Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 350: 119548, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38007926

RESUMO

The ability of the ultrasound (US) combined with peroxymonosulfate (PMS), and a carbonaceous material (BC) was evaluated in the degradation of a model pollutant (acetaminophen, ACE). The US/BC/PMS system was compared with other possible systems (US, oxidation by PMS, BC adsorption, BC/PMS, US/PMS, and US/BC. The effect of the ultrasonic frequency (40, 375, and 1135 kHz) on the kinetics and synergy of the ACE removal was evaluated. In the US system, kinetics was favored at 375 kHz due to the increased production of hydroxyl radicals (HO•), but this did not improve in the US/PMS and US/BC systems. However, synergistic and antagonistic effects were observed at the low and high frequencies where the production of radicals is less efficient but there is an activation of PMS through mechanical effects. US/BC/PMS at 40 kHz was the most efficient system obtaining ∼95% ACE removal (40 µM) in the first 10 min of treatment, and high synergy (S = 10.30). This was promoted by disaggregation of the carbonaceous material, increasing the availability of catalytic sites where PMS is activated. The coexistence of free-radical and non-radical pathways was analyzed. Singlet oxygen (1O2) played the dominant role in degradation, while HO• and sulfate radicals (SO4•-), scarcely generated at low frequency, play a minimum role. Performance in hospital wastewater (HWW), urine, and seawater (SW) evidenced the competition of organic matter by BC active sites and reactive species and the removal enhancement when Cl- is present. Besides, toxicity decreased by ∼20% after treatment, being the system effective after three cycles of reuse.


Assuntos
Ultrassom , Água , Peróxidos/química , Oxirredução
2.
Molecules ; 27(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36144792

RESUMO

Following recent works on the sonochemical degradation of butyl ethyl piperidinium bis-(trifluoromethylsulfonyl)imide ([BEPip][NTf2]), monitoring of sonoluminescence (SL) spectra in the first tens of seconds of sonolysis was needed to better characterize the formed plasma and to question the correlation of the SL spectra with the viscosity. A very dry [BEPip][NTf2] ionic liquid (IL) and a water-saturated liquid are studied in this paper. In both cases, IL degradation is observed as soon as SL emission appears. It is confirmed that the initial evolution of the SL intensity is closely linked to the liquid viscosity that impacts the number of bubbles; however, other parameters can also play a role, such as the presence of water. The water-saturated IL shows more intense SL and faster degradation. In addition to the expected bands, new emission bands are detected and attributed to the S2 B-X emission, which is favored in the water-saturated ionic liquid.

3.
Molecules ; 24(18)2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31540329

RESUMO

: Sonochemical oxidation of organic pollutants in an aqueous environment is considered to be a green process. This mode of degradation of organic pollutants in an aqueous environment is considered to render reputable outcomes in terms of minimal chemical utilization and no need of extreme physical conditions. Indiscriminate discharge of toxic organic pollutants in an aqueous environment by anthropogenic activities has posed major health implications for both human and aquatic lives. Hence, numerous research endeavours are in progress to improve the efficiency of degradation and mineralization of organic contaminants. Being an extensively used advanced oxidation process, ultrasonic irradiation can be utilized for complete mineralization of persistent organic pollutants by coupling/integrating it with homogeneous and heterogeneous photocatalytic processes. In this regard, scientists have reported on sonophotocatalysis as an effective strategy towards the degradation of many toxic environmental pollutants. The combined effect of sonolysis and photocatalysis has been proved to enhance the production of high reactive-free radicals in aqueous medium which aid in the complete mineralization of organic pollutants. In this manuscript, we provide an overview on the ultrasound-based hybrid technologies for the degradation of organic pollutants in an aqueous environment.


Assuntos
Poluentes Ambientais/química , Biodegradação Ambiental , Catálise , Oxirredução , Fotólise , Ondas Ultrassônicas
4.
Neurosurg Focus ; 44(2): E12, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29385918

RESUMO

Stroke is one of the leading causes of death worldwide and a significant source of long-term morbidity. Unfortunately, a substantial number of stroke patients either are ineligible or do not significantly benefit from contemporary medical and interventional therapies. To address this void, investigators recently made technological advances to render transcranial MR-guided, high-intensity focused ultrasound (MRg-HIFU) sonolysis a potential therapeutic option for both acute ischemic stroke (AIS)-as an alternative for patients with emergent large-vessel occlusion (ELVO) who are ineligible for endovascular mechanical thrombectomy (EMT) or as salvage therapy for patients in whom EMT fails-and intracerebral hemorrhage (ICH)-as a neoadjuvant means of clot lysis prior to surgical evacuation. Herein, the authors review the technological principles behind MRg-HIFU sonolysis, its results in in vitro and in vivo stroke models, and its potential clinical applications. As a noninvasive transcranial technique that affords rapid clot lysis, MRg-HIFU thrombolysis may develop into a therapeutic option for patients with AIS or ICH. However, additional studies of transcranial MRg-HIFU are necessary to ascertain the merit of this treatment approach for thrombolysis in both AIS and ICH, as well as its technical limitations and risks.


Assuntos
Imageamento por Ressonância Magnética/métodos , Trombólise Mecânica/métodos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/cirurgia , Ultrassonografia de Intervenção/métodos , Animais , Humanos
5.
Biochem Biophys Res Commun ; 483(1): 178-182, 2017 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-28040432

RESUMO

The dissociation of water molecules by ultrasound irradiation under aerobic conditions was demonstrated experimentally. To be able to detect the dissociation of water molecules, we performed the ultrasound irradiation of 17O-labelled water (H217O) under aerobic conditions. The hydroxyl and hydrogen radicals generated during the ultrasound irradiation process were trapped with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), and electron spin resonance (ESR) spectroscopy was performed on the DMPO spin adducts. In the ESR spectrum, a 15-line signal attributable to the trapping of the hydroxyl radicals containing 17O (17OH radicals) by DMPO together with a 4-line signal attributable to the trapping of the hydroxyl radicals containing 16O (16OH radicals) by DMPO were observed. The generation of 17OH radicals indicated that H217O was dissociated by the sonolysis process under aerobic conditions. On the other hand, the ESR signal attributable to the trapping of hydrogen radicals by DMPO was not observed, suggesting that hydrogen radicals were not generated during the dissociation of water molecules.


Assuntos
Radical Hidroxila/química , Ultrassom/métodos , Água/química , Aerobiose , Óxidos N-Cíclicos , Espectroscopia de Ressonância de Spin Eletrônica , Isótopos de Oxigênio/análise
6.
Microb Pathog ; 103: 65-70, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27998731

RESUMO

The aim of endodontic root canal treatment is the elimination of bacteria and their products from an infected tooth root canal. To effectively disinfect a root canal, an ultrasonic irrigation system, in which hydroxyl radicals (HO·) generated artificially by sonolysis of H2O2, was developed previously for endodontic applications and was demonstrated to have bactericidal efficacy against Enterococcus faecalis. To improve this system, we examined the in vitro bactericidal effects of HO· generated from H2O2, activated by simultaneous irradiation with ultrasound for sonolysis and dental LED light for photolysis with a peak wavelength of 405 nm. Regarding the LED irradiation, two methods were used: (i) 'ideal' experimental conditions (irradiation close to the glass tube), and (ii) simulated endodontic conditions (more distant irradiation of a masked glass tube). In these conditions, HO· generation from H2O2 was detected by electron spin resonance (ESR) spectroscopy, and bactericidal efficacy against E. faecalis was assessed by measuring the colony forming units (CFU)/mL. The results indicated that HO· generation by ESR measurements and the bactericidal effect on E. faecalis by viable count using CFU/mL were enhanced significantly in a time-dependent manner in both conditions. In a comparison of these conditions, bactericidal activity under 'ideal' experimental conditions was similar to that under simulated endodontic conditions. Moreover, the irradiation time for effective killing of E. faecalis through the sonolysis and photolysis of H2O2 under simulated endodontic conditions was shorter than that with sonolysis alone. These results demonstrate that H2O2 activated by ultrasound and LED light may be a safe and effective disinfection technique for endodontic root canal treatment.


Assuntos
Antibacterianos/farmacologia , Endodontia , Peróxido de Hidrogênio/metabolismo , Radical Hidroxila/farmacologia , Antibacterianos/metabolismo , Carga Bacteriana , Lâmpadas de Polimerização Dentária , Desinfecção/métodos , Endodontia/métodos , Humanos , Radical Hidroxila/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Fotólise , Ondas Ultrassônicas
7.
Eur Heart J ; 37(40): 3096-3102, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26417059

RESUMO

AIMS: Previous case series have detected silent brain infarctions in as many as one-third of patients after carotid endarterectomy (CEA) and in up to two-thirds of patients after carotid angioplasty and stenting (CAS). Sonolysis employs ultrasound to facilitate disruption of thrombi and has been shown to be safe and effective for improving long-term outcomes following acute stroke. Here, we examined whether intraoperative sonolysis alters the risk of new brain ischaemic lesions during CEA or CAS. METHODS AND RESULTS: All consecutive patients with internal carotid stenosis ≥70% indicated for CEA/CAS were screened in this prospective study. Patients were allocated randomly to sonolysis and control groups. Neurological examination, cognitive function tests, and brain magnetic resonance imaging (MRI) were conducted before intervention and at 24 and 30 days post-surgery. Of the 487 screened patients, 121 (87 males; mean age, 66.65 ± 7.17 years) were allocated to the sonolysis group and 121 (75; 66.02 ± 8.11 years) to the control group. New brain ischaemic lesions on post-procedure MRI were significantly less frequent in the sonolysis group than in the control group (31.4% of patients vs. 47.1%; P = 0.018). Sonolysis and CEA were identified as independent predictors of reduced brain ischaemic risk [sonolysis: odds ratio (OR) = 0.450 (0.215-0.942), P = 0.034 and CEA: OR = 0.208 (0.087-0.495), P < 0.001]. Stroke or transient ischaemic attack occurred in one sonolysis patient and three control patients (P = 0.372). No significant group differences were found in post-intervention cognitive test scores (P > 0.3). CONCLUSION: This study provides Class II evidence that sonolysis during CEA or CAS reduces the risk of new brain ischaemic lesions. CLINICAL TRIAL REGISTRATION: http://www.clinicaltrials.gov (NCT01591005).


Assuntos
Infarto Encefálico , Idoso , Angioplastia , Estenose das Carótidas , Endarterectomia das Carótidas , Feminino , Humanos , Masculino , Estudos Prospectivos , Stents
8.
J Environ Manage ; 162: 74-80, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26232566

RESUMO

Hospital wastewater treatments must ensure that all genetic material is destroyed, since nuclear and extra-nuclear DNA can show antimicrobial resistance and contain recombinant genes, which promote vertical and/or horizontal gene transfer, amplifying the current problem of the emergence of antibiotic-resistant microorganisms. In this study, we investigated whether ozonolysis or ozonolysis/sonolysis in combination can denature genetic material, i.e., destroy the integrity of DNA molecules, present in hospital wastewaters. To achieve this goal, hospital wastewaters were treated by ozonolysis or ozonolysis/sonolysis in combination (at 70 and 100 W L(-1)) and both raw and treated wastewaters were analyzed in terms of disinfection and DNA denaturation efficiency quantified by viable cell counts and by agarose gel electrophoresis. In the ozonolysis treatment, the agarose gel electrophoresis technique showed that the ozone-treated samples contained DNA molecules, while combined ozonolysis/sonolysis destroyed the DNA in a power density-dependent manner (64% at 70 W L(-1) and 81% at 100 W L(-1)). Care must be taken by environmental managers to distinguish disinfection processes from DNA denaturation processes, since these two terms are not synonymous.


Assuntos
DNA/química , Hospitais , Eliminação de Resíduos de Serviços de Saúde/métodos , Águas Residuárias/análise , Brasil , Desinfecção/métodos , Eletroforese em Gel de Ágar , Desnaturação de Ácido Nucleico , Ozônio/química , Plasmídeos/genética , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia
9.
Ultrason Sonochem ; 105: 106866, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38613919

RESUMO

Sonolysis of per- and polyfluoroalkyl substances (PFAS) has recently matured to field studies, treating real world contamination. However, efficient sonolysis reactor designs are poorly researched. Moreover, the variety and complexity of PFAS pollution slows reactor optimisation and scale-up. In this work, the defluorination of 10.0 mg/L aqueous perfluorooctane sulfonic acid (PFOS) was used as a model metric for the optimisation of; reactor volume (0.6 or 1.4 L), power density (100 - 350 W L-1), number of modular reactors (1-3), and liquid height (56.7 - 340 mm). Note, the ultrasonic frequency (410 kHz) and flow rate (214.2 ml min-1) was optimised in this reactor previously. Peak PFOS defluorination rate (3.40 µmolL-1 min-1) occurred at 141.8 mm, in a 0.6 L reactor, under 200 WL-1 ultrasound. Increasing the number of transducers connected in parallel to one amplifier was able to increase treatment efficiency from 78.6 to 191.8 µmol kWh-1. The model was validated using legacy aqueous film forming foam (AFFF, 3 M FC-602 Lightwater) at different dilutions (×5, ×10, ×20 and ×100). Dilution played a role in AFFF sonolysis efficiency with optimal PFAS sonolysis rate (4.28 µmol L-1 min-1) at 20 × dilution. Overall AFFF was effectively modelled with a synthetic PFOS solution, attributed to limited matrix effects in AFFF sonolysis and high PFAS concentration (0.18-1.83 g L-1) dominated by PFOS (0.15 - 1.53 g L-1).

10.
J Hazard Mater ; 471: 134291, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38636231

RESUMO

One of the primary technologies currently being deployed for the removal of per- and polyfluoroalkyl substances (PFAS) from water is ion exchange (IX). For regenerable IX resins, concentrated PFAS in the resulting spent brine and/or still bottoms requires further treatment. This research demonstrated that PFAS in spent brine and still bottoms can be effectively degraded sonochemically at 1000 kHz. Overall, PFAS degradation was negatively impacted by high total organic carbon (TOC) and residual methanol (MeOH) solvent (up to 50 g/kg; 5% w:w), but was enhanced by the high chloride. The addition of caustic (up to 1 N NaOH) partially mitigated the inhibition by TOC and MeOH. Sonochemical degradation of individual PFAS compounds resulted in significant mineralization to form inorganic fluoride, but small quantities of volatile organic fluorine species (VOF) were noted. This is believed to be the first report of sonochemical degradation of PFAS in ion exchange regeneration wastes, and indicates the possibility for the application of this technology as part of a complete PFAS capture and destruction treatment train.

11.
J Hazard Mater ; 468: 133762, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402678

RESUMO

Assessing the cyanobacteria disinfection in sewage and its compliance with international-standards requires determining the concentration and viability, which can be achieve using Imaging Flow Cytometry device called FlowCAM. The objective is to thoroughly investigate the sonolytic morphological changes and disinfection-performance towards toxic cyanobacteria existing in sewage using the FlowCAM. After optimizing the process conditions, over 80% decline in cyanobacterial cell counts was observed, accompanied by an additional 10-15% of cells exhibiting injuries, as confirmed through morphological investigation. Moreover, for the first time, the experimentally collected data was utilized to build deep-learning probabilistic-neural-networks (PNN) and natural-gradient-boosting (NGBoost) models for predicting disinfection efficiency and ABD area as target outputs. The findings suggest that the NGBoost model exhibited superior prediction performance for both targets, with high test coefficient of determination (R2 > 0.87) and lower test errors (RMSE < 7.10, MAE < 4.14). The confidence interval examination in NGBoost prediction performance showed a minute variation from the experimentally calculated values, suggesting a high accuracy in model prediction. Finally, SHAP analysis suggests the sonolytic time alone contributes around 50% to the cyanobacteria disinfection. Overall, the findings demonstrate the effectiveness of the FlowCAM device and the potential of machine-learning modeling in predicting disinfection outcomes.


Assuntos
Cianobactérias , Águas Residuárias , Desinfecção , Esgotos , Aprendizado de Máquina
12.
Chemosphere ; 349: 140864, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061558

RESUMO

Availability of drinking water is one of the basic humanitarian goals but remains as a grand challenge that the world is facing today. Currently, water bodies are contaminated not only with conventional pollutants but also with numerous recalcitrant pollutants, such as PPCPs, endocrine disrupting compounds, etc. These emerging pollutants require special attention because of their toxicity to living organisms, bio-resistant and can sustain even after primary and secondary treatments of wastewater. Among different treatment technologies, sonolysis is found to be an innovative and promising technique for the treatment of emerging pollutants present in aqueous solution. Sonolysis is the use of ultrasound to enhance or alter chemical reactions by the formation of free radicals and shock waves which ultimately helps in degradation of pollutants. This review summarizes several studies in the sonochemical literature, including mechanisms of sonochemical process, physical and chemical effects of ultrasound, and the influence of several process variables such as ultrasound frequency, power density, temperature and pH of the medium on degradation performance for endocrine disrupting compounds. In addition, this review highlighted techno-economic perspectives focusing on the total cost required for translating the ultrasound-based processes on a large scale. Overall, the objective of this study is to exhibit a critical review of information available in the literature to encourage and promote future research on sonolysis for the degradation of Endocrine Disrupting Compounds (EDCs).


Assuntos
Disruptores Endócrinos , Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Poluentes Químicos da Água/análise , Águas Residuárias , Água , Purificação da Água/métodos , Disruptores Endócrinos/análise , Oxirredução
13.
Chemosphere ; 352: 141270, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280651

RESUMO

High-frequency ultrasound (sonolysis) has been shown as a practical approach for mineralizing PFAS in highly concentrated PFAS waste. However, a fluorine mass balance approach showing complete mineralization for ultrasound treatment has not been elucidated. The impact of ultrasonic power density (W/L) and the presence of co-occurring PFAS on the degradation of individual PFAS are not well understood. In this research, the performance of a 10L sonochemical reactor was assessed for treating synthetic high-concentration PFAS waste with carboxylic and sulfonic perfluoroalkyl surfactants ranging in chain length from four to eight carbons at three different initial concentrations: 6, 55, 183 µM. The mass balance for fluorine was performed using three analytical techniques: triple quadrupole liquid chromatography-mass spectrometry, a fluoride ion selective electrode, and 19F nuclear magnetic resonance. The test results showed near complete mineralization of PFAS in the waste without the formation of intermediate fluorinated by-products. The PFAS mineralization efficiency of the sonolysis treatment at two different power densities for similar initial concentrations were almost identical; the G value at 145 W/L was 9.7*10-3 g/kWh, whereas the G value at 90 W/L was 9.3*10-3 g/kWh. The results of this study highlight the implications for the scalability of the sonolytic process to treat high-concentration PFAS waste.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Flúor , Poluentes Químicos da Água/análise , Tensoativos , Fluoretos , Fluorocarbonos/análise
14.
Ultrason Sonochem ; 98: 106488, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37343396

RESUMO

There is a lack of literature on peroxynitrite formation due to sonolysis of aerated water. In this work, the impact of sonication parameters, frequency and power, on ultrasonic peroxynitrite production in aerated alkaline water was investigated. Peroxynitrite formation was clearly established with undeniable evidence at all the tested frequencies in the range of 516-1140 kHz with a typical G-value (energy-specific yield) of 0.777 × 10-10, 0.627 × 10-10, 0.425 × 10-10 and 0.194 × 10-10 mol/J at 516, 558, 860 and 1140 kHz, respectively. The ultrasonication frequency has a direct impact on the sonochemical peroxynitrite production. Increasing the ultrasonication frequency in the interval 321-1140 kHz reduces peroxynitrite formation. The most practical sonochemistry dosimetries, including hydrogen peroxide production, triiodide dosimetry, Fricke dosimetry, and 4-nitrocatechol formation, were compared with the sonochemical efficiency of the reactors used to produce peroxynitrite. The G-value, energy specific yield, for the tested dosimetries was higher than that for peroxynitrite formation, regardless of frequency. For all chemical dosimetries investigated, the same trend of frequency dependence was found as for peroxynitrite generation. The influence of ultrasonication power on peroxynitrite formation by sonication at diverse frequencies in the interval 585-1140 kHz was studied. No peroxynitrite was formed at lower acoustic power levels, regardless of frequency. As the frequency increases, more power is required for peroxynitrite formation. The production of peroxynitrite increased as the acoustic power increased, despite the frequency of ultrasonic waves. Ultrasonic power is a key factor in the production of peroxynitrite by sonolysis. Since peroxynitrite is uniformly distributed in the bulk solution, peroxynitrite-sensitive solutes can be transformed both in the bulk of the solution and in the surfacial region (shell) of the cavitation bubble. The formation of peroxynitrite should be taken into account in sonochemistry, especially at higher pH values. Ultrasonic peroxynitrite formation in alkaline solution (pH 12) can be considered as a kind of chemical dosimetry in sonochemistry.

15.
Ultrason Sonochem ; 99: 106518, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37572426

RESUMO

Antibiotics (ABX) residues frequently occurred in water and cow milk. This work aims to understand the kinetics and mechanisms of sonolytic degradation of four ABX, i.e. ceftiofur hydrochloride (CEF), sulfamonomethoxine sodium (SMM), marbofloxacin (MAR), and oxytetracycline (OTC) in water and milk. In both water and milk, the sonolytic degradation of ABX follows pseudo-first order (PFO) kinetics well (R2: 0.951-0.999), with significantly faster ABX degradation in water (PFO kinetics constants (k1): 1.5 × 10-3-1.2 × 10-1 min-1) than in milk (k1: 3.5 × 10-4-5.6 × 10-2 min-1). The k1 values for SMM degradation in water increased by 118% with ultrasonic frequency (40-120 kHz), 174% with ultrasonic frequency (80-500 kHz), 649% with ultrasonic power (73-259 W), 22% with bulk temperature (12-40℃), and by 68% with reaction volume (50-250 mL), respectively, in other things being equal. The relevant k1 values in milk increased by 326%, 231%, 122%, 10% as well as 82% with the above same effective factors, respectively. The oxidation by free radicals generated in situ dominates ABX degradation, and the hydrophobic CEF (54.0-971.7 nM min-1) and SMM (39.2-798.4 nM min-1) underwent faster degradation than the hydrophilic MAR (33.9-751.9 nM min-1) and OTC (33.8-545.3 nM min-1) in both water and milk. Adding an extra 0.5 mM H2O2 accelerated SMM degradation by 19% in water and 33% in milk. After 130-150 min sonication of 100 mL of 2.0 mg L-1 (6.62 µM) SMM in various milk with 500 kHz and 259 W, the residue concentrations (52.9-96.3 µg L-1) can meet the relevant maximum residue limit (100 µg L-1).


Assuntos
Poluentes Químicos da Água , Purificação da Água , Animais , Antibacterianos , Leite , Peróxido de Hidrogênio/química , Água/química , Cinética , Poluentes Químicos da Água/química
16.
Ultrason Sonochem ; 101: 106667, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38039593

RESUMO

The removal of per- and polyfluoroalkyl substance (PFAS) pollution from the environment is a globally pressing issue, due to some PFAS' recalcitrant, bioaccumulative, and carcinogenic nature. Destruction via ultrasonic waves (sonolysis) is a promising contender for industrialisation due to; moderate power consumption, applicability to several PFAS and sample types, and limited by-products. Liquid flow rate through an ultrasonic reactor can affect the size, shape, and spatial distribution of ultrasonic cavities and hence their chemical activity. Such effects have not been studied during PFAS sonolysis, and temporal effects have not been studied much beyond the reactant concentration. Here, the effects of varying recirculating flow rate on the ultrasonic defluorination of perfluorooctane sulfonic acid (PFOS) and implications for industrial scale up are presented. Under the ultrasonic power (200 W L-1, 2.27 W cm-2) and frequency (410 kHz) used, flow rates of 79 and 214 ml min-1 enhanced defluorination up to 14 % during 30 min of treatment. However, these effects were temporal and most significant in the initial minutes of treatment. This indicated a dynamic bubble size distribution which stabilised after around 15 min. Defluorination rates of PFOS were compared with measured potassium iodide dosimetry, calorimetry, sonoluminescence (SL), and sonochemiluminescence (SCL). Flow rates which enhanced defluorination correlated moderately with enhanced SCL and negatively impacted SL, calorimetry, and dosimetry. Effects were attributed to perturbed cavity surfaces, leading to asymmetric cavity collapse, and the possibility of enhanced solvated electron production/interaction. SL, SCL, dosimetry, and calorimetric measurements were also temporal, and each showed different times to equilibrate. Flow rates of 439 and 889 ml min-1 returned all sonochemical measurements to the levels without flow, likely due to continued collapse temperature quenching by furthered bubble asymmetry. Flow also enhanced reactor cooling, which is significant for industrial temperature control. The pump energy consumed was small (≈1.9 %) compared to that of the amplifier and chiller, hence, PFOS defluorination was more cost-effective using flow. However, the effect may be limited for the longer treatment times needed for environmental remediation.

17.
Rev Environ Health ; 38(2): 265-279, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35390247

RESUMO

Over the past few decades, phthalate esters (PAEs) used as additives to improve the persistence and flexibility of polymeric materials. They are also used in cosmetics, insect repellents, and propellants, and their continuous input into drinking waters has constituted a serious risk to human health and the environment. DBPs are compounds classified as hazardous substances and have teratogenic properties. Due to the high bioaccumulation of DBP, they have toxic properties in different organisms, making it very important to remove PAEs before discharging them into environments. In this study a systematic review was designed to evaluate Advanced oxidation processes (AOPs) studies which have successfully treated contaminated water with PAEs. Among AOPs, particularly photocatalytic, UV/H2O2 photolysis, sonolysis, and ozone-based processes were more tried to degrade PAEs in aqueous solutions. Additionally, a more detail of each AOPs was explained. Findings showed that all advanced oxidation processes, especially combined AOPs have good results in the degradation of PAEs in water.


Assuntos
Água Potável , Ácidos Ftálicos , Poluentes Químicos da Água , Humanos , Peróxido de Hidrogênio , Poluentes Químicos da Água/análise , Ácidos Ftálicos/análise , Ésteres/análise , China
18.
Ultrason Sonochem ; 87: 105944, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35688120

RESUMO

Human ingestion of per- and polyfluoroalkyl substances (PFAS) from contaminated food and water is linked to the development of several cancers, birth defects and other illnesses. The complete mineralisation of aqueous PFAS by ultrasound (sonolysis) into harmless inorganics has been demonstrated in many studies. However, the range and interconnected nature of reaction parameters (frequency, power, temperature etc.), and variety of reaction metrics used, limits understanding of degradation mechanisms and parametric trends. This work summarises the state-of-the-art for PFAS sonolysis, considering reaction mechanisms, kinetics, intermediates, products, rate limiting steps, reactant and product measurement techniques, and effects of co-contaminants. The meta-analysis showed that mid-high frequency (100 - 1,000 kHz) sonolysis mechanisms are similar, regardless of reaction conditions, while the low frequency (20 - 100 kHz) mechanisms are specific to oxidative species added, less well understood, and generally slower than mid-high frequency mechanisms. Arguments suggest that PFAS degradation occurs via adsorption (not absorption) at the bubble interface, followed by headgroup cleavage. Further mechanistic steps toward mineralisation remain to be proven. For the first time, complete stoichiometric reaction equations are derived for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) sonolysis, which add H2 as a reaction product and consider CO an intermediate. Fluorinated intermediate products are derived for common, and more novel PFAS, and a naming system proposed for novel perfluoroether carboxylates. The meta-analysis also revealed the transition between pseudo first and zero order PFOA/S kinetics commonly occurs at 15 - 40 µM. Optimum values of; ultrasonic frequency (300 - 500 kHz), concentration (>15 - 40 µM), temperature (≈20 °C), and pH range (3.2 - 4) for rapid PFOX degradation are derived by evaluation of prior works, while optimum values for the dilution factor applied to PFAS containing firefighting foams and applied power require further work. Rate limiting steps are debated and F- is shown to be rate enhancing, while SO42- and CO2 by products are theorised to be rate limiting. Sonolysis was compared to other PFAS destructive technologies and shown to be the only treatment which fully mineralises PFAS, degrades different PFAS in order of decreasing hydrophobicity, is parametrically well studied, and has low-moderate energy requirements (several kWh g-1 PFAS). It is concluded that sonolysis of PFAS in environmental samples would be well incorporated within a treatment train for improved efficiency.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Adsorção , Ácidos Carboxílicos , Humanos , Água
19.
Ultrason Sonochem ; 88: 106106, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35921714

RESUMO

The presence of organic compounds in the waste liquor is of serious environmental concern that has plagued the development of alumina industry (Bayer Process). The present work attempts to develop a green and efficient process for removal of organics utilizing combined effect of sonolysis and ozonation (US/O3). The effects of reaction duration, ozone concentration and ultrasonic power are assessed for sonolysis (US), ozonation (O3) and combination of sonolysis and ozonation (US/O3). The optimal conditions for US/O3 treatment system is identified to be a reaction duration of 7 h, ozone concentration of 7.65 g/h, and ultrasonic power of 600 W. The total organic carbon (TOC) removal and decolorization are 60.13% and 87.1%, respectively. The process can be scaled-up to industrial scale, which could potentially serve to be a convenient, safe and sustainable alternative to the exisiting treatment technologies. Additionally, the treated waste water can be reused contributing to an improvement in the overall economics.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Cinética , Compostos Orgânicos , Águas Residuárias
20.
Ultrason Sonochem ; 82: 105867, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34920352

RESUMO

The increasing quantity and variety of organic contaminants discharged into surface and groundwater increase the necessity of additional and suitable water treatment methods, which can be incorporated into existing wastewater treatment plants. The huge variety of micropollutants and local variability of the composition of the organic load or matrix effects paired with multiple possible degradation processes lead to the requirement of a recommendation tool for the best possible water treatment method under given local conditions. Due to the diversity of physicochemical properties of micropollutants, such predictions are challenging. In this study, a quantitative correlation between the structural properties of certain micropollutants and their degradability using high-frequency sonolysis has been investigated. Therefore, Quantitative Structure-Property Relationship (QSPR) has been applied on a set of phenol derivates. To obtain the kinetic data, all experiments have been conducted in standardized, constant conditions for all 32 investigated phenol derivates. QSPR modelling was then executed using the software PaDEL for descriptor calculation and the software QSARINS for the overall modelling process including genetic algorithm (GA) and multiple linear regression (MLR). The final model consisting of 5 molecular descriptors was selected using a multi-criteria decision-making method based on extensive statistical parameters. The predictive power and robustness of the model was evaluated by means of internal cross validation and external validation using an independent validation set. The final selected model showed very good values for regression abilities, predictive power as well as stability (R2adj = 0.9455, CCCtr = 0.9777, Q2loo = 0.9285, CCCext = 0.9797 and Q2ext-F1 = 0.9711). The applicability domain of the QSPR model was defined based on the Williams plot and Insubria plot. The five OECD principles for the application of QSPR/QSAR modelling in industry and regulation were fulfilled in the whole process to the best of our knowledge, including the collection of the underlying experimental data as well as the entire modelling process. The final QSPR model included the molecular polarity and occurrence of hydrogen bonds as major influences on the reaction rate constants in accordance with previous studies. Nevertheless, potential biases in the selection of these descriptors due to the small size of the dataset were highlighted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA