Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 283: 121765, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35998425

RESUMO

Hydrazine is an essential chemical in industries, but its high toxicity poses great threats to human health and environmental safety. Hence, it is of great significance to monitor the hydrazine in environment. In this work, we presented a chromogenic and fluorogenic dual-mode sensor RA for the detection of hydrazine based on nucleophilic substitution reaction. A linear relationship was obtained between the fluorescence intensity and the concentrations of N2H4 ranging from 0 to 35 µM (R2 = 0.9936). The sensor can determine hydrazine with fast response (within 12 min), low limit of detection (0.129 µM) and high selectivity. RA was successfully used to detect N2H4 in real water samples with good recoveries and the results corresponded to the standard method. Furthermore, the sensor-coated portable test papers were fabricated, which can visually quantify hydrazine solutions with obvious fluorescence transformation from colorless to red. Moreover, RA-loaded papers were used to create a smartphone-adaptable RGB values analytical method for quantitative N2H4 detection.


Assuntos
Corantes Fluorescentes , Smartphone , Humanos , Hidrazinas , Limite de Detecção , Espectrometria de Fluorescência/métodos
2.
Anal Sci ; 38(6): 869-880, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35325437

RESUMO

Total protein concentrations in the aqueous solutions were determined from the absorption spectra reproduced from smartphone-captured digital color images. We employed two different procedures for protein determination: the pyrogallol red molybdate method and Bradford's method. The principal-component-analysis-based reproduction process, which was previously reported by our research group, enabled the conversion of RGB values to score values for a linear combination of loading vectors to generate reproduced absorption spectra. The reproduced spectra were identical to those measured using a commercially available spectrophotometer. The total protein assays of commercial soymilk and human serum samples were carried out with both coloration reagents, and the obtained results were in good agreement with those attained using a conventional spectrophotometer. These results show that the proposed method enables smartphone-based ratiometric analysis of real samples without requiring any monochromating equipment.


Assuntos
Bioensaio , Smartphone , Colorimetria/métodos , Humanos , Espectrofotometria
3.
Environ Sci Pollut Res Int ; 29(37): 56684-56695, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35347616

RESUMO

Sunlight active blue emissive zirconium, nitrogen, and sulfur co-doped carbon dots (Zr-N-S-CDs) have been synthesized by microwave-induced pyrolysis for achieving efficient photocatalytic degradation of pollutant malachite green dye (MG) in water. Surface morphology studies using high-resolution transmission electron microscopy confirmed the formation of spherical-shaped CDs with an absorbance peak at 350 nm and emission peak at 437 nm in UV-vis and fluorescence spectroscopy, respectively. Surface functional groups, elemental composition, and metal/non-metal co-doping were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. To understand the photocatalytic performance of Zr-N-S-CDs, various parameters, such as the source of energy, concentration of dye, catalyst dosage, and change in pH, were investigated. MG dye (20 ppm) at a pH 7 with 0.5 mg/mL of Zr-N-S-CDs could be photodegraded efficiently in 90 min under sunlight (99%) compared to dark and artificial light conditions. Moreover, real-time analysis of degradation rate could be conveniently calculated by integrating the colorimetric responses of MG dye with RGB values obtained by the "Color Picker" app of a smartphone. The degradation rate obtained using a smartphone (97.89%) was found to be in agreement with the UV-vis spectroscopy (99%), thus, providing a new, handy, and instrument-free route for speedy and quantitative estimation of the degradation of hazardous MG dye by Zr-N-S-CDs.


Assuntos
Carbono , Água , Carbono/química , Corantes , Nitrogênio/química , Espectroscopia Fotoeletrônica , Corantes de Rosanilina , Smartphone , Enxofre/química , Água/química , Zircônio/química
4.
Anal Chim Acta ; 1144: 34-42, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33453795

RESUMO

Herein, we report our strategy to develop the efficient chemosensor and real-time monitoring technique for cyanuric chloride (TCT) detection. A luminescent macrocyclic mononuclear Sm(III) complex Sm-2k bearing with two dynamic imine bonds has been constructed via the template synthesis between dialdehyde H2Qk and matched diamine 1,2-bis(2-aminoethoxy)ethane. Sensing experiments reveal that complex Sm-2k exhibits the turn-off fluorescent and colorimetric response for TCT in CH3OH. It is especially encouraging that this optical sensing process is not only rapid within 60 s but also high-efficient in the presence of TCT analogues as well as sensitive with the low limit of detection (LOD, 1.74 µM) and wide linear sensing range. Mechanism studies demonstrate that TCT sensing is mainly based on the imine bond transformation of probe Sm-2k, which is due to the increased acidity induced by TCT. Meanwhile, a smartphone-based analytical method was developed to make complex Sm-2k accessible for the real-time TCT detection by RGB value outputs. It is believed that this work can shed some constructive lights on design of chemosensors and convenient detection technique for highly reactive analytes.

5.
Talanta ; 225: 122065, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33592784

RESUMO

The development of convenient and efficient fluorescence techniques is of great significance for selective detection and precise determination of biotoxic N2H4 in human health and environmental sciences. By the pre-organization-assisted template synthesis, disclosed here is a luminescent Sm(III) macrocycle-based probe Sm-2m bearing dynamic imine bonds as recognition moieties which provides the selective and ratiometric turn-off fluorescence sensing for N2H4 over various amine species based on the N2H4-induced structure transformation. This fluorescent sensing process finished within 20 min shows the low limit of detection (0.18 µM, 7.2 ppb) and wide linear sensing range (0-60.0 µM). Furthermore, probe Sm-2m is also be used to quantitatively determine N2H4 in vapor gas and water samples through fluorescence color changes, which are evaluated by the Sm-2m-impregnated test paper strips and RGB value outputs. Finally, our proposed smartphone-based analytical method gives satisfactory N2H4 detection results. It is thus believed that this work can shed some lights on development of optical probes and detection techniques for N2H4, even other hazardous chemicals.

6.
ACS Sens ; 2(8): 1152-1159, 2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28722404

RESUMO

Developing thiosulfate (S2O32-) sensors with silver nanoparticles (AgNPs) for analysis of aqueous solutions with the interference of other anions remains challenging. In this study, we propose a new strategy for excellent selective colorimetric detection of S2O32-. The nonmorphological transition of AgNPs leading to a color change from yellow to brown is verified by UV-vis, TEM, DLS, SEM, and XPS analyses. The sensor exhibits high sensitivity with detection limits of 1.0 µM by naked-eye determination and 0.2 µM by UV-vis spectroscopy analysis. The linear relationship (R2 = 0.998) between the (A0 - A)/A0 values and S2O32- concentrations from 0.2 µM to 2.0 µM indicates that the fabricated AgNPs-based colorimetric sensor can be employed for quantitative assay of S2O32-. Colorimetric responses are also monitored using the built-in camera of a smartphone. The sensor shows a linear response to S2O32- in 0-20.0 µM solutions under the optimized conditions and is thus more suitable for rapid on-site tests than other detection methods. A smartphone application (app) is downloaded under Android or IOS platforms to measure the RGB (red, green, blue) values of the colorimetric sensor after exposure to the analyte. Following data processing, the RGB values are converted into concentration values by using preloaded calibration curves. Confirmatory analysis indicates that the proposed S2O32- colorimetric sensor exhibits feasibility and sensitivity for S2O32- detection in real environmental samples.

7.
Healthc Technol Lett ; 1(3): 92-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26609385

RESUMO

In the context of home-based healthcare monitoring systems, it is desirable that the results obtained from biochemical tests - tests of various body fluids such as blood and urine - are objective and automatically generated to reduce the number of man-made errors. The authors present the StripTest reader - an innovative smartphone-based interpreter of biochemical tests based on paper-based strip colour using image processing techniques. The working principles of the reader include image acquisition of the colour strip pads using the camera phone, analysing the images within the phone and comparing them with reference colours provided by the manufacturer to obtain the test result. The detection of kidney damage was used as a scenario to illustrate the application of, and test, the StripTest reader. An extensive evaluation using laboratory and human urine samples demonstrates the reader's accuracy and precision of detection, indicating the successful development of a cheap, mobile and smart reader for home-monitoring of kidney functioning, which can facilitate the early detection of health problems and a timely treatment intervention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA