputs through nonlinear relations between ongoing spontaneous activities and sensory-evoked activities. Prestimulus and tone-evoked activities were investigated via in vivo extracellular recording with a dense microelectrode array covering the entire auditory cortex in rats in both awake and anesthetized states. We found that tone-evoked activities increased supralinearly with the prestimulus activity level in the awake state and that the SNR of weak stimulus representation was optimized at an intermediate level of prestimulus ongoing activity. Furthermore, the temporally intermittent firing pattern, but not the trial-by-trial reliability or the fluctuation of local field potential, was identified as a relevant factor for SNR improvement. Since ongoing activity differs among neurons, hypothetical stochastic resonance or "sparse network stochastic resonance" might offer beneficial SNR improvement at the single-neuron level, which is compatible with the sparse representation in the sensory cortex.


Assuntos
Córtex Auditivo , Ratos , Animais , Córtex Auditivo/fisiologia , Vigília/fisiologia , Reprodutibilidade dos Testes , Neurônios/fisiologia , Vibração
2.
Magn Reson Med ; 92(3): 1219-1231, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38649922

RESUMO

PURPOSE: We examined magnetic field dependent SNR gains and ability to capture them with multichannel receive arrays for human head imaging in going from 7 T, the most commonly used ultrahigh magnetic field (UHF) platform at the present, to 10.5 T, which represents the emerging new frontier of >10 T in UHFs. METHODS: Electromagnetic (EM) models of 31-channel and 63-channel multichannel arrays built for 10.5 T were developed for 10.5 T and 7 T simulations. A 7 T version of the 63-channel array with an identical coil layout was also built. Array performance was evaluated in the EM model using a phantom mimicking the size and electrical properties of the human head and a digital human head model. Experimental data was obtained at 7 T and 10.5 T with the 63-channel array. Ultimate intrinsic SNR (uiSNR) was calculated for the two field strengths using a voxelized cloud of dipoles enclosing the phantom or the digital human head model as a reference to assess the performance of the two arrays and field depended SNR gains. RESULTS: uiSNR calculations in both the phantom and the digital human head model demonstrated SNR gains at 10.5 T relative to 7 T of 2.6 centrally, ˜2 at the location corresponding to the edge of the brain, ˜1.4 at the periphery. The EM models demonstrated that, centrally, both arrays captured ˜90% of the uiSNR at 7 T, but only ˜65% at 10.5 T, leading only to ˜2-fold gain in array SNR in going from 7 to 10.5 T. This trend was also observed experimentally with the 63-channel array capturing a larger fraction of the uiSNR at 7 T compared to 10.5 T, although the percentage of uiSNR captured were slightly lower at both field strengths compared to EM simulation results. CONCLUSIONS: Major uiSNR gains are predicted for human head imaging in going from 7 T to 10.5 T, ranging from ˜2-fold at locations corresponding to the edge of the brain to 2.6-fold at the center, corresponding to approximately quadratic increase with the magnetic field. Realistic 31- and 63-channel receive arrays, however, approach the central uiSNR at 7 T, but fail to do so at 10.5 T, suggesting that more coils and/or different type of coils will be needed at 10.5 T and higher magnetic fields.


Assuntos
Cabeça , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Razão Sinal-Ruído , Humanos , Cabeça/diagnóstico por imagem , Imageamento por Ressonância Magnética/instrumentação , Encéfalo/diagnóstico por imagem , Desenho de Equipamento , Simulação por Computador , Processamento de Imagem Assistida por Computador/métodos
3.
NMR Biomed ; 37(1): e5027, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37644611

RESUMO

Chemical exchange saturation transfer (CEST) is a versatile technique that enables noninvasive detections of endogenous metabolites present in low concentrations in living tissue. However, CEST imaging suffers from an inherently low signal-to-noise ratio (SNR) due to the decreased water signal caused by the transfer of saturated spins. This limitation challenges the accuracy and reliability of quantification in CEST imaging. In this study, a novel spatial-spectral denoising method, called BOOST (suBspace denoising with nOnlocal lOw-rank constraint and Spectral local-smooThness regularization), was proposed to enhance the SNR of CEST images and boost quantification accuracy. More precisely, our method initially decomposes the noisy CEST images into a low-dimensional subspace by leveraging the global spectral low-rank prior. Subsequently, a spatial nonlocal self-similarity prior is applied to the subspace-based images. Simultaneously, the spectral local-smoothness property of Z-spectra is incorporated by imposing a weighted spectral total variation constraint. The efficiency and robustness of BOOST were validated in various scenarios, including numerical simulations and preclinical and clinical conditions, spanning magnetic field strengths from 3.0 to 11.7 T. The results demonstrated that BOOST outperforms state-of-the-art algorithms in terms of noise elimination. As a cost-effective and widely available post-processing method, BOOST can be easily integrated into existing CEST protocols, consequently promoting accuracy and reliability in detecting subtle CEST effects.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Razão Sinal-Ruído
4.
NMR Biomed ; : e5168, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716493

RESUMO

The increasing signal-to-noise ratio (SNR) is the main reason to use ultrahigh field MRI. Here, we investigate the dependence of the SNR on the magnetic field strength, especially for small animal applications, where small surface coils are used and coil noise cannot be ignored. Measurements were performed at five field strengths from 3 to 14.1 T, using 2.2-cm surface coils with an identical coil design for transmit and receive on two water samples with and without salt. SNR was measured in a series of spoiled gradient echo images with varying flip angle and corrected for saturation based on a series of flip angle and T1 measurements. Furthermore, the noise figure of the receive chain was determined and eliminated to remove instrument dependence. Finally, the coil sensitivity was determined based on the principle of reciprocity to obtain a measure for ultimate SNR. Before coil sensitivity correction, the SNR increase in nonconductive samples is highly supralinear with B0 1.6-2.7, depending on distance to the coil, while in the conductive sample, the growth is smaller, being around linear close to the surface coil and increasing up to a B0 2.0 dependence when moving away from the coil. After sensitivity correction, the SNR increase is independent of loading with B0 2.1. This study confirms the supralinear increase of SNR with increasing field strengths. Compared with most human measurements with larger coil sizes, smaller surface coils, as mainly used in animal studies, have a higher contribution of coil noise and thus a different behavior of SNR at high fields.

5.
J Magn Reson Imaging ; 59(1): 311-322, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37335079

RESUMO

BACKGROUND: The choice between different diffusion-weighted imaging (DWI) techniques is difficult as each comes with tradeoffs for efficient clinical routine imaging and apparent diffusion coefficient (ADC) accuracy. PURPOSE: To quantify signal-to-noise-ratio (SNR) efficiency, ADC accuracy, artifacts, and distortions for different DWI acquisition techniques, coils, and scanners. STUDY TYPE: Phantom, in vivo intraindividual biomarker accuracy between DWI techniques and independent ratings. POPULATION/PHANTOMS: NIST diffusion phantom. 51 Patients: 40 with prostate cancer and 11 with head-and-neck cancer at 1.5 T FIELD STRENGTH/SEQUENCE: Echo planar imaging (EPI): 1.5 T and 3 T Siemens; 3 T Philips. Distortion-reducing: RESOLVE (1.5 and 3 T Siemens); Turbo Spin Echo (TSE)-SPLICE (3 T Philips). Small field-of-view (FOV): ZoomitPro (1.5 T Siemens); IRIS (3 T Philips). Head-and-neck and flexible coils. ASSESSMENT: SNR Efficiency, geometrical distortions, and susceptibility artifacts were quantified for different b-values in a phantom. ADC accuracy/agreement was quantified in phantom and for 51 patients. In vivo image quality was independently rated by four experts. STATISTICAL TESTS: QIBA methodology for accuracy: trueness, repeatability, reproducibility, Bland-Altman 95% Limits-of-Agreement (LOA) for ADC. Wilcoxon Signed-Rank and student tests on P < 0.05 level. RESULTS: The ZoomitPro small FOV sequence improved b-image efficiency by 8%-14%, reduced artifacts and observer scoring for most raters at the cost of smaller FOV compared to EPI. The TSE-SPLICE technique reduced artifacts almost completely at a 24% efficiency cost compared to EPI for b-values ≤500 sec/mm2 . Phantom ADC 95% LOA trueness were within ±0.03 × 10-3 mm2 /sec except for small FOV IRIS. The in vivo ADC agreement between techniques, however, resulted in 95% LOAs in the order of ±0.3 × 10-3 mm2 /sec with up to 0.2 × 10-3 mm2 /sec of bias. DATA CONCLUSION: ZoomitPro for Siemens and TSE SPLICE for Philips resulted in a trade-off between efficiency and artifacts. Phantom ADC quality control largely underestimated in vivo accuracy: significant ADC bias and variability was found between techniques in vivo. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 2.


Assuntos
Cabeça , Pescoço , Masculino , Humanos , Reprodutibilidade dos Testes , Imagens de Fantasmas , Imagem de Difusão por Ressonância Magnética/métodos , Imagem Ecoplanar/métodos
6.
Psychophysiology ; 61(5): e14511, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38165059

RESUMO

Eyeblinks and other large artifacts can create two major problems in event-related potential (ERP) research, namely confounds and increased noise. Here, we developed a method for assessing the effectiveness of artifact correction and rejection methods in minimizing these two problems. We then used this method to assess a common artifact minimization approach, in which independent component analysis (ICA) is used to correct ocular artifacts, and artifact rejection is used to reject trials with extreme values resulting from other sources (e.g., movement artifacts). This approach was applied to data from five common ERP components (P3b, N400, N170, mismatch negativity, and error-related negativity). Four common scoring methods (mean amplitude, peak amplitude, peak latency, and 50% area latency) were examined for each component. We found that eyeblinks differed systematically across experimental conditions for several of the components. We also found that artifact correction was reasonably effective at minimizing these confounds, although it did not usually eliminate them completely. In addition, we found that the rejection of trials with extreme voltage values was effective at reducing noise, with the benefits of eliminating these trials outweighing the reduced number of trials available for averaging. For researchers who are analyzing similar ERP components and participant populations, this combination of artifact correction and rejection approaches should minimize artifact-related confounds and lead to improved data quality. Researchers who are analyzing other components or participant populations can use the method developed in this study to determine which artifact minimization approaches are effective in their data.


Assuntos
Eletroencefalografia , Potenciais Evocados , Humanos , Masculino , Feminino , Eletroencefalografia/métodos , Artefatos , Piscadela , Processamento de Sinais Assistido por Computador , Algoritmos
7.
Psychophysiology ; 61(6): e14531, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38297978

RESUMO

Filtering plays an essential role in event-related potential (ERP) research, but filter settings are usually chosen on the basis of historical precedent, lab lore, or informal analyses. This reflects, in part, the lack of a well-reasoned, easily implemented method for identifying the optimal filter settings for a given type of ERP data. To fill this gap, we developed an approach that involves finding the filter settings that maximize the signal-to-noise ratio for a specific amplitude score (or minimizes the noise for a latency score) while minimizing waveform distortion. The signal is estimated by obtaining the amplitude score from the grand average ERP waveform (usually a difference waveform). The noise is estimated using the standardized measurement error of the single-subject scores. Waveform distortion is estimated by passing noise-free simulated data through the filters. This approach allows researchers to determine the most appropriate filter settings for their specific scoring methods, experimental designs, subject populations, recording setups, and scientific questions. We have provided a set of tools in ERPLAB Toolbox to make it easy for researchers to implement this approach with their own data.


Assuntos
Eletroencefalografia , Potenciais Evocados , Humanos , Potenciais Evocados/fisiologia , Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído
8.
Doc Ophthalmol ; 148(1): 15-24, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37749441

RESUMO

PURPOSE: To correlate multifrequency pattern reversal VEPs in quadrants (QmfrVEPs) with perimetric field losses for objective detection of visual field losses. METHODS: QmfrVEP measurements were performed using four LED-based checkerboard stimulators to stimulate the four quadrants of the visual field. QmfrVEPs were measured monocularly in 5 normal subjects and in 5 glaucoma patients who showed losses in conventional Octopus perimetry. The pattern reversal frequency varied slightly between the stimulators: (11.92, 12.00, 12.08 and 12.16 reversals/sec). The responses to the different stimuli were identified by discrete Fourier analysis. VEPs were recorded using different electrode configurations, and the recording with the highest signal-to-noise ratio (SNR) was used for further analysis. RESULTS: QmfrVEP responses from the different quadrants can be reliably measured and separated using the 0.08 reversals/sec interstimulus reversal frequency differences. The signal-to-noise ratio in the four quadrants was significantly correlated with the equivalent visual field losses obtained with perimetry (Spearman rank correlation: P < 0.001). In the five glaucoma patients, the SNR was reduced in 15 out of the 16 quadrants with a perimetric defect, in comparison to the results in quadrants of healthy subjects. This confirms the sensitivity of the procedure. CONCLUSION: QmfrVEP responses can be measured reliably. This pilot study suggests that high SNR values exclude visual field defects and that focal defects can be identified in glaucoma patients. TRIAL REGISTRATION: www. CLINICALTRIALS: gov . NCT00494923.


Assuntos
Glaucoma , Testes de Campo Visual , Humanos , Testes de Campo Visual/métodos , Campos Visuais , Projetos Piloto , Eletrorretinografia , Transtornos da Visão/diagnóstico , Glaucoma/diagnóstico , Potenciais Evocados Visuais
9.
Sensors (Basel) ; 24(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39001164

RESUMO

Hyperspectral detection of the change rate of organic matter content in agricultural remote sensing requires a high signal-to-noise ratio (SNR). However, due to the large number and efficiency limitation of the components, it is difficult to improve the SNR. This study uses high-efficiency convex grating with a diffraction efficiency exceeding 50% across the 360-850 nm range, a back-illuminated Complementary Metal Oxide Semiconductor (CMOS) detector with a 95% efficiency in peak wavelength, and silver-coated mirrors to develop an imaging spectrometer for detecting soil organic matter (SOM). The designed system meets the spectral resolution of 10 nm in the 360-850 nm range and achieves a swath of 100 km and a spatial resolution of 100 m at an orbital height of 648.2 km. This study also uses the basic structure of Offner with fewer components in the design and sets the mirrors of the Offner structure to have the same sphere, which can achieve the rapid adjustment of the co-standard. This study performs a theoretical analysis of the developed Offner imaging spectrometer based on the classical Rowland circular structure, with a 21.8 mm slit length; simulates its capacity for suppressing the +2nd-order diffraction stray light with the filter; and analyzes the imaging quality after meeting the tolerance requirements, which is combined with the surface shape characteristics of the high-efficiency grating. After this test, the grating has a diffraction efficiency above 50%, and the silver-coated mirrors have a reflection value above 95% on average. Finally, the laboratory tests show that the SNR over the waveband exceeds 300 and reaches 800 at 550 nm, which is higher than some current instruments in orbit for soil observation. The proposed imaging spectrometer has a spectral resolution of 10 nm, and its modulation transfer function (MTF) is greater than 0.23 at the Nyquist frequency, making it suitable for remote sensing observation of SOM change rate. The manufacture of such a high-efficiency broadband grating and the development of the proposed instrument with high energy transmission efficiency can provide a feasible technical solution for observing faint targets with a high SNR.

10.
Sensors (Basel) ; 24(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38610378

RESUMO

Originating in the early 20th century, ultrasonic testing has found increasingly extensive applications in medicine, industry, and materials science. Achieving both a high signal-to-noise ratio and high efficiency is crucial in ultrasonic testing. The former means an increase in imaging clarity as well as the detection depth, while the latter facilitates a faster refresh of the image. It is difficult to balance these two indicators with a conventional short pulse to excite the probe, so in general handling methods, these two factors have a trade-off. To solve the above problems, coded excitation (CE) can increase the pulse duration and offers great potential to improve the signal-to-noise ratio with equivalent or even higher efficiency. In this paper, we first review the fundamentals of CE, including signal modulation, signal transmission, signal reception, pulse compression, and optimization methods. Then, we introduce the application of CE in different areas of ultrasonic testing, with a focus on industrial bulk wave single-probe detection, industrial guided wave detection, industrial bulk wave phased array detection, and medical phased array imaging. Finally, we point out the advantages as well as a few future directions of CE.

11.
Sensors (Basel) ; 24(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732829

RESUMO

In 3D microsphere tracking, unlike in-plane motion that can be measured directly by a microscope, axial displacements are resolved by optical interference or a diffraction model. As a result, the axial results are affected by the environmental noise. The immunity to environmental noise increases with measurement accuracy and the signal-to-noise ratio (SNR). In compound digital holography microscopy (CDHM)-based measurements, precise identification of the tracking marker is critical to ensuring measurement precision. The reconstruction centering method (RCM) was proposed to suppress the drawbacks caused by installation errors and, at the same time, improve the correct identification of the tracking marker. The reconstructed center is considered to be the center of the microsphere, rather than the center of imaging in conventional digital holographic microscopy. This method was verified by simulation of rays tracing through microspheres and axial moving experiments. The axial displacements of silica microspheres with diameters of 5 µm and 10 µm were tested by CDHM in combination with the RCM. As a result, the SNR of the proposed method was improved by around 30%. In addition, the method was successfully applied to axial displacement measurements of overlapped microspheres with a resolution of 2 nm.

12.
Sensors (Basel) ; 24(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732838

RESUMO

Currently, the visual detection of a target's shock flow field through background schlieren technology is a novel detection system. However, there are very few studies on the long-distance background schlieren imaging mechanism and its application in system design in the field of target detection. This paper proposes a design optimization method for space-based BOS detection system metrics. By establishing sensitivity evaluation models and image signal-to-noise ratio evaluation models for BOS detection systems, the influence of the different flight parameters and key parameters of BOS systems (detection spectral bands and spatial resolution) on target detection efficiency is explored. Furthermore, an optimization method based on the image signal-to-noise ratio of the BOS system and the overall metrics for specific scenarios are provided. The simulation results demonstrate that under satellite background images and speckle background images, the system metrics can detect and identify the schlieren of high-speed targets, with better applicability to disordered and complex real background images. This research contributes to advancing the development of high-speed target detection technology based on BOS.

13.
Sensors (Basel) ; 24(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794013

RESUMO

In many areas of engineering, the design of a new system usually involves estimating performance-related parameters from early stages of the project to determine whether a given solution will be compliant with the defined requirements. This aspect is particularly relevant during the design of satellite payloads, where the target environment is not easily accessible in most cases. In the context of Earth observation sensors, this problem has been typically solved with the help of a set of complex pseudo-empirical models and/or expensive laboratory equipment. This paper describes a more practical approach: the illumination conditions measured by an in-orbit payload are recreated on ground with the help of a replica of the same payload so the performance of another Earth observation sensor in development can be evaluated. The proposed method is specially relevant in the context of small satellites, as the possibility of having extra units devoted to these tasks becomes greater as costs are reduced. The results obtained using this method in an actual space mission are presented in this paper, giving valuable information that will help in further stages of the project.

14.
Sensors (Basel) ; 24(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38894072

RESUMO

The large amount of sampled data in coherent phase-sensitive optical time-domain reflectometry (Φ-OTDR) brings heavy data transmission, processing, and storage burdens. By using the comparator combined with undersampling, we achieve simultaneous reduction of sampling rate and sampling resolution in hardware, thus greatly decreasing the sampled data volume. But this way will inevitably cause the deterioration of detection signal-to-noise ratio (SNR) due to the quantization noise's dramatic increase. To address this problem, denoising the demodulated phase signals using compressed sensing, which exploits the sparsity of spectrally sparse vibration, is proposed, thereby effectively enhancing the detection SNR. In experiments, the comparator with a sampling parameter of 62.5 MS/s and 1 bit successfully captures the 80 MHz beat signal, where the sampled data volume per second is only 7.45 MB. Then, when the piezoelectric transducer's driving voltage is 1 Vpp, 300 mVpp, and 100 mVpp respectively, the SNRs of the reconstructed 200 Hz sinusoidal signals are respectively enhanced by 23.7 dB, 26.1 dB, and 28.7 dB by using compressed sensing. Moreover, multi-frequency vibrations can also be accurately reconstructed with a high SNR. Therefore, the proposed technique can effectively enhance the system's performance while greatly reducing its hardware burden.

15.
Behav Res Methods ; 56(3): 2452-2468, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37428394

RESUMO

This paper introduces a novel procedure that can increase the signal-to-noise ratio in psychological experiments that use accuracy as a selection variable for another dependent variable. This procedure relies on the fact that some correct responses result from guesses and reclassifies them as incorrect responses using a trial-by-trial reclassification evidence such as response time. It selects the optimal reclassification evidence criterion beyond which correct responses should be reclassified as incorrect responses. We show that the more difficult the task and the fewer the response alternatives, the more to be gained from this reclassification procedure. We illustrate the procedure on behavioral and ERP data from two different datasets (Caplette et al. NeuroImage 218, 116994, 2020; Faghel-Soubeyrand et al. Journal of Experimental Psychology: General 148, 1834-1841, 2019) using response time as reclassification evidence. In both cases, the reclassification procedure increased signal-to-noise ratio by more than 13%. Matlab and Python implementations of the reclassification procedure are openly available ( https://github.com/GroupeLaboGosselin/Reclassification ).


Assuntos
Razão Sinal-Ruído , Humanos , Tempo de Reação
16.
Neuroimage ; 274: 120159, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37150332

RESUMO

Diffusion MRI (dMRI) is a valuable imaging technique to study the connectivity and microstructure of the brain in vivo. However, the resolution of dMRI is limited by the low signal-to-noise ratio (SNR) of this technique. Various multi-shot acquisition strategies have been developed to achieve sub-millimeter resolution, but they require long scan times which can be restricting for patient scans. Alternatively, the SNR of single-shot acquisitions can be increased by using a spiral readout trajectory to minimize the sequence echo time. Imaging at ultra-high fields (UHF) could further increase the SNR of single-shot dMRI; however, the shorter T2* of brain tissue and the greater field non-uniformities at UHFs will degrade image quality, causing image blurring, distortions, and signal loss. In this study, we investigated the trade-off between the SNR and resolution of different k-space trajectories, including echo planar imaging (EPI), partial Fourier EPI, and spiral trajectories, over a range of dMRI resolutions at 7T. The effective resolution, spatial specificity and sharpening effect were measured from the point spread function (PSF) of the simulated diffusion sequences for a nominal resolution range of 0.6-1.8 mm. In-vivo partial brain scans at a nominal resolution of 1.5 mm isotropic were acquired using the three readout trajectories to validate the simulation results. Field probes were used to measure dynamic magnetic fields offline up to the 3rd order of spherical harmonics. Image reconstruction was performed using static ΔB0 field maps and the measured trajectories to correct image distortions and artifacts, leaving T2* effects as the primary source of blurring. The effective resolution was examined in fractional anisotropy (FA) maps calculated from a multi-shell dataset with b-values of 300, 1000, and 2000 s/mm2 in 5, 16, and 48 directions, respectively. In-vivo scans at nominal resolutions of 1, 1.2, and 1.5 mm were acquired and the SNR of the different trajectories calculated using the multiple replica method to investigate the SNR. Finally, in-vivo whole brain scans with an effective resolution of 1.5 mm isotropic were acquired to explore the SNR and efficiency of different trajectories at a matching effective resolution. FA and intra-cellular volume fraction (ICVF) maps calculated using neurite orientation dispersion and density imaging (NODDI) were used for the comparison. The simulations and in vivo imaging results showed that for matching nominal resolutions, EPI trajectories had the highest specificity and effective resolution with maximum image sharpening effect. However, spirals have a significantly higher SNR, in particular at higher resolutions and even when the effective image resolutions are matched. Overall, this work shows that the higher SNR of single-shot spiral trajectories at 7T allows us to achieve higher effective resolutions compared to EPI and PF-EPI to map the microstructure and connectivity of small brain structures.


Assuntos
Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador , Humanos , Razão Sinal-Ruído , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Imagem Ecoplanar/métodos
17.
Magn Reson Med ; 90(1): 133-149, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36883748

RESUMO

PURPOSE: To compare the performances of uniform-density spiral (UDS), variable-density spiral (VDS), and dual-density spiral (DDS) samplings in multi-shot diffusion imaging, and determine a sampling strategy that balances reliability of shot navigator and overall DWI image quality. THEORY AND METHODS: UDS, VDS, and DDS trajectories were implemented to achieve four-shot diffusion-weighted spiral imaging. First, the static B0 off-resonance effects in UDS, VDS, and DDS acquisitions were analyzed based on a signal model. Then, in vivo experiments were performed to verify the theoretical analyses, and fractional anisotropy (FA) fitting residuals were used to quantitatively assess the quality of spiral diffusion data for tensor estimation. Finally, the SNR performances and g-factor behavior of the three spiral samplings were evaluated using a Monte Carlo-based pseudo multiple replica method. RESULTS: Among the three spiral trajectories with the same readout duration, UDS sampling exhibited the least off-resonance artifacts. This was most evident when the static B0 off-resonance effect was severe. The UDS diffusion images had higher anatomical fidelity and lower FA fitting residuals than the other two counterparts. Furthermore, the four-shot UDS acquisition achieved the best SNR performance in diffusion imaging with 12.11% and 40.85% improvements over the VDS and DDS acquisitions with the same readout duration, respectively. CONCLUSION: UDS sampling is an efficient spiral acquisition scheme for high-resolution diffusion imaging with reliable navigator information. It provides superior off-resonance performance and SNR efficiency over the VDS and DDS samplings for the tested scenarios.


Assuntos
Algoritmos , Imagem de Difusão por Ressonância Magnética , Reprodutibilidade dos Testes , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Interpretação de Imagem Assistida por Computador/métodos , Artefatos , Processamento de Imagem Assistida por Computador/métodos , Imagem Ecoplanar
18.
Magn Reson Med ; 89(1): 477-486, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36111357

RESUMO

PURPOSE: We aimed to improve B0 magnetic field homogeneity and minimize the interference between RF coils and local B0 shimming coils with few channel numbers. METHODS: To design and construct the prototype for B0 shimming of the rat brain, we first evaluated the interferences of single shimming loops on RF receiver loops. Then, B0 shimming of the whole rat brain was implemented using an optimization procedure. The positions and currents of the local shimming coils with channel numbers from 3 to 6 were optimized to improve shimming performance. Based on the simulation results, a 5-channel local shimming coil, combined with a 3-channel RF receiver coil, was constructed and evaluated by animal experiments. RESULTS: There was marginal SNR loss within 5% after integrating the local shimming coil into the RF receiver coil. With respect to the Siemens standard shims up to second order, the B0 inhomogeneity in one whole rat brain was reduced from 39.6 Hz to 24.7 Hz by using the local shimming coil. A large portion of the EPI distortions was recovered after using the 5-channel local shimming coil. The temporal SNR using the local shimming coil was higher than that using the Siemens standard shims up to second order, with an improvement of more than 24%. CONCLUSIONS: The local shimming coil can improve B0 magnetic field homogeneity despite minor effects on the RF coil and can benefit a variety of applications that are sensitive to B0 inhomogeneity. Nevertheless, EPI for rat brain is still very challenging.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Animais , Ratos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Ondas de Rádio , Encéfalo/diagnóstico por imagem , Neuroimagem
19.
Magn Reson Med ; 90(6): 2592-2607, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37582214

RESUMO

PURPOSE: A 128-channel receive-only array for brain imaging at 7 T was simulated, designed, constructed, and tested within a high-performance head gradient designed for high-resolution functional imaging. METHODS: The coil used a tight-fitting helmet geometry populated with 128 loop elements and preamplifiers to fit into a 39 cm diameter space inside a built-in gradient. The signal-to-noise ratio (SNR) and parallel imaging performance (1/g) were measured in vivo and simulated using electromagnetic modeling. The histogram of 1/g factors was analyzed to assess the range of performance. The array's performance was compared to the industry-standard 32-channel receive array and a 64-channel research array. RESULTS: It was possible to construct the 128-channel array with body noise-dominated loops producing an average noise correlation of 5.4%. Measurements showed increased sensitivity compared with the 32-channel and 64-channel array through a combination of higher intrinsic SNR and g-factor improvements. For unaccelerated imaging, the 128-channel array showed SNR gains of 17.6% and 9.3% compared to the 32-channel and 64-channel array, respectively, at the center of the brain and 42% and 18% higher SNR in the peripheral brain regions including the cortex. For R = 5 accelerated imaging, these gains were 44.2% and 24.3% at the brain center and 86.7% and 48.7% in the cortex. The 1/g-factor histograms show both an improved mean and a tighter distribution by increasing the channel count, with both effects becoming more pronounced at higher accelerations. CONCLUSION: The experimental results confirm that increasing the channel count to 128 channels is beneficial for 7T brain imaging, both for increasing SNR in peripheral brain regions and for accelerated imaging.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Razão Sinal-Ruído , Imagens de Fantasmas , Neuroimagem/métodos , Desenho de Equipamento
20.
Magn Reson Med ; 89(5): 1945-1960, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36598063

RESUMO

PURPOSE: In contrast to conventional MR, signal-to-noise ratio (SNR) is not linearly dependent on field strength in hyperpolarized MR, as polarization is generated outside the MR system. Moreover, field inhomogeneity-induced artifacts and other practical limitations associated with field strengths ≥ $$ \ge $$ 3T are alleviated at lower fields. The potential of hyperpolarized 13 $$ {}^{13} $$ C spectroscopy and imaging at 1.5T versus 3T is demonstrated in silico, in vitro, and in vivo for applications on clinical MR systems. THEORY AND METHODS: Theoretical noise and SNR behavior at different field strengths are investigated based on simulations. A thorough field comparison between 1.5T and 3T is performed using thermal and hyperpolarized 13 $$ {}^{13} $$ C spectroscopy and imaging. Cardiac in vivo data is obtained in pigs using hyperpolarized [1- 13 $$ {}^{13} $$ C]pyruvate spectroscopy and imaging at 1.5T and 3T. RESULTS: Based on theoretical considerations and simulations, the SNR of hyperpolarized MR at identical acquisition bandwidths is independent of the field strength for typical coil setups, while adaptively changing the acquisition bandwidth proportional to the static magnetic field allows for net SNR gains of up to 40% at 1.5T compared to 3T. In vitro 13 $$ {}^{13} $$ C data verified these considerations with less than 7% deviation. In vivo feasibility of hyperpolarized [1- 13 $$ {}^{13} $$ C]pyruvate dynamic metabolic spectroscopy and imaging at 1.5T is demonstrated in the pig heart with comparable SNR between 1.5T and 3T while B 0 $$ {}_0 $$ artifacts are noticeably reduced at 1.5T. CONCLUSION: Hyperpolarized 13 $$ {}^{13} $$ C MR at lower field strengths is favorable in terms of SNR and off-resonance effects, which makes 1.5T a promising alternative to 3T, especially for clinical cardiac metabolic imaging.


Assuntos
Aumento da Imagem , Imageamento por Ressonância Magnética , Animais , Suínos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Aumento da Imagem/métodos , Razão Sinal-Ruído , Campos Magnéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA