Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 250: 118474, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38368920

RESUMO

Dual-source drinking water distribution systems (DWDS) over single-source water supply systems are becoming more practical in providing water for megacities. However, the more complex water supply problems are also generated, especially at the hydraulic junction. Herein, we have sampled for a one-year and analyzed the water quality at the hydraulic junction of a dual-source DWDS. The results show that visible changes in drinking water quality, including turbidity, pH, UV254, DOC, residual chlorine, and trihalomethanes (TMHs), are observed at the sample point between 10 and 12 km to one drinking water plant. The average concentration of residual chlorine decreases from 0.74 ± 0.05 mg/L to 0.31 ± 0.11 mg/L during the water supplied from 0 to 10 km and then increases to 0.75 ± 0.05 mg/L at the end of 22 km. Whereas the THMs shows an opposite trend, the concentration reaches to a peak level at hydraulic junction area (10-12 km). According to parallel factor (PARAFAC) and high-performance size-exclusion chromatography (HPSEC) analysis, organic matters vary significantly during water distribution, and tryptophan-like substances and amino acids are closely related to the level of THMs. The hydraulic junction area is confirmed to be located at 10-12 km based on the water quality variation. Furthermore, data-driven models are established by machine learning (ML) with test R2 higher than 0.8 for THMs prediction. And the SHAP analysis explains the model results and identifies the positive (water temperature and water supply distance) and negative (residual chlorine and pH) key factors influencing the THMs formation. This study conducts a deep understanding of water quality at the hydraulic junction areas and establishes predictive models for THMs formation in dual-sources DWDS.


Assuntos
Água Potável , Aprendizado de Máquina , Qualidade da Água , Abastecimento de Água , Água Potável/química , Água Potável/análise , Trialometanos/análise , Modelos Teóricos , Poluentes Químicos da Água/análise , Cloro/análise
2.
J Environ Manage ; 362: 121378, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838533

RESUMO

Source and raw water quality may deteriorate due to rainfall and river flow events that occur in watersheds. The effects on raw water quality are normally detected in drinking water treatment plants (DWTPs) with a time-lag after these events in the watersheds. Early warning systems (EWSs) in DWTPs require models with high accuracy in order to anticipate changes in raw water quality parameters. Ensemble machine learning (EML) techniques have recently been used for water quality modeling to improve accuracy and decrease variance in the outcomes. We used three decision-tree-based EML models (random forest [RF], gradient boosting [GB], and eXtreme Gradient Boosting [XGB]) to predict two critical parameters for DWTPs, raw water Turbidity and UV absorbance (UV254), using rainfall and river flow time series as predictors. When modeling raw water turbidity, the three EML models (rRF-Tu2=0.87, rGB-Tu2=0.80 and rXGB-Tu2=0.81) showed very good performance metrics. For raw water UV254, the three models (rRF-UV2=0.89, rGB-UV2=0.85 and rXGB-UV2=0.88) again showed very good performance metrics. Results from this study suggest that EML approaches could be used in EWSs to anticipate changes in the quality parameters of raw water and enhance decision-making in DWTPs.


Assuntos
Aprendizado de Máquina , Qualidade da Água , Purificação da Água/métodos , Modelos Teóricos , Rios
3.
Wei Sheng Yan Jiu ; 53(2): 316-331, 2024 Mar.
Artigo em Zh | MEDLINE | ID: mdl-38604970

RESUMO

OBJECTIVE: To establishe an analysis and identification method for 2-methylisoborneol(2-MIB) and geosmin(GSM) in water using purge and trap-gas chromatography-mass spectrometry. METHODS: The samples were enriched and analyzed using a purge and trap system, followed by the separation on a DB-624(30 m×0.25 mm, 1.4 µm) chromatographic column. Quantification was performed using gas chromatography-mass spectrometry with the selected ion monitoring and internal standard calibration. RESULTS: The calibration curves for 2-MIB and GSM showed an excellent linearity in the range of 1 to 100 ng/L with R~2 values greater than 0.999. The detection limit and quantification limit for both 2-MIB and GSM were 0.33 ng/L and 1.0 ng/L, respectively. Spike recovery experiments were further carried on the source water and drinking water at three concentration levels. It showed that the average recoveries were from 82.0% to 111.0% for 2-MIB while 84.0% to 110% for GSM. Additionally, the test precision of 2-MIB and GSM ranged from 1.9% to 7.3% and 1.9% to 5.0%(n=6), respectively. The analysis of multiple samples including the local source water, treated water and distribution network water confirmed the existence of 2-MIB and GSM. CONCLUSION: Compared to the national standard(GB/T 5750.8-2023), the proposed method enables fully automated sample introduction and analysis without the extra pre-treatment. It provides the advantages of simplicity, good repeatability and high accuracy.


Assuntos
Água Potável , Naftóis , Poluentes Químicos da Água , Água/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Água Potável/análise , Canfanos/análise , Poluentes Químicos da Água/análise , Odorantes/análise
4.
Environ Sci Technol ; 57(45): 17415-17426, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37916814

RESUMO

Samples from 450 homes with shallow private wells throughout the state of Wisconsin (USA) were collected and analyzed for 44 individual per- and polyfluoroalkyl substances (PFAS), general water quality parameters, and indicators of human waste as well as agricultural influence. At least one PFAS was detected in 71% of the study samples, and 22 of the 44 PFAS analytes were detected in one or more samples. Levels of PFOA and/or PFOS exceeded the proposed Maximum Contaminant Levels of 4 ng/L, put forward by the U.S. Environmental Protection Agency (EPA) in March 2023, in 17 of the 450 samples, with two additional samples containing PFHxS ≳ 9 ng/L (the EPA-proposed hazard index reference value). Those samples above the referenced PFAS levels tend to be associated with developed land and human waste indicators (artificial sweeteners and pharmaceuticals), which can be released to groundwater via septic systems. For a few samples with levels of PFOA, PFOS, and/or PFHxS > 40 ng/L, application of wastes to agricultural land is a possible source. Overall, the study suggests that human waste sources, septic systems in particular, are important sources of perfluoroalkyl acids, especially ones with ≤8 perfluorinated carbons, in shallow groundwater.


Assuntos
Ácidos Alcanossulfônicos , Água Potável , Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Humanos , Wisconsin , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Prevalência , Ácidos Alcanossulfônicos/análise
5.
Environ Sci Technol ; 57(18): 7254-7262, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37092689

RESUMO

Records of the environmental occurrence of organothiophosphate esters (OTPEs), which are used as flame retardants and food and industrial additives, are unavailable. In this study, we discovered three OTPEs, namely O,O,O-tris(2,4-di-tert-butylphenyl) phosphorothioate (AO168═S), O-butyl O-(butyl-methylphenyl) O-(di-butylphenyl) phosphorothioate (BBMDBPt)/O,O-bis(dibutylphenyl) O-methyl phosphorothioate (BDBPMPt), and O-butyl O-ethyl O-hydrogen phosphorothioate (BEHPt), in the surface water of the Yangtze River Basin by applying a characteristic phosphorothioate fragment-directed high-resolution mass spectrometry method. Among the 17 water samples tested, the detection frequencies of AO168═S and BEHPt were 100% and that of BBMDBPt/BDBPMPt was 29%. The mean concentration of AO168═S was 56.9 ng/L (30.5-148 ng/L), and semi-quantitative analysis revealed that the mean concentrations of BEHPt and BBMDBPt/BDBPMPt were 17.2 ng/L (5.5-65.4 ng/L) and 0.8 ng/L (

Assuntos
Retardadores de Chama , Rios , Rios/química , Ésteres/análise , Organofosfatos/análise , Espectrometria de Massas , Retardadores de Chama/análise , Água , Organotiofosfatos , Monitoramento Ambiental , China
6.
Environ Res ; 227: 115677, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36940815

RESUMO

The problem of taste and odor (T&O) in drinking water is a widespread societal concern and highlights substantial challenges related to the detection and evaluation of odor in water. In this study, the portable electronic nose PEN3, which is equipped with ten different heated metal sensors, was applied to analyze its applicability, feasibility and application scenarios for the detection of typical odorants, such as 2-methylisobornel (2-MIB), geosmin (GSM), ß-cyclocitral, ß-ionone, and other T&O compounds in source water, while avoiding uncertainties and instability related to manual inspection. All the T&O compounds could be effectively differentiated by principal component analysis (PCA). Linear discriminant analysis (LDA) showed that the odors varied greatly between different samples and could be effectively distinguished. As the odorant concentration increased, the sensor response intensity of the primary identification sensors R6 and R8 increased with a significant positive correlation. For Microcystis aeruginosa, an algae that produces odorants, PCA could distinguish the odors of algae at a series of densities at different concentrations. The responses of R10 showed a significant increase with increasing algae density, implying the production of more aliphatic hydrocarbons and other odor compounds. The results indicated that the electronic nose could provide a promising alternative to traditional unstable and complex detection methods for the detection of odorous substances in surface water and early warning of odor events. This study aimed to provide technical support for rapid monitoring and early warning of odorants in source water management.


Assuntos
Água Potável , Microcystis , Odorantes/análise , Nariz Eletrônico , Água Potável/análise
7.
Proc Natl Acad Sci U S A ; 117(52): 33345-33350, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318208

RESUMO

The hydrogen isotope ratio of water cryogenically extracted from plant stem samples (δ2Hstem_CVD) is routinely used to aid isotope applications that span hydrological, ecological, and paleoclimatological research. However, an increasing number of studies have shown that a key assumption of these applications-that δ2Hstem_CVD is equal to the δ2H of plant source water (δ2Hsource)-is not necessarily met in plants from various habitats. To examine this assumption, we purposedly designed an experimental system to allow independent measurements of δ2Hstem_CVD, δ2Hsource, and δ2H of water transported in xylem conduits (δ2Hxylem) under controlled conditions. Our measurements performed on nine woody plant species from diverse habitats revealed a consistent and significant depletion in δ2Hstem_CVD compared with both δ2Hsource and δ2Hxylem Meanwhile, no significant discrepancy was observed between δ2Hsource and δ2Hxylem in any of the plants investigated. These results cast significant doubt on the long-standing view that deuterium fractionation occurs during root water uptake and, alternatively, suggest that measurement bias inherent in the cryogenic extraction method is the root cause of δ2Hstem_CVD depletion. We used a rehydration experiment to show that the stem water cryogenic extraction error could originate from a dynamic exchange between organically bound deuterium and liquid water during water extraction. In light of our finding, we suggest caution when partitioning plant water sources and reconstructing past climates using hydrogen isotopes, and carefully propose that the paradigm-shifting phenomenon of ecohydrological separation ("two water worlds") is underpinned by an extraction artifact.


Assuntos
Temperatura Baixa , Deutério/análise , Caules de Planta/química , Plantas/química , Água/química , Água Subterrânea/química , Hidrogênio , Hidrologia , Isótopos de Oxigênio , Fatores de Tempo
8.
Environ Sci Technol ; 56(12): 7840-7852, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35617516

RESUMO

Since a large number of contaminants are detected in source waters (SWs) and tap waters (TWs), it is important to perform a comprehensive effect evaluation and key contributor identification. A reduced human transcriptome (RHT)-based effect-directed analysis, which consisted of a concentration-dependent RHT to reveal the comprehensive effects and noteworthy pathways and systematic identification of key contributors based on the interactions between compounds and pathway effects, was developed and applied to typical SWs and TWs along the Yangtze River. By RHT, 42% more differentially expressed genes and 33% more pathways were identified in the middle and lower reaches, indicating heavier pollution. Hormone and immune pathways were prioritized based on the detection frequency, sensitivity, and removal efficiency, among which the estrogen receptor pathway was the most noteworthy. Consistent with RHT, estrogenic effects were widespread along the Yangtze River based on in vitro evaluations. Furthermore, 38 of 100 targets, 39 pathway-related suspects, and 16 estrogenic nontargets were systematically identified. Among them, diethylstilbestrol was the dominant contributor, with the estradiol equivalent (EEQ) significantly correlated with EEQwater. In addition, zearalenone and niclosamide explained up to 54% of the EEQwater. The RHT-based EDA method could support the effect evaluation, contributor identification, and risk management of micropolluted waters.


Assuntos
Rios , Poluentes Químicos da Água , China , Monitoramento Ambiental , Estradiol , Estrogênios , Humanos , Transcriptoma , Água , Poluentes Químicos da Água/análise
9.
Water Resour Res ; 58(5): 1-17, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35619732

RESUMO

We estimate a cost function for a water treatment plant in Ohio to assess the avoided-treatment costs resulting from improved source water quality. Regulations and source water concerns motivated the treatment plant to upgrade its treatment process by adding a granular activated carbon building in 2012. The cost function uses daily observations from 2013 to 2016; this allows us to compare the results to a cost function estimated for 2007-2011 for the same plant. Both models focus on understanding the relationship between treatment costs per 1,000 gallons (per 3.79 m3) of produced drinking water and predictor variables such as turbidity, pH, total organic carbon, deviations from target pool elevation, final production, and seasonal variables. Different from the 2007-2011 model, the 2013-2016 model includes a harmful algal bloom toxin variable. We find that the new treatment process leads to a different cost model than the one that covers 2007-2011. Both total organic carbon and algal toxin are important drivers for the 2013-2016 treatment costs. This reflects a significant increase in cyanobacteria cell densities capable of producing toxins in the source water between time periods. The 2013-2016 model also reveals that positive and negative shocks to treatment costs affect volatility, the changes in the variance of costs through time, differently. Positive shocks, or increased costs, lead to higher volatility compared to negative shocks, or decreased costs, of similar magnitude. After quantifying the changes in treatment costs due to changes in source water quality, we discuss how the study results inform policy-relevant decisions.

10.
J Environ Manage ; 323: 116225, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36115245

RESUMO

Biogenic taste and odour (T&O) have become a global concern for water utilities, due to the increasing frequency of algal blooms and other microbial events arising from the combined effects of climate change and eutrophication. Microbially-produced T&O compounds impact source waters, drinking water treatment plants, and drinking water distribution systems. It is important to manage across the entire biogenic T&O pathway to identify key risk factors and devise strategies that will safeguard the quality of drinking water in a changing world, since the presence of T&O impacts consumer confidence in drinking water safety. This study provides a critical review of current knowledge on T&O-causing microbes and compounds for proactive management, including the identification of abiotic risk factors in source waters, a discussion on the effectiveness of existing T&O barriers in drinking water treatment plants, an analysis of risk factors for biofilm growth in water distribution systems, and an assessment of the impacts of T&O on consumers. The fate of biogenic T&O in drinking water systems is tracked from microbial production pathways, through the release of intracellular T&O by cell lysis, to the treatment of microbial cells and dissolved T&O. Based on current knowledge, five impactful research and management directions across the T&O pathway are recommended.


Assuntos
Água Potável , Purificação da Água , Água Potável/análise , Eutrofização , Odorantes/análise , Paladar , Abastecimento de Água
11.
J Environ Sci (China) ; 113: 1-11, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34963519

RESUMO

Although disinfection byproducts (DBPs) in drinking water have been suggested as a cancer causing factor, the causative compounds have not yet been clarified. In this study, we used liquid chromatography quadrupole-time-of-flight spectrometry (LC-QTOF MS) to identify the unknown disinfection byproducts (DBPs) in drinking water produced from Taihu Lake source water, which is known as a convergence point for the anthropogenic pollutants discharged from intensive industrial activities in the surrounding regions. In total, 91 formulas of DBPs were discovered through LC-QTOF MS nontarget screen, 81 of which have not yet been reported. Among the 91 molecules, 56 only contain bromine, 15 only contain chlorine and 20 DBPs have both bromine and chlorine atoms. Finally, five DBPs including 2,4,6-tribromophenol, 2,6-dibromo-4-chlorophenol, 2,6-dichloro-4-bromophenol, 4-bromo-2,6-di-tert-butylphenol and 3,6-dibromocarbazole were confirmed using standards. The former three compounds mainly formed in the predisinfection step (maximum concentration, 0.2-2.6 µg/L), while the latter two formed in the disinfection step (maximum concentration, 18.2-33.6 ng/L). In addition, 19 possible precursors of the discovered DBPs were detected, with the aromatic compounds being a major group. 2,6-di-tert-butylphenol as the precursor of 4-bromo-2,6-di-tert-butylphenol was confirmed with standard, with a concentration of 20.3 µg/L in raw water. The results of this study show that brominated DBPs which are possibly formed from industrial pollutants are relevant DBP species in drinking water produced form Taihu source water, suggesting protection of Taihu Lake source water is important to control the DBP risks.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Bromo , Desinfetantes/análise , Desinfecção , Água Potável/análise , Halogenação , Lagos , Espectrometria de Massas por Ionização por Electrospray , Poluentes Químicos da Água/análise
12.
Oecologia ; 197(4): 1049-1062, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33025266

RESUMO

In this study, we examined the inter- and intra-specific variation of hydraulic traits of three conifers of the Northern Rockies: Pinus ponderosa, Picea engelmannii, and Pseudotsuga menziesii to understand the mechanisms that allow different plant species to co-exist across a watershed. We quantified differences in plant xylem water potential (ψx), xylem tissue vulnerability to cavitation (P50, or ψ causing 50% loss of hydraulic conductivity), and safety margins for co-occurring trees from low and high elevations. We then investigated xylem vulnerability to cavitation with rooting depth. We found that xylem vulnerability to cavitation did not correspond to where tree species were found in the landscape. For example, P. ponderosa grew in more xeric locations, while P. engelmannii were largely confined to more mesic locations, yet P. engelmannii had more negative P50 values. P. menziesii had the lowest P50 value, but displayed little variation in vulnerability to cavitation across the hydroclimatic gradient. These patterns were also reflected in the safety margins; P. menziesii had the widest safety margin, P. engelmannii was intermediate, and P. ponderosa displayed the narrowest safety margin. All three species were also using water sources deeper than 30 cm in depth, allowing them to persist throughout the mid-summer drought. Overall, species-specific hydraulic traits did not necessarily follow a predictable response to the environment; instead, a combination of physiological and morphological traits likely allow trees to persist across a broader hydroclimatic gradient than would be otherwise expected from hydraulic trait measurements alone.


Assuntos
Traqueófitas , Secas , Folhas de Planta , Árvores , Água , Xilema
13.
Environ Res ; 197: 111122, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823192

RESUMO

The occurrence of per- and polyfluoroalkyl substances (PFAS) in water resources is an emerging concern because of their environmental persistence and bioaccumulation in humans. In Western countries, health advisories regarding PFAS exposure have been released to warn the public of its potential adverse effects. However, awareness regarding PFAS exposure in Asia is still at its infancy as reflected by the minimal safeguards imposed to protect the population from exposure. Here, we reviewed studies on PFAS contamination in Asia with a focus on freshwater resources to determine whether PFAS is also a concern in this part of the globe. Peer reviewed articles which included information on PFAS levels from 2000 to 2020 were compiled. The highest PFAS contamination was detected in surface water relative to ground, tap, and drinking water. PFAS levels in water resources in several countries in Asia, such as China, Japan, and South Korea, were above the recommended level, similar to that in the United States. PFAS in South and Southeast Asia were just below the recommended level, but the rise of PFAS in China in the recent decade, alongside its remarkable economic and industrial growth, suggests that increased PFAS contamination in South and Southeast Asia may soon follow, as these countries compete with the global economy. Hence, there is a need for these countries to also implement measures that will reduce the exposure of their population to PFAS.


Assuntos
Água Potável , Fluorocarbonos , Poluentes Químicos da Água , Ásia , China , Água Potável/análise , Fluorocarbonos/análise , Água Doce , Humanos , Japão , República da Coreia , Poluentes Químicos da Água/análise
14.
J Environ Sci (China) ; 110: 119-128, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34593182

RESUMO

Odor problems in source water caused by 2-methylisoborneol (MIB) have been a common issue in China recently, posing a high risk to drinking water safety. The earthy-musty odorant MIB has an extremely low odor threshold (4-16 ng/L) and is hard to remove via conventional processes in drinking water plants (DWP), and therefore could easily provoke complaints from consumers. This compound is produced by a group of filamentous cyanobacteria, mainly belonging to Oscillatoriales. Different from the well-studied surface-blooming Microcystis, filamentous cyanobacteria have specific niche characteristics that allow them to stay at a subsurface or deep layer in the water column. The underwater bloom of these MIB producers is therefore passively determined by the underwater light availability, which is governed by the cell density of surface scum. This suggests that drinking water reservoirs with relatively low nutrient contents are not able to support surface blooms, but are a fairly good fit to the specialized ecological niche of filamentous cyanobacteria; this could explain the widespread odor problems in source water. At present, MIB is mainly treated in DWP using advanced treatment processes and/or activated carbon, but these post-treatment methods have high cost, and not able to deal with water containing high MIB concentrations. Thus, in situ control of MIB producers in source water is an effective complement and is desirable. Lowering the underwater light availability is a possible measure to control MIB producers according to their niche characteristics, which can be obtained by either changing the water level or other measures.


Assuntos
Cianobactérias , Água Potável , Microcystis , Purificação da Água , Ecossistema , Odorantes/análise
15.
J Environ Sci (China) ; 110: 48-54, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34593194

RESUMO

Acetochlor is a widely used herbicide in agricultural production. Studies have shown that acetochlor has obvious environmental hormone effects, and long-term exposure may pose a threat to human health. To quantify the hazards of acetochlor in drinking water, a health risk assessment of acetochlor was conducted in major cities of China based on the data of acetochlor residue concentrations in drinking water. The approach of the Species Sensitivity Distributions (SSD) method is used to extrapolate from animal testing data to reflect worst case human toxicity. Results show that hazard quotients related to acetochlor residues in drinking water for different age groups range from 1.94 × 10-4 to 6.13 × 10-4, so, there are no indication of human risk. Compared to the total estimated hazard quotient from oral intake of acetochlor, the chronic exposure imputed to acetochlor residues in drinking water in China accounts for 0.4%. This paper recommends 0.02 mg/L to be the maximum acetochlor residue concentration level in drinking water and source water criteria.


Assuntos
Herbicidas , Qualidade da Água , Animais , Herbicidas/análise , Herbicidas/toxicidade , Humanos , Medição de Risco , Toluidinas/análise , Toluidinas/toxicidade
16.
J Environ Sci (China) ; 110: 73-83, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34593196

RESUMO

Significant iron release from cast iron pipes in water distribution systems (WDSs), which usually occurs during the source water switch period, is a great concern of water utilities because of the potential occurrence of "red water" and customer complaints. This study developed a new method which combined in-situ water stagnation experiments with mathematical models and numerical simulations to predict the iron release caused by source water switch. In-situ water stagnation experiments were conducted to determine the total iron accumulation in nine cast iron pipes in-service in Beijing when switching the local water to treated Danjiangkou Reservior water. Results showed that the difference in the concentration increment of total iron in 24 hr (ΔCITI,24), i.e. short-term iron release, caused by source water switch was mainly dependent on the difference in the key quality parameters (pH, hardness, nitrate, Larson Ratio and dissolved oxygen (DO)) between the two source waters. The iron release rate (RFe) after switch, i.e. long-term iron release, was closely related to the pipe properties as well as the DO and total residual chlorine (TRC) concentrations. Mathematical models of ΔCITI,24 and RFe were developed to quantitatively reveal the relationship between iron release and the key quality parameters. The RFe model could successfully combine with EPANET-MSX, a numerical simulator of water quality for WDSs to extend the iron release modeling from pipe level to network level. The new method is applicable to predicting iron release during source water switch, thus facilitating water utilities to take preventive actions to avoid "red water".


Assuntos
Água Potável , Ferro , Cloro , Corrosão , Qualidade da Água , Abastecimento de Água
17.
J Environ Manage ; 274: 111202, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32784082

RESUMO

In this research, multivariate statistical analysis was performed on twenty water quality parameters (WQP) collected on tri-monthly basis (four times/year) from 441 drinking water sources in Newfoundland and Labrador (NL), Canada for 18 years (1999-2016). The WQP included alkalinity (Alk), color (Col), conductivity (Cond), hardness (Hard), pH, total dissolved solids (TDS), turbidity (Turb), bromide (Br), calcium (Ca), chloride (Cl), fluoride (F), potassium (K), sodium (Na), sulfate (SO4), dissolved organic carbon (DOC), ammonia (NH3), nitrate (NO3), Kjeldahl nitrogen (N), total phosphorus (P) and magnesium (Mg). The assessment was conducted on surface water (SWS) and groundwater (GWS) sources separately. In SWS and GWS, number of samples analyzed for each WQP were in the ranges of 3434-6057 and 1915-1919 respectively. Averages of DOC and pH showed increasing trends (SWS: DOC = 0.0722 mg/L/year; pH = 0.0375 units/year; GWS: DOC = 0.0491 mg/L/year; pH = 0.0441 units/year) while the other WQP showed variable characteristics, which could increase treatment cost and deteriorate tap water quality. Strong correlations were observed for Ca-Hard (r = 0.97-0.98), TDS-Cond (r = 0.91-0.99) and Na-Cl (r = 0.87-0.96). In SWS, Alk had stronger correlations with Cond, Hard, pH, TDS, Ca and Mg (r = 0.62-0.94) than GWS (r = 0.56-0.63). Principal Component Analysis revealed separate clusters for DOC-Col, Na-Cl, TDS-Cond, Ca-Alk and Mg-Hard, indicating that these WQP moved together. In SWS and GWS, six principal components were significant (eigenvalue ≥ 1.0), and explained 74.8% and 72.9% of overall variances respectively. In Factor Analysis, six varifactors explained 73.4% and 70.5% of total variances in SWS and GWS respectively. For SWS and GWS, eleven and ten WQP, respectively explained these variances, indicating 45% and 50% data reduction respectively. The findings can assist in controlling water quality through monitoring reduced number of WQP, which is likely to minimize the monitoring cost.


Assuntos
Água Potável/análise , Água Subterrânea , Poluentes Químicos da Água/análise , Canadá , Monitoramento Ambiental , Análise Multivariada , Terra Nova e Labrador , Qualidade da Água , Abastecimento de Água
18.
Wei Sheng Yan Jiu ; 49(3): 480-485, 2020 May.
Artigo em Zh | MEDLINE | ID: mdl-32693901

RESUMO

OBJECTIVE: To establish a rapid method for simultaneous determination of 16 polycyclic aromatic hydrocarbons(PAHs) in source water and tap water by performance liquid chromatography(HPLC) with ultraviolet detector(UV) tandem fluorescence detector(FLR). METHODS: Source water was filtered by GF/C glass fiber filters and tap water were added ascorbic acid of 60 mg per liter to remove the residual chlorine when sampling. 500 mL water sample were sampled and adjusted pH 2 with phosphoric acid, then 10 mL methanol were added. Then samples were concentrated by styrene stilbene polymer solid phase extraction column, after loading samples, 50 percent methanol aqueous solution adjust pH 2 were used for washing bottle and the washed solution were continuum loaded. Then 80 percent methanol aqueous solution was used for removing impurity interference and elution with dichloromethane. The eluent was nitrogen blow to near dry after adding 100 µL 10 percent tween-20 methanol solutions(m/V). Acetonitrile was used for reconstitution, and then separated by PAH chromatography column using acetonitrile and pure water at gradient elution, and detected by UV tandem FLR detector. RESULTS: The linear ranges of 16 PAHs were 0. 5 to 500 ng/mL and the correlation coefficients were greater than 0. 999. The method detection limit and limits of quantification were 0. 3 to 5. 0 ng/L and 1. 2 to 20. 0 ng/L, respectively. The recoveries were in the range of 67. 2%-114. 1% with the relative standard deviations ranging from 1. 5%-14. 0%(n=6). Then the established method was used for the determination of 17 water samples, 8 kinds, 6 kinds and 7 kinds of PAHs were detected in source water, tap water and pipe net tap water, respectively. CONCLUSION: The method is rapid, sensitive and selective, and has been successfully applied for determination of 16 PAHs in source water and tap water.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Extração em Fase Sólida , Água
19.
J Environ Sci (China) ; 86: 195-202, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31787184

RESUMO

The presence of municipal wastewater at the intake of a major drinking water treatment facility located on Lake Ontario was examined using fluorescence data collected during a period of continuous monitoring. In addition, controlled mixing of lake water and wastewater sampled from a local treatment facility were conducted using a bench-scale fluorescence system to quantify observed changes in natural organic matter. Multivariate linear regression was applied to components derived from parallel factors analysis. The resulting mean absolute error for predicted wastewater level was 0.22% (V/V, wastewater/lake water), indicating that wastewater detection at below 1.0% (V/V) was possible. Analyses of sucralose, a wastewater indicator, were conducted for treated wastewater as well as surface water collected at two intake locations on Lake Ontario. Results suggested minimal wastewater contribution at the drinking water intake. A wastewater detection model using a moving baseline was developed and applied to continuous fluorescence data collected at one of the drinking water intakes, which agreed well with sucralose results. Furthermore, the simulated addition of 1.0% (V/V) of wastewater/wastewater was detectable in 89% of samples analyzed, demonstrating the utility of fluorescence-based wastewater monitoring.


Assuntos
Monitoramento Ambiental , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Ontário
20.
Appl Microbiol Biotechnol ; 102(13): 5355-5368, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29721728

RESUMO

Multiple free water surface flow constructed wetlands (multi-FWS CWs) are a variety of conventional water treatment plants for the interception of pollutants. This review encapsulated the characteristics and applications in the field of ecological non-point source water pollution control technology. The roles of in-series design and operation parameters (hydraulic residence time, hydraulic load rate, water depth and aspect ratio, composition of influent, and plant species) for performance intensification were also analyzed, which were crucial to achieve sustainable and effective contaminants removal, especially the retention of nutrient. The mechanism study of design and operation parameters for the removal of nitrogen and phosphorus was also highlighted. Conducive perspectives for further research on optimizing its design/operation parameters and advanced technologies of ecological restoration were illustrated to possibly interpret the functions of multi-FWS CWs.


Assuntos
Recuperação e Remediação Ambiental/métodos , Poluição da Água/prevenção & controle , Purificação da Água/métodos , Áreas Alagadas , Recuperação e Remediação Ambiental/instrumentação , Nitrogênio , Água/química , Purificação da Água/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA