RESUMO
Ultrarelativistic nuclear collisions create a strongly interacting state of hot and dense quark-gluon matter that exhibits a remarkable collective flow behavior with minimal viscous dissipation. To gain deeper insights into its intrinsic nature and fundamental degrees of freedom, we determine the speed of sound in an extended volume of quark-gluon plasma using lead-lead (PbPb) collisions at a center-of-mass energy per nucleon pair of 5.02 TeV. The data were recorded by the CMS experiment at the CERN LHC and correspond to an integrated luminosity of 0.607 nb-1. The measurement is performed by studying the multiplicity dependence of the average transverse momentum of charged particles emitted in head-on PbPb collisions. Our findings reveal that the speed of sound in this matter is nearly half the speed of light, with a squared value of0.241±0.002(stat)±0.016(syst)in natural units. The effective medium temperature, estimated using the mean transverse momentum, is219±8(syst)MeV. The measured squared speed of sound at this temperature aligns precisely with predictions from lattice quantum chromodynamic (QCD) calculations. This result provides a stringent constraint on the equation of state of the created medium and direct evidence for a deconfined QCD phase being attained in relativistic nuclear collisions.
RESUMO
OBJECTIVES: To develop a robust algorithm for estimating ultrasonic axial transmission velocity from neonatal tibial bone, and to investigate the relationships between ultrasound velocity and neonatal anthropometric measurements as well as clinical biochemical markers of skeletal health. METHODS: This study presents an unsupervised learning approach for the automatic detection of first arrival time and estimation of ultrasonic velocity from axial transmission waveforms, which potentially indicates bone quality. The proposed method combines the ReliefF algorithm and fuzzy C-means clustering. It was first validated using an in vitro dataset measured from a Sawbones phantom. It was subsequently applied on in vivo signals collected from 40 infants, comprising 21 males and 19 females. The extracted neonatal ultrasonic velocity was subjected to statistical analysis to explore correlations with the infants' anthropometric features and biochemical indicators. RESULTS: The results of in vivo data analysis revealed significant correlations between the extracted ultrasonic velocity and the neonatal anthropometric measurements and biochemical markers. The velocity of first arrival signals showed good associations with body weight (ρ = 0.583, P value <.001), body length (ρ = 0.583, P value <.001), and gestational age (ρ = 0.557, P value <.001). CONCLUSION: These findings suggest that fuzzy C-means clustering is highly effective in extracting ultrasonic propagating velocity in bone and reliably applicable in in vivo measurement. This work is a preliminary study that holds promise in advancing the development of a standardized ultrasonic tool for assessing neonatal bone health. Such advancements are crucial in the accurate diagnosis of bone growth disorders.
Assuntos
Tíbia , Ultrassonografia , Aprendizado de Máquina não Supervisionado , Humanos , Recém-Nascido , Ultrassonografia/métodos , Feminino , Masculino , Tíbia/diagnóstico por imagem , Tíbia/fisiologia , Imagens de Fantasmas , Algoritmos , Reprodutibilidade dos TestesRESUMO
Conventional B-mode ultrasound imaging has difficulty in delineating homogeneous soft tissues with similar acoustic impedances, as the reflectivity depends on the acoustic impedance at the interface. As a quantitative imaging biomarker sensitive to alteration of biomechanical properties, speed-of-sound (SoS) holds promising potential for tissue and disease differentiation such as delineation of different breast tissue types with similar acoustic impedance. Compared to two-dimensional (2D) SoS images, three-dimensional (3D) volumetric SoS images achieved through a full-angle ultrasound scan can reveal more intricate morphological structures of tissues; however, they generally require a ring transducer. In this study, we introduce a 3D SoS reconstruction system that utilizes hand-held linear arrays instead. This system employs a passive reflector positioned opposite the linear arrays, serving as an echogenic reference for time-of-flight (ToF) measurements, and a high-definition camera to track the location corresponding to each group of transmit-receive data. To merge these two streams of ToF measurements and location tracking, a voxel-based reconstruction algorithm is implemented. Experimental results with gelatin phantom and ex vivo tissue have demonstrated the stability of our proposed method. Moreover, the results underscore the potential of this system as a complementary diagnostic modality, particularly in the context of diseases such as breast cancer.
Assuntos
Imageamento Tridimensional , Imagens de Fantasmas , Ultrassonografia , Ultrassonografia/métodos , Imageamento Tridimensional/métodos , Animais , Algoritmos , Transdutores , Desenho de Equipamento , Humanos , FemininoRESUMO
Acoustic tomography utilizes sensor arrays to collect sound wave signals, enabling non-contact measurement of physical parameters within an area of interest. Compared to optical technologies, acoustic tomography offers the advantages of low cost, low maintenance, and easy installation. Current research in acoustic tomography mainly focuses on reconstruction algorithms for temperature fields, while monitoring the composition and concentration of gases is significant for ensuring safety and improving efficiency, such as in scenarios like boiler furnaces and aviation engine nozzles. In excitable gases, the speed of sound exhibits an S-shaped curve that changes with frequency, a characteristic that could be potentially useful for acoustic tomography. Therefore, this study primarily discusses the quantitative calculation of gas concentration and temperature based on the dispersion of the speed of sound. By employing graphic processing and pattern matching methods, a coupled relationship of the dispersion of the speed of sound with gas concentration and temperature is established. The projection intersection method is used to calculate the concentration and temperature of binary and ternary gas mixtures. Combined with the inversion method, a joint reconstruction method for gas concentration fields and temperature fields based on the dispersion of the speed of sound is developed. The feasibility of the proposed simultaneous reconstruction method for temperature and concentration fields is validated using numerical simulations. Additionally, an acoustic tomography experimental system was set up to conduct reconstruction experiments for binary gas concentration fields and temperature fields, confirming the effectiveness of the proposed method.
RESUMO
Hydrophilic and hydrophobic phenomena occur in aqueous solutions. Despite the complex nature of the molecular interactions, the propensity of molecules and ions to hydration is sometimes characterized by a single "hydration number". Passynski's method for determining the hydration numbers in dilute aqueous solutions belongs to the group of methods based on the analysis of the isentropic compressibility of a mixture. Isentropic compressibility is a thermodynamic material constant; thus, the paper deals with Passynski's approach discussed in terms of thermodynamics. First, Passynski's assumptions were applied to the volume of the mixture. Subsequent strict thermodynamic derivation led to a formula for the hydration number which resembled that of Onori rather than the original one. Passynski's number turned out to be inconsistent with the thermodynamics and mechanics of fluids. This is a rather purely empirical measure of the slope of the dependence of isentropic compressibility on the solute mole fraction in a dilute aqueous solution. Being the quotient of the slope and the isentropic compressibility of pure water, Pasynski's numbers are more convenient to analyze and discuss than the slopes themselves. Conclusions about molecular interactions based on these numbers must be treated with considerable caution.
RESUMO
In this study, a series of four surface-active compounds-N-alkyl betaine ethyl ester chlorides, CnBetC2Cl-were synthesized and characterized in aqueous solutions. As with other alkyl betaines, these amphiphiles can be practically used, for example, as co-surfactants and/or solubility enhancers acting according to hydrotropic or micellar mechanisms, depending on the alkyl chain length in the amine. We focused on the representatives of the medium alkyl chain length (C6-C12) to find the dependence between the alkyl chain length in N-alkyl betaine ethyl ester chlorides and the surface, volumetric, acoustic, and viscometric properties of their solutions. Ethyl esters, the derivatives of amino acids, were chosen to increase functionality and take advantage of possible hydrolysis in solutions at higher pH, which is also a key parameter in biodegradability. The micellization parameters were calculated based on the physicochemical characteristics. We focused our interest on the ester with a dodecyl substituent since we can compare and discuss its properties with some other C12 representatives that are available in literature. Surprisingly, its micellization characteristic is almost temperature-independent in the investigated temperature range, t = (15-45) °C. Particularly interesting are the results of dynamic light scattering (DLS), which show that the changes in physicochemical parameters of the C12 homolog around the CMC are caused by the two types of micelles of different sizes present in solutions.
RESUMO
The clinical applications of the volography algorithm and concomitant refraction-corrected reflection algorithm as described in Chap. 10 are discussed here. Comparisons with an H&E stained image, discussion of glandular tissue visibility, related biomarkers, segmentation accuracy and capabilities, microcalcification and cyst detection and analysis, and various VGA and clinical studies show the unique capabilities of the method. The accuracy of the fibroglandular segmentation and its relevance to breast density in imaging is mentioned. The compatibility with artificial intelligence (AI) is shown and clinical results discussed, concluding that low-frequency 3D ultrasound volography is a powerful 3D ultrasound imaging technique for microanatomic and quantitative features of the breast with good potential for AI utilization to provide an imaging technique that will quantitatively improve clinical performance.
Assuntos
Inteligência Artificial , Relevância Clínica , Imageamento Tridimensional/métodos , AlgoritmosRESUMO
Tissue-mimicking materials and phantoms have an important role in quantitative ultrasound. These materials allow for investigation of new techniques with the ability to design materials with properties that are stable over time and available for repeated measurements to refine techniques and analysis algorithms. This chapter presents an overview of the history of phantoms, methods of creation of materials with a variety of acoustic properties, and methods of measurement of those properties. It includes a section addressing the measurement of variance in those techniques using interlaboratory comparisons. There is a wide range of existing tissue-mimicking materials that exhibit properties similar to those of most soft tissues. Ongoing work is part of the expansion of QUS as materials are developed to better mimic specific tissues, geometries, or pathologies.
Assuntos
Acústica , Ultrassonografia , Imagens de FantasmasRESUMO
Although positive photobiomodulation response on wound healing, tissue repair, and therapeutic treatment has been widely reported, additional works are still needed to understand its effects on human blood. This research carried out acoustic measurements using A-scan (GAMPT) ultrasonic techniques to elucidate the photobiomodulation effects on in vitro human blood samples as therapeutic treatment measures. The human blood samples were irradiated using a 532-nm laser with different output laser powers (60 and 80 mW) at various exposure times. The ultrasonic velocity measured in the human blood samples after laser irradiation showed significant changes, most of which were within the acceptance limit for soft tissues (1570 [Formula: see text] 30 m/s). Abnormal cells (echinocyte and crenation) were observed due to excessive exposure during laser treatment.
Assuntos
Terapia com Luz de Baixa Intensidade , Humanos , Terapia com Luz de Baixa Intensidade/métodos , Cicatrização/efeitos da radiação , Lasers Semicondutores , Acústica , LuzRESUMO
A compact thermometer for air temperature based on the measurement of the speed of sound was developed at INRIM. This paper focuses on the comparison of this instrument with platinum resistance thermometers in a climatic chamber over a temperature range (-30 ÷ +55) °C, relative humidity (10 ÷ 90)%rh, and irradiation (>1 kW/m2) values similar to those of surface atmospheric conditions. Overall uncertainty values of 0.2 °C over the range from -30 °C to +30 °C, and from 0.6 °C to +55 °C, were found. Moreover, the instrument proved to be immune to irradiation errors and free from the need for temperature calibration.
RESUMO
Computed ultrasound tomography in echo mode (CUTE) allows real-time imaging of the tissue speed of sound (SoS) using handheld ultrasound. The SoS is retrieved by inverting a forward model that relates the spatial distribution of the tissue SoS to echo shift maps detected between varying transmit and receive angles. Despite promising results, in vivo SoS maps often show artifacts due to elevated noise in echo shift maps. To minimize artifacts, we propose a technique where an individual SoS map is reconstructed for each echo shift map separately, as opposed to a single SoS map from all echo shift maps simultaneously. The final SoS map is then obtained as a weighted average over all SoS maps. Due to the partial redundancy between different angle combinations, artifacts that appear only in a subset of the individual maps can be excluded via the averaging weights. We investigate this real-time capable technique in simulations using two numerical phantoms, one with a circular inclusion and one with two layers. Our results demonstrate that the SoS maps reconstructed using the proposed technique are equivalent to the ones using simultaneous reconstruction when considering uncorrupted data but show significantly reduced artifact level for data that are corrupted by noise.
Assuntos
Som , Tomografia Computadorizada por Raios X , Ultrassonografia/métodos , Tomografia , Imagens de Fantasmas , ArtefatosRESUMO
Accurate measurements of long distances (in the order of tens of meters or more) are necessary in manufacturing processes of large structures, as, for example, in the aerospace industry. In the most demanding applications, the goal is to achieve a relative accuracy of 10-7 in the measurement of distances (e.g., 1 µm over 10 m). This goal can be obtained with laser interferometers whose accuracy is based on knowledge of the speed of light, which, in turn, depends on the temperature of air. A thermometer based on the measurement of the speed of sound in air has been realized at INRIM. Its purpose is the measurement of the air temperature along the measurement path of the interferometer with an accuracy of 0.1 °C at distances up to 11 m. The paper describes the principle and the experimental setup of the acoustic thermometer and demonstrates its performance by comparison with calibrated reference platinum resistance thermometers. Furthermore, we demonstrate the potentiality of the method to measure the vertical temperature gradient, which is the main error source in triangulation measurements when using laser trackers.
RESUMO
Ultrasound computed tomography (USCT) can visualize a target with multiple imaging contrasts, which were demonstrated individually previously. Here, to improve the imaging quality, the dynamic speed of sound (SoS) map derived from the transmission USCT will be adapted for the correction of the acoustic speed variation in the reflection USCT. The variable SoS map was firstly restored via the optimized simultaneous algebraic reconstruction technique with the time of flights selected from the transmitted ultrasonic signals. Then, the multi-stencils fast marching method was used to calculate the delay time from each element to the grids in the imaging field of view. Finally, the delay time in conventional constant-speed-assumed delay and sum (DAS) beamforming would be replaced by the practical computed delay time to achieve higher delay accuracy in the reflection USCT. The results from the numerical, phantom, and in vivo experiments show that our approach enables multi-modality imaging, accurate target localization, and precise boundary detection with the full-view fast imaging performance. The proposed method and its implementation are of great value for accurate, fast, and multi-modality USCT imaging, particularly suitable for highly acoustic heterogeneous medium.
RESUMO
The density and speed of sound of pentaglyme and hexaglyme in the N,N-dimethylformamide + water mixture at four temperatures are presented. The limiting apparent molar volumes (VΦ,m0=Vm0), the isobaric molar thermal expansion (Ep,m0), the isentropic compressibility (κS), and the limiting partial molar isentropic compression (KS,Φ,m0 = KS,m0) were calculated. Changes in the values obtained from the physicochemical parameters, as functions of composition and temperature, were analyzed in terms of the molecular interactions and structural differentiation of the investigated systems. The hydrophobic hydration process of the studied glymes was visible in the area of high water content in the mixture. The hydration number of glymes in water at four temperatures was calculated and analyzed. The contribution of the -CH2- and -O- group to the functions describing the volume and acoustic properties of the investigated system was calculated. The calculated values of the functions analyzed using the group contribution are in agreement with the values obtained from the experimental data. Thus, such contributions are valuable for wide ranges of data, which can be used to analyze the hydrophobic hydration and preferential solvation processes, as well as to calculate the values of these functions for other similar compounds.
Assuntos
Dimetilformamida , Água , Água/química , Temperatura , Som , Fenômenos QuímicosRESUMO
Objective To compare the consistency of quantitative ultrasound(QUS)and dual-energy X-ray absorptiometry(DXA)in measuring bone mineral density(BMD)of adults aged 18-40 years in Guangzhou and evaluate the diagnostic value of QUS for identifying low bone mass.Methods DXA was employed to measure the BMD and QUS to measure the speed of sound(SOS)in 731 participants.The Bland-Altman analysis was performed to evaluate the consistency of Z scores between SOS and BMD.With the BMD Z ≤-2.00 as the diagnostic criterion for low bone mass,the receiver operating characteristics curve of QUS was established,and the area under the curve(AUC)and the sensitivity,specificity,and correct diagnostic index for the optimal cut-off of SOS Z score were calculated.Results The results of Bland-Altman analysis showed that the mean differences in the Z scores of SOS and BMD in males and females were 1.27(-0.94 to 3.47)and 0.93(-1.33 to 3.18),respectively.The AUC of SOS Z score in the diagnosis of low bone mass in males and females was 0.734(95%CI=0.380-0.788)and 0.679(95%CI=0.625-0.732),respectively.In males,the optimal cut-off of SOS Z score for low bone mass was -0.35,with the sensitivity,specificity,and correct diagnostic index of 64.1%,68.6%,and 0.327,respectively.In females,the optimal cut-off value of SOS Z scores for low bone mass was -1.14,with the sensitivity,specificity,and correct index of 73.9%,54.8%,and 0.285,respectively.Conclusion QUS and DXA show poor consistency in the diagnosis of BMD in the adults aged 18-40 years in Guangzhou,while QUS demonstrates an acceptable value in identifying low bone mass.
Assuntos
Densidade Óssea , Osso e Ossos , Masculino , Feminino , Adulto , Humanos , Absorciometria de Fóton/métodos , Ultrassonografia , Curva ROC , Sensibilidade e EspecificidadeRESUMO
Although it has been over 30 years since the first recorded use of quantitative ultrasound (QUS) technology to predict bone strength, the field has not yet reached its maturity. Among several QUS technologies available to measure cortical or cancellous bone sites, at least some of them have demonstrated potential to predict fracture risk with an equivalent efficiency compared to X-ray densitometry techniques, and the advantages of being non-ionizing, inexpensive, portable, highly acceptable to patients and repeatable. In this Chapter, we review instrumental developments that have led to in vivo applications of bone QUS, emphasizing the developments occurred in the decade 2010-2020. While several proposals have been made for practical clinical use, there are various critical issues that still need to be addressed, such as quality control and standardization. On the other side, although still at an early stage of development, recent QUS approaches to assess bone quality factors seem promising. These include guided waves to assess mechanical and structural properties of long cortical bones or new QUS technologies adapted to measure the major fracture sites (hip and spine). New data acquisition and signal processing procedures are prone to reveal bone properties beyond bone mineral quantity and to provide a more accurate assessment of bone strength.
Assuntos
Densidade Óssea , Fraturas Ósseas , Absorciometria de Fóton , Osso e Ossos/diagnóstico por imagem , Fraturas Ósseas/diagnóstico por imagem , Humanos , Processamento de Sinais Assistido por Computador , UltrassonografiaRESUMO
The composition of gas mixtures may be determined via changes of the speed of sound. As this affects the resonance frequency of the gas inside a tube, indirect measurements through a frequency analysis are also possible. It is demonstrated that this may be carried out with unprecedented simplicity by the novel employment of a piezoelectric tube which serves at the same time as a resonance tube and as transducer into the electronic domain. Experiments were run using a simple diecast aluminum box as the measuring cell, inside which the piezoelectric tube made from lead zirconium titanate with 30-mm length and 5.35-mm inner diameter was suspended. A small loudspeaker placed into the cell served for excitation of the resonance. Peak frequencies between 3910 and 14,590 Hz (for pure CO2 and He, respectively) were obtained. Two component mixtures of O2/N2, CO2/N2, and He/N2 at various composition were tested. A linear frequency change from 4790 to 5100 Hz was observed when going from pure O2 to pure N2.
Assuntos
Gases , VibraçãoRESUMO
We present a new family of exact solutions of dissipative fireball hydrodynamics for arbitrary bulk and shear viscosities. The main property of these solutions is a spherically symmetric, Hubble flow field. The motivation of this paper is mostly academic: we apply non-relativistic kinematics for simplicity and clarity. In this limiting case, the theory is particularly clear: the non-relativistic Navier-Stokes equations describe the dissipation in a well-understood manner. From the asymptotic analysis of our new exact solutions of dissipative fireball hydrodynamics, we can draw a surprising conclusion: this new class of exact solutions of non-relativistic dissipative hydrodynamics is asymptotically perfect.
RESUMO
In this study, we aimed to (a) evaluate postnatal changes in bone development in relation to growth and (b) to determine factors associated with bone development, from birth to 24 months of corrected age. The metacarpal speed of sound (mcSOS) and metacarpal bone transmission time (mcBTT) were used to evaluate bone development in 98 preterm infants, during hospitalization and follow-up. The mcSOS and mcBTT values not only declined in the first 6 weeks of hospitalization but also during follow-up. The mcSOS reached its lowest point at 12 months (ß=-34.64), while the mcBTT reached a plateau between 12 and 24 months (ß=0.06). Univariable analysis showed that gender (p=0.28), time (p<0.001), and growth parameters (p<0.001) were significant negative associated factors with mcSOS, whereas with mcBTT, time (p=0.009), length (p=0.063), length standard deviation scores (SDS) (p=0.027), head circumference (p=0.005), and head circumference SDS (p=0.007) were significant positive. The multivariable model revealed that time (ß= -3.364, p=<0.001), weight (ß=-0.007, p<0.001) and length (ß=1.163, p<0.001) for mcSOS and length (ß=-0.021, p<0.001), and length SDS (ß= 0.066, p<0.001) and head circumference (ß=0.049, p<0.001) for mcBTT remained highly significant associated factors.Conclusion: The most important finding is that mcSOS decreased and the mcBTT reached a plateau to 24 months. In both mcSOS and mcBTT, the growth parameters were significant factors.Clinical Trial Registration: N/A What is known: ⢠Metabolic bone disease is one of the possible long term adverse outcomes after preterm birth. ⢠Metacarpal speed of sound (mcSOS) and metacarpal bone transmission time (mcBTT) decline in the early postnatal period. What is new: ⢠During follow-up, mcSOS further decreased and reached its lowest point at 12 months, while the mcBTT reached a plateau up to 24 months. ⢠Postnatal nutrition in relation to comorbidity does not meet the optimal mineralization rate of the developing preterm bone.
Assuntos
Doenças Ósseas Metabólicas , Nascimento Prematuro , Doenças Ósseas Metabólicas/diagnóstico por imagem , Feminino , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Gravidez , Estudos Prospectivos , UltrassonografiaRESUMO
INTRODUCTION: The objectives of this study were to identify what is reflected in cortical speed of sound (cSOS) measured by a cortical quantitative ultrasound (cortical QUS) device we have developed, and to investigate cSOS measurements in healthy individuals and dialysis patients. METHODS: The cSOS and the SOS were measured by cortical QUS and conventional QUS in 20 volunteers, and the correlations between these measurements and areal bone mineral density measured by dual-energy X-ray absorptiometry and bone microstructural parameters on high-resolution peripheral quantitative computed tomography were analyzed. The cSOS and the SOS were measured in 91 young adults (47 men, 44 women), 64 elderly people (30 men, 33 women), and 64 dialysis patients (33 men, 31 women). The period of hemodialysis and intact parathyroid hormoneevels were also investigated in the dialysis patients. RESULTS: cSOS was correlated with cortical tissue mineral density (tibia: râ¯=â¯0.74, radius: râ¯=â¯0.72) on high-resolution peripheral quantitative computed tomography, reflecting the degree of minaralization and microporosity of cortical bone. There was no correlation with the thickness of cortical bone, suggesting that it measured the bone quality rather than bone mass. Elderly women had lower cSOS than young adults (3865 ± 74 vs 3971 ± 63 m/s, p < 0.01). Many of dialysis patients showed very low cSOS and it was related to higher intact parathyroid hormone levels (male: ß = -0.67, female: ß = -0.60). CONCLUSIONS: Our cortical QUS device is capable of evaluating the qualitative degradation of cortical bone, which cannot be assessed by conventional QUS, and its use in combination with conventional QUS may provide a better understanding of fracture risk.