RESUMO
The focus of this paper is laid on synthesizing layered compounds of CuMoO4 and Ti3C2Tx using a simple wet chemical etching method and sonochemical method to enable rapid detection of rutin using an electrochemical sensor. Following structural examinations using XRD, surface morphology analysis using SEM, and chemical composition state analysis using XPS, the obtained CuMoO4/Ti3C2Tx nanocomposite electrocatalyst was confirmed and characterized. By employing cyclic voltammetry and differential pulse voltammetry, the electrochemical properties of rutin on a CuMoO4/Ti3C2Tx modified electrode were examined, including its stability and response to variations in pH, loading, sweep rate, and interference. The CuMoO4/Ti3C2Tx modified electrode demonstrates rapid rutin sensing under optimal conditions and offers a linear range of 1 µΜ to 15 µΜ, thereby improving the minimal detection limit (LOD) to 42.9 nM. According to electrochemical analysis, the CuMoO4/Ti3C2Tx electrode also demonstrated cyclic stability and long-lasting anti-interference capabilities. The CuMoO4/Ti3C2Tx nanocomposite demonstrated acceptable recoveries when used to sense RT in apple and grape samples. In comparison to other interfering sample analytes encountered in the current study, the developed sensor demonstrated high selectivity and anti-interference performance. As a result, our research to design of high-performance electrochemical sensors in the biomedical and therapeutic fields.
Assuntos
Antioxidantes , Nanocompostos , Titânio , Cromatografia Gasosa , RutinaRESUMO
Bismuth sulfide (Bi2S3) nanowires were synthesized successfully by a facile sonochemical method from Bi(DTC)3 as a single source precursor. The structural, vibrational, morphological properties and the functional groups of the samples were confirmed by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis and Raman spectroscopy techniques. The formation of pure phase of Bi2S3 and nanowires like morphology was confirmed by powder XRD and SEM analysis. The purity and elemental composition of Bi2S3 nanowires were confirmed by EDX analysis. The electrochemical properties of Catechol (CC) at the modified electrode were studied with the presence of Bi2S3 nanowires modified GCE electrode in aqueous solution with different scan rate and concentration. A novel method for determination of catechol using cyclic voltammetry (CV) was investigated. The homogeneous rate constants were estimated by comparing the experimental CV responses with the digital simulated results.
RESUMO
Photocatalytic degradation is an excellent method for removing pharmaceutical residues due to their simplicity, ecological benignity, high efficiency, and exceptional stability. Herein, we demonstrate the sonochemically synthesised chitosan biopolymer functionalized copper oxide nanoparticles as an efficient photocatalyst for the degradation of fluoroquinolone-based antibiotics. The X-ray diffraction Rietveld refinement revealed the formation of single-phase copper oxide (CuO) with a monoclinic structure. The presence of biopolymer functionalization was corroborated by Fourier Transform Infrared spectroscopy by observing the -NH2 and -OH functional groups. The high-resolution transmission electron microscopic images inferred that Chitosan functionalized copper oxide (C-CuO) particles are nano-sized with a smooth texture and aggregation-free particles. The strong absorbance and the broad photoluminescence emission in the ultraviolet-visible region confirm the suitability of CuO and C-CuO nanoparticles for photocatalytic applications. The catalytic activity was studied against fluoroquinolone-based antibiotics such as ciprofloxacin and norfloxacin under direct sunlight illumination. Interestingly, the C-CuO catalyst demonstrated 71.07 % (@140 min.) and 71.9 % (@60 min.) of degradation for ciprofloxacin and norfloxacin, respectively. The obtained photocatalytic activity of the prepared CuO and C-CuO catalysts was superior to the CuO particles prepared by the coprecipitation method (CC-CuO).
Assuntos
Quitosana , Nanopartículas , Cobre/química , Norfloxacino , Nanopartículas/química , Fluoroquinolonas , Antibacterianos/química , Óxidos , CiprofloxacinaRESUMO
Giardia intestinalis is a pollutant of food and water, resistant to conventional disinfection treatments and its elimination requires effective methods action. Herein, mid-high-frequency ultrasound (375 kHz), which produces HO⢠and H2O2, was used as an alternative method of treatment to inactivate Giardia intestinalis cysts in water. The effect of ultrasound power (4.0, 11.2, 24.4 W) on the sonogeneration of radicals was tested, showing that 24.4 W was the condition most favorable to treat the parasite. The viability of the protozoan cysts was evaluated using the immunofluorescence technique and vital stains, showing this protocol was useful to quantify the parasite. The sonochemical method (at 375 kHz and 24.4 W) was applied at different treatment times (10, 20, and 40 min). A significant decrease in the protozoan concentration (reduction of 52.4% of viable cysts) was observed after 20 min of treatment. However, the extension of treatment time up to 40 min did not increase the inactivation. Disinfecting action was associated with attacks on the Giardia intestinalis cyst by sonogenerated HO⢠and H2O2 (which may induce structural damage, even the cell lysis). For future work is recommended to test combinations with UVC or Fenton process to enhance the inactivating action of this method.â¢Mid-high-frequency ultrasound produces HO⢠and H2O2 profitable to inactivate Giardia intestinalis.â¢Immunofluorescence technique and vital stains allowed us to quantify the parasite viability.â¢Giardia intestinalis cysts concentration decreased by 52.4% after only 20 min of sonication.
RESUMO
The combination of graphene-based materials and inorganic nanoparticles for the enhancement of the nanomaterial properties is extensively explored nowadays. In the present work, we used a sonochemical method to synthesize a copper/reduced graphene oxide (Cu/RGO) nanocomposite using Australian honey and vitamin C as capping and reducing agents, respectively. The honey-mediated copper/reduced graphene oxide (H/Cu/RGO) nanocomposite was then characterized through UV-visible, XRD, HRTEM, and FTIR analysis. The copper nanoparticles (Cu-NPs) in the nanocomposite formed uniform spherical shapes with a size of 2.20 ± 0.70 nm, which attached to the reduced graphene oxide (RGO) layers. The nanocomposite could suppress bacterial growth in both types of bacteria strains. However, in this study, the nanocomposite exhibited good bactericidal activity toward the Gram-positive bacteria than the Gram-negative bacteria. It also showed a cytotoxic effect on the cancer colorectal cell line HCT11, even in low concentrations. These results suggested that the H/Cu/RGO nanocomposite can be a suitable component for biomedical applications.
RESUMO
Transition metal (TM) core-platinum (Pt) shell nanoparticles (TM@Pt NPs) are attracting a great deal of attention as highly active and durable oxygen reduction reaction (ORR) electrocatalysts of fuel cells and metal-air batteries. However, most of the reported synthesis methods of TM@Pt NPs are multistep in nature, a significant disadvantage for real applications. In this regard, our group has reported a single-step method to synthesize TM@Pt NPs for TM = Mn, Fe, Co, and Ni by using sonochemistry, namely the UPS (ultrasound-assisted polyol synthesis) method. Previously, we proposed the mechanism of the formation of these TM@Pt NPs by UPS method, but rather in a rough sense. Some details are missing and the optimal conditions have not been established. In the present work, we performed detailed studies on the formation mechanism of UPS reaction by using Fe@Pt NPs as the model system. Effects of synthesis parameters such as the nature of metal precursor, conditions of ultrasound, and temperature profile as a function of reaction time were assessed, along with the analyses of intermediates during the UPS reaction. As results, we verified our previously proposed mechanism that, under appropriate conditions, Fe core is formed through the cavitation and implosion of the solvent, induced by the ultrasound, and the Pt shell is formed by the chemical reaction between Fe core and Pt reagent, independent from the direct effect of ultrasound. In addition, we established the optimal conditions to obtain a high purity Fe@Pt NPs in a high yield (>90% based on Pt), which may enable the increase of synthesis scale of Fe@Pt NPs, a necessary step for the real application of TM@Pt NPs.
RESUMO
Nitrogen-doped carbon nanodots (N@CDs) were prepared by hydrothermal processing of bovine serum albumin (Mw: 69,324 with 607 amino acids). A polyaniline (PANI-N@CDs) nanocomposite was then synthesized by ultrasonication and used to degrade Congo red (CR), methylene blue (MB), Rhodamine B (RhB), and crystal violet (CV) four common organic dyes. The PANI-N@CD nanocomposite simultaneously adsorbed and concentrated the dye from the bulk solution and degraded the adsorbed dye, resulting in a high rate of dye degradation. The combination of holes (h+), hydroxyl (OHâ¢), and O2â¢- was involved in the N@CD-mediated photocatalytic degradation of the dyes. Under visible light illumination at neutral pH, the PANI-N@CDs were proven as an efficient adsorbent and photocatalyst for the complete degradation of CR within 20 min. MB and RhB were also degraded but required longer treatment times. These findings supported the design of remediation processes for such dyes and predicted their fate in the environment. The nanocomposite also exhibited antimicrobial activities against Gram-negative bacterium E. coli and Gram-positive bacterium S. aureus.
RESUMO
In this study, a biocompatible folate-decorated reductive-responsive carboxymethylcellulose-based nanocapsules (FA-RCNCs) were designed and prepared via sonochemical method for targeted delivery and controlled release of hydrophobic drugs. The shell of FA-RCNCs was cross-linked by disulfide bonds formed from hydrosulfuryl groups on the thiolated carboxymethylcellulose (TCMC) and encapsulated hydrophobic drug dispersed in the oil phase into nanocapsules. Moreover, the size and morphology of drug loaded FA-RCNCs were characterized by DLS, SEM and CLSM which indicated that the synthesized nanocapsules have suitable size range and excellent stability for circulating in the bloodstream. The drug release rate of FA-RCNCs could be controlled by adjusting their sizes and shell thickness, which could be dominated by the concentration of TCMC and sonochemical conditions. Furthermore, the obtained FA-RCNCs could be ingested into Hela cells via folate-receptor (FR)-mediated endocytosis and quickly release drugs under reductive environment, which demonstrated that FA-RCNCs could become potential hydrophobic drugs carries for cancer therapy.
Assuntos
Carboximetilcelulose Sódica/química , Portadores de Fármacos/química , Ácido Fólico/análogos & derivados , Nanocápsulas/química , Carboximetilcelulose Sódica/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/química , Portadores de Fármacos/síntese química , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Ácido Fólico/toxicidade , Humanos , Nanocápsulas/toxicidade , Tiazóis/química , Ondas UltrassônicasRESUMO
In this study, lead oxide (PbO) nanostructures are fabricated by an ultrasound-assisted sonochemical method, and re-ultrasonic effects on them are investigated. In the synthesis process, lead nitrate powder is used as a precursor, and potassium hydroxide serves as a precipitation agent. The resulting samples are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform-infrared spectroscopy (FT-IR). Re-ultrasound is also performed to terminate the growth of the PbO nanorods, stabilize them, and preserve their morphology. According to the XRD results, the re-ultrasonic effect did not change the crystal phases, and the tetragonal and orthorhombic crystal phases were preserved. The effect of the calcination time was investigated too; an increase in it led to a decrease in the irregular nanorods size but an increase in the crystallite size.
RESUMO
Optimization of sonochemical method of functionalizing a Silane coupling agent, Amino-Silane on Superparamagnetic Iron Oxide Nanoparticles (SPION) using Central Composite Design is reported. The Amino-Silane is grafted on the SPION in an iced bath environment using a Vibra-Cell 20â¯kHz ultrasonic irradiator with 13â¯mm diameter horn. Throughout the experiment amplitude of the ultrasonic device is maintained at 47%. The percentage atomic compositions of various APTES elements which bind to the SPION due to the ultrasonic irradiation were determined using X-ray photoelectron spectrometer (XPS). The influence of ultrasonic irradiation time and amount of APTES required for facile, rapid and effective functionalization of Organo-metallic compound on SPION are optimized. The optimized sonication time and amount of APTES are 8.49â¯min and 3.40â¯ml, respectively. The predicted results were validated with experimental data. Using the optimized values APTES were functionalized on the SPION experimentally and the results were compared. The experimental results validate the predicted data. Results show that very minimum sonication time is required for effective grafting of APTES on SPION.
RESUMO
Near-well blockage caused by asphaltene deposition often occurs during the process of crude oil exploitation. It can reduce the porosity and permeability of reservoirs and seriously affects the migration and exploitation of oil and gas. In this paper, removing near-well blockage caused by asphaltene deposition using sonochemical method is investigated. Six PTZ transducers with different parameters are used to study the deplugging effect. Results show that the optimal ultrasonic frequency and power for plugging removal are 20 kHz and 1000 W respectively. it is found that lower ultrasonic frequency is good for asphaltene deposition plug removal when ultrasonic power is constant; as the power of the sensor increases, the effect of removing the asphaltene deposition plug gets better, ultrasonic power can well make up for the attenuation of ultrasonic energy caused as frequency increases; the effects of removing asphaltene deposition plug for the three cores with different initial gas logging permeability all get worse no matter what type of transducer is used; the effect of asphaltene deposition plug removal for the three cores samples all become better and then tend to be stable as ultrasonic treatment time increases further; considering of reducing construction cost and oil reservoir protection, ultrasonic processing has a lot of unexampled advantages compared with chemical injection, such as good adaptability, low cost, simple operation, non-pollution and benefit for the sustainable development of oil field; affected by the synergistic effect of ultrasonic and chemical agents, the combined treatment effect of ultrasound and chemical agents is significantly better than using ultrasound or chemical agents alone.
RESUMO
Herein, the synthesis of copper ferrite nanoparticles (CuFe2O4 NPs)/chitosan have been prepared by sonochemical route under ultrasonic irradiation bath at 40 kHz and 50 W. A high sensitive and stable modified electrochemical sensor was developed using a composition of copper ferrite nanoparticles coordinated with biopolymer through a facile ultrasound approach. Besides, power and frequency parameters are highly important for sonochemical synthesis and specifically structure, and size of the nanomaterials development during the ultrasonic irradiation time. In this work, ultrasonic bath was used to synthesis of CuFe2O4 nanomaterial at 40 kHz with 1 h. CuFe2O4/chitosan was characterized by FESEM, EDX, XRD and electrochemical methods. Furthermore, 8-hydroxyguanine is one of biomarker by oxidative stress. The concentrations of 8-hydroxyguanine within a cell are a measurement of oxidative stress in human body. Consequently, the measurement of 8-hydroxyguanine in blood serum samples with high specificity is of greatest importance. The CuFe2O4/chitosan modified electrode is displayed a low detection limit of 8.6 nM and long linear range (0.025-697.175 µM).
Assuntos
Quitosana/química , Cobre/química , Técnicas Eletroquímicas/instrumentação , Compostos Férricos/química , Nanopartículas/química , Humanos , Limite de Detecção , Estresse OxidativoRESUMO
In this paper, for the first time, composite nanostructures of Cu2O-CeO2 were prepared by a facile and single-step sonochemical method for thiophene photocatalytic oxidative desulfurization. Sonication was performed utilizing a high-intensity ultrasonic probe with a maximum output power of 80 Wcm-3 and operating frequency at 20 kHz. The direct effect of ultrasonic waves on the composition and morphology of the obtained products was also evaluated and it was found that under ultrasonic irradiation, Cu2O-CeO2 can be produced while the main product in the absence of ultrasonic waves is CuO-CeO2. Cu2O-CeO2 exhibits much higher photocatalytic efficiency (84%) than CuO-CeO2 (39%) due to its higher light absorption and electron synergistic effect. The effect of Ce:Cu on photocatalytic efficiency was examined by considering the ratios of 1:0.25, 1:1, 0.5:1, and 0.25:1 and yields of 64, 81, 84, and 76% were obtained, respectively. This indicates that there is an optimal value for the Ce:Cu ratio in the Cu2O-CeO2 nanocomposite.
RESUMO
A novel network-like magnetic nanoparticle was fabricated on a graphitic carbon nitride through a facile sonochemical route at frequency 20 kHz and power 70 W. To enhance the electrocatalytic activity of the modified materials, the graphitic carbon nitrides (g-C3N4) was prepared from melamine. Monitoring of xanthine concentration level in biological fluids is more important for clinical diagnosis and medical applications. As modified CuFe2O4/g-C3N4 nanocomposite exhibits better electrochemical activity towards the oxidation of xanthine with higher anodic current compared to other modified and unmodified electrode for the detection of xanthine with larger linear range (0.03-695 µM) and lower limit of detection (13.2 nM). To compare with these methods, the electrochemical techniques may be an alternative high sensitive method due to their simplicity and rapid detection time. In addition, the practical feasibility of the sensor was inspected with biological samples, reveals the acceptable recovery of the sensor in real samples.
RESUMO
In the present work describes a facile synthesis of tin disulfide (SnS2) nanorods decorated graphene-ß-cyclodextrin (SnS2/GR-ß-CD) nanocomposite for robust and novel dopamine (DA) electrochemical biosensor applications. The DA biosensor was fabricated using the glassy carbon electrode (GCE) modified with SnS2/GR-ß-CD nanocomposite. The sonochemical and hydrothermal methods have been used for the synthesis of SnS2/GR-ß-CD. Different physicochemical methods were used to confirm the formation of the GR-ß-CD, SnS2, and SnS2/GR-ß-CD nanocomposite. The cyclicvoltammetric cathodic current response of DA was 5 folds higher than those observed at bare, ß-CD, SnS2-ß-CD, and GR-ß-CD modified GCEs. Under optimised conditions, the biosensor's DPV response current is linear to DA from the concentration of 0.01-150.76⯵M. The detection limit of the biosensor was 4â¯nM. The SnS2/GR-ß-CD biosensor shows an excellent selectivity towards DA in the presence of common interfering species, including ascorbic acid and uric acid. Also, the as-prepared nanocomposite-modified electrode exhibited satisfactory long-term stability, sensitivity (2.49⯵AµM-1 cm-2) along with reusability for detection of DA. The fabricated SnS2/GR-ß-CD biosensor was successfully used for the detection of DA in the rat brain and human blood serum samples.
Assuntos
Encéfalo/metabolismo , Dissulfetos/química , Dopamina/sangue , Grafite/química , Nanocompostos/química , Nanotubos/química , Estanho/química , beta-Ciclodextrinas/química , Animais , Técnicas Biossensoriais , Técnicas Eletroquímicas , Humanos , Limite de Detecção , Nanotubos/ultraestrutura , Oxirredução , Ratos , Difração de Raios XRESUMO
The agricultural wastes disposal and polluted water purification are always the key issues of environmental restoration. In this work, a magnetic biogas residue-based biochar (mBR-C) by direct pyrolysis and sonochemical method was prepared from biogas residue (BR). Response design methodology based on Box-Behnken design was used for the preparation parameters optimization. The characterization results identified that mBR-C had well-developed pore structure and surface area, which was beneficial to diffuse and capture heavy metal ions. Traces of toxic heavy metal in mBR-C was leached (Ë0.04 mg/L) through TCLP method, indicating the environmental safety of the magnetic biochar. Meanwhile, the mBR-C exhibited excellent solid-liquid separation efficiency because of its strong magnetism. The series of adsorption experiments indicated that mBR-C could capture Cu2+ and Pb2+ rapidly, and the maximum adsorption capacity for Cu2+ and Pb2+ was 75.76 and 181.82 mg/g, respectively, which was higher than some other biochars previously reported. mBR-C was further applied in the synthetic wastewater treatment, which could effectively purify at least 600 mL (150 BV) to meet emission standards. After several column adsorption-desorption cycles, the adsorption capacity could still reach 85%, implying that mBR-C has good reusability and stability. Overall, the mBR-C can be used as an eco-friendly, desirable, economic and recyclable biosorbent in heavy metal polluted water treatment, providing a new idea for a combination of biogas residue recycle and wastewater treatment.
Assuntos
Biocombustíveis , Metais Pesados , Adsorção , Carvão Vegetal , Fenômenos MagnéticosRESUMO
In green approaches for electrocatalyst synthesis, sonochemical methods play a powerful role in delivering the abundant surface areas and nano-crystalline properties that are advantageous to electrocatalytic detection. In this article, we proposed the sphere-like and perovskite type of bimetal oxides which are synthesized through an uncomplicated sonochemical procedure. As a yield, the novel calcium titanate (orthorhombic nature) nanoparticles (CaTiO3 NPs) decorated graphene oxide sheets (GOS) were obtained through simple ultrasonic irradiation by a high-intensity ultrasonic probe (Titanium horn; 50 kHz and 60 W). The GOS/CaTiO3 NC were characterized morphologically and chemically through the analytical methods (SEM, XRD, and EDS). Besides, as-prepared nanocomposites were modified on a GCE (glassy carbon electrode) and applied towards electrocatalytic and electrochemical sensing of chemotherapeutic drug flutamide (FD). Notably, FD is a crucial anticancer drug and also a non-steroidal anti-androgen chemical. Mainly, the designed and modified sensor has shown a wide linear range (0.015-1184 µM). A limit of detection was calculated as nanomolar level (5.7 nM) and sensitivity of the electrode is 1.073 µA µM-1 cm-2. The GOS/CaTiO3 modified electrodes have been tested in human blood and urine samples towards anticancer drug detection.
Assuntos
Cálcio/química , Flutamida/sangue , Grafite/química , Nanoestruturas/química , Titânio/química , Ultrassom/métodos , Antineoplásicos Hormonais/sangue , Antineoplásicos Hormonais/urina , Catálise , Técnicas de Química Sintética , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Flutamida/química , Flutamida/urina , Humanos , Modelos Moleculares , Estrutura MolecularRESUMO
In the current study, poly 4-hydroxyphenyl methacrylate-carbon nano-onions (PHPMA-CNOsâ¯=â¯f-CNOs) are synthesized and reinforced with natural protein gelatin (GL) to engineer GL/f-CNOs composite hydrogels under the sonochemical method. The influence of f-CNOs content on the mechanical properties of hydrogels is examined. Cytotoxicity of hydrogels is measured with the human osteoblast cells. The results revealed good cell viability, cell growth, and attachment on the surface of the hydrogels, and results are f-CNOs dose-dependent. Specifically, the GL/f-CNOs (2â¯mg/mL) hydrogel showed the highest cell viability, enhanced tensile strength, elastic modulus, and yield strength as compared to pristine GL and GL/f-CNOs (1â¯mg/mL) hydrogels. It reveals the extent of physisorption and degree of colloidal stability of f-CNOs within the gel matrix. Furthermore, GL/f-CNOs hydrogels efficiently load the 5-fluorouracil (5-FU) and show a pH-responsive sustained drug release over 15 days. Nevertheless, these CNOs based composite hydrogels offer a potential prospect to use them in diverse biomedical applications.
Assuntos
Carbono , Cebolas , Gelatina , Humanos , Hidrogéis , NanogéisRESUMO
Thulium titanate/polyaniline nanocomposites were synthesized to observe the sonophotocatalytic degradation of dyes (widely used as a model pollutant) under ultrasonic irradiation and visible light. Based on our results, the synthesis process can improve sol-gel assisted sonochemical method in the presence of ultrasound and starch. To prepare pure thulium titanate nanostructures, the presence of starch and sonication treatment were concurrently obligatory. Therefore, sol-gel assisted sonochemical method can be used as a successful process for synthesis of thulium titanate nanostructures. According to the BET results, in the presence of ultrasound and starch surface area increased from 9.5305â¯m2/g to 40.28â¯m2/g. For verification of photacatalytic behavior of nanoparticles, several factors were studied. The nanocomposites/ultrasonic system showed greater photocatalytic activity for the degradation of Rh B rather than separately treatment of nanocomposites under visible light.
RESUMO
Herein, novel manganese sulfide nanoparticles (MnS NPs) decorated reduced graphene oxide (rGOS) nanocomposite have been designed through a facile ultrasound-assisted method and followed by a sonication process. After then, as-synthesized α-MnS@rGOS was characterized by HRTEM, FESEM, XPS, XRD and EIS. Furthermore, the α-MnS@rGOS nanocomposite modified SPCE (screen-printed carbon electrode) shows excellent electrochemical sensing performance towards Parkinson's disease biomarker of dopamine (DA). Moreover, the fabricated sensor showed a wide linear range for dopamine between 0.02 and 438.6⯵M and nanomolar detection limit (3.5â¯nM). In addition, the α-MnS@rGOS modified SPCE showed selectivity towards the detection of dopamine in presence of a 10-fold higher concentration of other important biomolecules. The nanocomposite film modified SPCE sensor was good stable and reproducible towards the detection of Parkinson's disease biomarker. Furthermore, the as-synthesized α-MnS@rGOS nanocomposite modified SPCE has been applied to the determination of dopamine in human serum, rat serum and pharmaceutical samples with acceptable recoveries.