RESUMO
Digestate from biogas plants managing municipal solid waste needs to be stabilized prior to final utilization or disposal. Based on the concept of urban mining, aged refuse from a closed landfill was used to treat landfill leachate, but nitrogen removal by biological denitrification was limited. The aim of this study was to use a digestate layer in bioreactors containing aged refuse to enhance the biological denitrification capacity of the aged refuse, stabilize digestate, and mitigate the ammonia emissions from digestate leaching with leachate recirculation. Six identical landfill columns filled with 0% (R0), 5% (R5), and 15% (R15) of solid digestate above aged refuse (ratios based on Total Solids) were setup and nitrified leachate was periodically fed and recirculated to the columns. The nitrate removal rate in R5 and R15 was 3.4 and 10 times higher relative to the control (no digestate added). A 31.5-35.9% increase of solid digestate biostability was confirmed by tests performed under both aerobic and anaerobic conditions. The results showed that instead of land use, the solid fraction of digestate could be utilized as an inexpensive functional layer embedded in an old landfill site to enhance the denitrification capacity and achieve digestate stabilization with minimal ammonia leaching from digestate.
RESUMO
Sewage sludge, a complex mixture of contaminants and pathogenic agents, necessitates treatment or stabilization like anaerobic digestion (AD) before safe disposal. AD-derived products (solid digestate and liquid fraction) can be used as fertilizers. During AD, biogas is also produced, and used for energy purposes. All these fractions can be contaminated with various compounds, whose amount depends on the feedstocks used in AD (and their mutual proportions). This paper reviews studies on the distribution of organic contaminants across AD fractions (solid digestate, liquid fraction, and biogas), delving into the mechanisms behind contaminant dissipation and proposing future research directions. AD proves to be a relatively effective method for removing polychlorinated biphenyls, polycyclic aromatic hydrocarbons, pharmaceuticals, antibiotic resistance genes and hydrocarbons. Contaminants are predominantly removed through biodegradation, but many compounds, especially hydrophobic (e.g. per- and polyfluoroalkyl substances), are also sorbed onto digestate particles. The process of sorption is suggested to reduce the bioavailability of contaminants. As a result of sorption, contaminants accumulate in the largest amount in the solid digestate, whereas in smaller amounts in the other AD products. Polar pharmaceuticals (e.g. metformin) are particularly leached, while volatile methylsiloxanes and polycyclic aromatic hydrocarbons, characterized by a high Henry's law constant, are volatilized into the biogas. The removal of compounds can be affected by AD operational parameters, the type of sludge, physicochemical properties of contaminants, and the sludge pretreatment used.
Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Biodegradação Ambiental , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Bifenilos Policlorados/análise , Bifenilos Policlorados/metabolismoRESUMO
Recirculation of solid digestate through digesters has been demonstrated to be a potential simple strategy to increase continuous stirred-tank reactor biogas plant efficiency. This study extended this earlier work and investigated solid digestate post-treatment using liquid isolated ligninolytic aerobic consortia in order to increase methane recovery during the recirculation. Based on sampling in several natural environments, an enrichment and selection method was implemented using a Lab-scale Automated and Multiplexed (an)Aerobic Chemostat system to generate ligninolytic aerobic consortia. Then, obtained consortia were further cultivated under liquid form in bottles. Chitinophagia bacteria and Sordariomycetes fungi were the two dominant classes of microorganisms enriched through these steps. Finally, these consortia where mixed with the solid digestate before a short-term aerobic post-treatment. However, consortia addition did not increase the efficiency of aerobic post-treatment of solid digestate and lower methane yields were obtained in comparison to the untreated control. The main reason identified is the respiration of easily degradable fractions (e.g., sugars, proteins, amorphous cellulose) by the selected consortia. Thus, this paper highlights the difficulties of constraining microbial consortia to sole ligninolytic activities on complex feedstock, such as solid digestate, that does not only contain lignocellulosic structures.
RESUMO
Effect of solid digestate biochar (DB) on nitrogen cycle and balance was evaluated during composting by adding DB into mixtures of pig manure and Lycium chinensis branch filings. Results indicated that DB addition improved composting microenvironment and increased the total N content of the final product. Furthermore, N balance calculation indicated that the NH3 and N2O emissions accounted for 72.14%-81.39% and 0.49%-2.37% of the total N loss without DB addition, respectively. After using DB, the N reductions in the form of NH3 and N2O reduced from 10.78% to < 5.73% and from 0.34% to < 0.041% of total N, respectively. Addition of DB affected N fixation with 92.32%-93.67% of total N fixed in the compost than that of the T1 treatment (85.63%). DB amendment enhanced the aerobic bacterial communities and hindered anaerobic bacterial growth, thus benefiting the NH3 and N2O emission mitigation and N conservation.
Assuntos
Compostagem , Animais , Carvão Vegetal , Esterco , Nitrogênio/análise , Ciclo do Nitrogênio , Solo , SuínosRESUMO
This study examined the environmental impacts and energy consumption of three solid digestate treatment scenarios to quantify their impacts on the entire food waste (FW)-based biogas system: (1) incineration; (2) composting, and; (3) landfill. The results showed that composting had the largest net energy consumption, but least total environmental impact of 57.3 kWh and 8.75 E-03, respectively, whereas landfill showed the opposite pattern. Moreover, there were significant differences (p < 0.05) and relatively high contributions between the digestate treatment subunits among the three scenarios. The most significant contributions of digestate subunits in methods 1-3 to the 100-year global warming potential (GWP100) were 70.5%, 52.5%, and 103.4%, respectively. The results indicated that solid digestate treatment had a significant impact, and reasonable disposal of solid digestate could significantly reduce the environmental impacts and energy consumption of the entire FW-based biogas system.
Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Biocombustíveis , Meio Ambiente , Alimentos , Resíduos Sólidos/análiseRESUMO
This review was aimed to summarize and critically evaluate studies on removal of veterinary antibiotics (VAs), antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) with anaerobic digestion (AD) of manure and demonstrate areas of focus for improved removal efficiency. The environmental risks associated to the release of the same were also critically evaluated. The potential of AD and advanced AD of manure on removal rate of VAs, ARGs and MGEs was thoroughly assessed. In addition, the role of post and pre-AD treatments and their potential to support VAs and ARGs removal efficiency were evaluated. The overall review results show disparity among the different groups of VAs in terms of removal rate with relatively higher efficiency for ß-lactams and tetracyclines compared to the other groups. Some of sulfonamides, fluoroquinolones and macrolides were reported to be highly persistent with removal rates as low as zero. Within group differences were also reported in many literatures. Moreover, removal of ARGs and MGEs by AD was widely reported although complete removal was hardly possible. Even in rare scenarios, some AD conditions were reported to increase copies of specific groups of the genes. Temperature pretreatments and temperature phased advanced AD were also reported to improve removal efficiency of VAs while contributing to increased biogas production. Moreover, a few studies also showed the possibility of further removal by post-AD treatments such as liquid-solid separation, drying and composting. In conclusion, the various studies revealed that AD in its current technological level is not a guarantee for complete removal of VAs, ARGs and MGEs from manure. Consequently, their possible release to the soils with digestate could threaten the healthcare and disturb soil microbial ecology. Thus, intensive management strategies need to be designed to increase removal efficiency at the different manure management points along the anaerobic digestion process.
Assuntos
Antibacterianos/farmacologia , Esterco , Anaerobiose , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Genes Bacterianos/efeitos dos fármacosRESUMO
Solid digestate generated in the anaerobic digestion of food wastes was evaluated as a potential feedstock for biochar preparation by pyrolysis in this study. To understand the pyrolysis mechanism, thermogravimetric experiments were firstly implemented at different heating rates, then apparent activation energy during pyrolysis was calculated by using the Starink isoconversional method, ranging from 144.64 kJ/mol to 293.36 kJ/mol with the conversion increasing in the region from 0.10 to 0.90. The evolutions of released volatiles were accurately and continuously analyzed by TG-FTIR-MS. Results show that dehydration and CO2 emission were the main reasons for mass loss, and light hydrocarbons were released in step II of the pyrolysis process. Elemental compositions and surface properties of the biochars obtained at different pyrolysis temperatures were characterized by EA, XRF and BET. The obtained results provide an alternative strategy for disposing waste generated in anaerobic digestion of food waste.
Assuntos
Pirólise , Eliminação de Resíduos , Carvão Vegetal , AlimentosRESUMO
Biogas plants for waste treatment valorization are presently experiencing rapid development, especially in the agricultural sector, where large amounts of digestate are being generated. In this study, we investigated the effect of vibro-ball milling (VBM) for 5 and 30 min at a frequency of 20 s-1) on the physicochemical composition and enzymatic hydrolysis (30 U g-1 total solids (TS) of cellulase and endo-1,4-xylanase from Trichoderma longibrachiatum) of dry and wet solid digestates from an agricultural biogas plant. We found that VBM of dry solid digestate improved the physical parameters as both the particle size and the crystallinity index (from 27% to 75%) were reduced. By contrast, VBM of wet solid digestate had a minimal effect on the physicochemical parameters. The best results in terms of cellulose and hemicelluloses hydrolysis were noted for 30 min of VBM of dry solid digestate, with hydrolysis yields of 64% and 85% for hemicelluloses and cellulose, respectively. For the condition of 30 min of VBM, bioethanol and methane production on the dry solid separated digestate was investigated. Bioethanol fermentation by simultaneous saccharification and fermentation resulted in an ethanol yield of 98 geth kg-1 TS (corresponding to 90% of the theoretical value) versus 19 geth kg-1 TS for raw solid digestate. Finally, in terms of methane potential, VBM for 30 min lead to an increase of the methane potential of 31% compared to untreated solid digestate.
RESUMO
Anaerobic digestion of organics is one of the most used solution to gain renewable energy from waste and the final product, the digestate, still rich in putrescible components and nutrients, is mainly considered for reutilization (in land use) as a bio-fertilizer or a compost after its treatment. Alternative approaches are recommended in situations where conventional digestate management practices are not suitable. Aim of this study was to develop an alternative option to use digestate to enhance nitrified leachate treatment through a digestate layer in a landfill bioreactor. Two identical landfill columns (Ra and Rb) filled with the same solid digestate were set and nitrified leachate was used as influent. Ra ceased after 75â¯day's operation to get solid samples and calculate the C/N mass balance while Rb was operated for 132â¯days. Every two or three days, effluent from the columns were discarded and the columns were refilled with nitrified leachate (average N-NO3-concentrationâ¯=â¯1,438â¯mg-N/L). N-NO3- removal efficiency of 94.7% and N-NO3- removal capacity of 19.2â¯mgâ¯N-NO3-/gTS-digestate were achieved after 75â¯days operation in Ra. Prolonging the operation to 132â¯days in Rb, N-NO3- removal efficiency and N-NO3- removal capacity were 72.5% and 33.1â¯mgâ¯N-NO3-/gTS-digestate, respectively. The experimental analysis of the process suggested that 85.4% of nitrate removal could be attributed to denitrification while the contribution percentage of adsorption was 14.6%. These results suggest that those solid digestates not for agricultural or land use, could be used in landfill bioreactors to remove the nitrogen from old landfill leachate.
Assuntos
Reatores Biológicos , Nitrogênio/química , Instalações de Eliminação de Resíduos , Desnitrificação , Poluentes Químicos da ÁguaRESUMO
Anaerobic co-digestion of tomato residues, dairy manure, and corn stover at ratios of 20:48:32, 40:36:24, and 60:24:16 (volatile solid basis) were compared for liquid anaerobic digestion (L-AD), hemi-solid state AD (HSS-AD), and solid state AD (SS-AD) systems. The highest methane yield (353.5â¯L/kg-VSadded) and volumetric methane productivity (24.5â¯m3methane/m3reactor volume) were both obtained with 20% tomato residues addition under L-AD and HSS-AD conditions, respectively. Total solid and feedstock mixing ratio affected the degradation of protein and lipids during AD, but not cellulose and hemicellulose. Economic analysis results indicated that capital and labor costs have the dominant effect on total investment. SS-AD of tomato residues, dairy manure, and corn stover at ratios of 20:48:32 (VS basis) has the highest net present value (2.6 million US$) and shortest payback period (10.1â¯year), which indicated SS-AD was financially attractive under analysis conditions.
Assuntos
Esterco , Anaerobiose , Reatores Biológicos/economia , Análise Custo-Benefício , Solanum lycopersicum/metabolismo , Metano/biossíntese , Zea mays/metabolismoRESUMO
This study investigated the effect of the feedstock-to-inoculum (F/I) ratio on performance of the solid-state anaerobic co-digestion of pig urine and rice straw inoculated with a solid digestate, and clarified the microbial community succession. A 44-day biochemical methane potential test at F/I ratios of 0.5, 1, 2 and 3 at 55⯰C and a 35-day large-scale batch test at F/I ratios of 0.5 and 3 at 55⯰C were conducted to investigate the effects of F/I ratio on anaerobic digestibility and analyze microbial community succession, respectively. The highest cumulative methane yield was 353.7â¯m3/t VS in the large-scale batch test. Volatile fatty acids did not accumulate at any F/I ratios. The volatile solids reduction rate was highest at a F/I ratio of 0.5. Microbial community structures were similar between F/I ratios of 3 and 0.5, despite differences in digestion performance, suggesting that stable operation can be achieved at these ratios.
Assuntos
Reatores Biológicos , Ácidos Graxos Voláteis , Metano , Oryza , Anaerobiose , Animais , Digestão , SuínosRESUMO
In the study, the biogas digestate was evaluated as a potential feedstock for preparing biochars at a broad temperature range of 300-900°C. The physico-chemical and pore properties of the resulting biochars (denoted as SDBC, solid digestate biochar), including calorific value (higher heating value), surface area/pore volume/pore size distribution, true density, scanning electron microscopy - energy dispersive X-ray spectroscopy (SEM-EDS) and X-ray powder diffraction (XRD), were studied. It was found that the higher heating values of the SDBC products were on a decreasing trend as pyrolysis temperature increased, but they indicated an increase in true density. The results are probably associated with the active pyrolysis of the lignocellulosic fragments and the calcination (or shrinkage) processes, thus resulting in the increased contents of aromatic carbon clusters and main mineral constituents remained. Based on the pore properties, pyrolysis temperature at around 800°C seemed to be the optimal condition for producing SDBC, where its Brunauer-Emmet-Teller (BET) surface area (>100m2/g) largely increased as compared to that of the digestate feedstock (<1m2/g). Furthermore, the main compositions of mineral ash in the resulting biochar could exist as phosphates, carbonates, or oxides of calcium and other alkali/alkaline earth elements. According to the data on EDS and XRD, more pores could be significantly generated under severe pyrolysis (>700°C) due to the high aromaticity via the thermal decomposition of lignocelluloses and the volatilization of inorganic minerals.
Assuntos
Biocombustíveis , Carvão Vegetal , Temperatura , Difração de Raios XRESUMO
Pretreatment with ozone combined with aqueous ammonia was used to recover residual organic carbon from recalcitrant solid digestate for ethanol production after anaerobic digestion (AD) of rice straw. Methane yield of AD at mesophilic and thermophilic conditions, and ethanol production of solid digestate were investigated. The results showed that the methane yield at thermophilic temperature was 72.2% higher than that at mesophilic temperature under the same conditions of 24days and 17% solid concentration. And also the ethanol production efficiency of solid digestate after thermophilic process was 24.3% higher than that of solid digestate after mesophilic process. In this study, the optimal conditions for integrated methane and ethanol processes were determined as 55°C, 17% solid concentration and 24days. 58.6% of glucose conversion, 142.8g/kg of methane yield and 65.2g/kg of ethanol yield were achieved, and the highest net energy balance was calculated as 6416kJ/kg.