RESUMO
Communication of vascular cells is essential for the control of organotypic functions of blood vessels. In this context, vascular endothelial cells (EC) act as potent regulators of vascular smooth muscle cell (VSMC) functions such as contraction and relaxation. However, the impact of ECs on the gene expression pattern of VSMCs is largely unknown. Here, we investigated changes of the VSMC transcriptome by utilizing 3D human vascular organoids organized as a core of VSMCs enclosed by a monolayer of ECs. Microarray-based analyses indicated that interaction with ECs for 48 h down-regulates expression of genes in VSMCs controlling rate-limiting steps of the cholesterol biosynthesis such as HMGCR, HMGCS1, DHCR24 and DHCR7. Protein analyses revealed a decrease in the abundance of DHCR24 (24-dehydrocholesterol reductase) and lower cholesterol levels in VSMCs co-cultured with ECs. On the functional level, the blockade of the DHCR24 activity impaired adhesion, migration and proliferation of VSMCs. Collectively, these findings indicate that ECs have the capacity to instruct VSMCs to shut down the expression of DHCR24 thereby limiting their cholesterol biosynthesis, which may support their functional steady state.
Assuntos
Colesterol/metabolismo , Células Endoteliais/fisiologia , Músculo Liso Vascular/metabolismo , Proteínas do Tecido Nervoso/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Células Cultivadas , Regulação Enzimológica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Metabolismo dos Lipídeos/genética , Miócitos de Músculo Liso/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismoRESUMO
Fourier transform infrared (FTIR) microspectroscopy was used to evaluate the growth of human melanoma cells (SK-MEL-2) in two-dimensional (2D) versus three-dimensional (3D) spheroid culture systems. FTIR microspectroscopy, coupled with multivariate analysis, could be used to monitor the variability of spheroid morphologies prepared from different cell densities. The characteristic shift in absorbance bands of the 2D cells were different from the spectra of cells from 3D spheroids. FTIR microspectroscopy can also be used to monitor cell death similar to fluorescence cell staining in 3D spheroids. A change in the secondary structure of protein was observed in cells from the 3D spheroid versus the 2D culture system. FTIR microspectroscopy can detect specific alterations in the biological components inside the spheroid, which cannot be detected using fluorescence cell death staining. In the cells from 3D spheroids, the respective lipid, DNA, and RNA region content represent specific markers directly proportional to the spheroid size and central area of necrotic cell death, which can be confirmed using unsupervised PCA and hierarchical cluster analysis. FTIR microspectroscopy could be used as an alternative tool for spheroid cell culture discrimination, and validation of the usual biochemical technique.
Assuntos
Técnicas de Cultura de Células/métodos , Melanoma/química , Melanoma/patologia , Morte Celular , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Lipídeos/química , Melanoma/genética , Análise de Componente Principal , Proteínas/química , RNA Neoplásico/química , Espectroscopia de Infravermelho com Transformada de Fourier , Esferoides Celulares/patologiaRESUMO
BACKGROUND: New drugs for adrenocortical carcinoma (ACC) are needed because most patients undergo rapid disease progression despite surgery and adjuvant therapy with mitotane. In this study, we aimed to investigate the in vitro effects of different chemotherapy drugs, alone or combined with mitotane, on the viability of adrenocortical carcinoma cells. METHODS: Everolimus, sunitinib, zoledronic acid, imatinib and nilotinib cytotoxicity, alone or combined with mitotane were tested on ACC H295R cells in monolayer or spheroid cultures using MTS assays and confocal microscopy. Moreover, the nilotinib effects were investigated in spheroids cultured from patient tumor-derived ACC-T36 cells. RESULTS: Morphological characterization of H295R cell spheroids using histochemistry was performed and showed that dense, homogenously sized, multicellular spheroids were obtained. We observed that sunitinib and nilotinib alone were equally effective in a monolayer preparation, whereas mitotane was the most effective even at a low dose. A combination of sunitinib and mitotane was the most effective treatment, with only 23.8% of cells in the monolayer remaining viable. Spheroid preparations showed resistance to different drugs, although the poor effect produced by mitotane alone was surprising, with a cell viability of 84.6% in comparison with 13.1% in monolayer cells. The most ineffective drugs in spheroid preparations were everolimus, zoledronic acid and imatinib. In both cell types, nilotinib, either alone or in combination with mitotane induced more significant cell viability inhibition in monolayer and spheroid preparations. In addition, the mechanism of nilotinib activity involves the ERK1/2 pathway. CONCLUSION: Taken together, our data identified nilotinib as a cytotoxic drug that combined with ERK inhibitors deserves to be tested as a novel therapy for adrenocortical carcinoma.
RESUMO
BACKGROUND: Monolayer cell cultures have been considered the most suitable technique for in vivo cellular experiments. However, a lot of cellular functions and responses that are present in natural tissues are lost in two-dimensional cell cultures. In this context, nanoparticle accumulation data presented in literature are often not accurate enough to predict behavior of nanoparticles in vivo. Cellular spheroids show a higher degree of morphological and functional similarity to the tissues. METHODS: Accumulation and distribution of carboxylated CdSe/ZnS quantum dots (QDs), chosen as model nanoparticles, was investigated in cellular spheroids composed of different phenotype mammalian cells. The findings were compared with the results obtained in in vivo experiments with human tumor xenografts in immunodeficient mice. The diffusive transport model was used for theoretical nanoparticles distribution estimation. RESULTS: QDs were accumulated only in cells, which were localized in the periphery of cellular spheroids. CdSe/ZnS QDs were shown to be stable and inert; they did not have any side-effects for cellular spheroids formation. Penetration of QDs in both cellular spheroids and in vivo tumor model was limited. The mathematical model confirmed the experimental results: nanoparticles penetrated only 25µm into cellular spheroids after 24h of incubation. CONCLUSIONS: Penetration of negatively charged nanoparticles is limited not only in tumor tissue, but also in cellular spheroids. GENERAL SIGNIFICANCE: The results presented in this paper show the superior applicability of cellular spheroids to cell monolayers in the studies of the antitumor effect and penetration of nanomedicines.
Assuntos
Ácidos Carboxílicos/química , Nanopartículas/química , Pontos Quânticos , Esferoides Celulares/química , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Compostos de Cádmio/química , Compostos de Cádmio/metabolismo , Ácidos Carboxílicos/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Humanos , Células MCF-7 , Camundongos , Microscopia Confocal , Células NIH 3T3 , Nanopartículas/metabolismo , Compostos de Selênio/química , Compostos de Selênio/metabolismo , Esferoides Celulares/metabolismo , Sulfetos/química , Sulfetos/metabolismo , Transplante Heterólogo , Compostos de Zinco/química , Compostos de Zinco/metabolismoRESUMO
BACKGROUND: Targeted anti-HER2 therapy has greatly improved the prognosis for many breast cancer patients. However, treatment for HER2 negative disease is currently still selected from a multitude of untargeted chemotherapeutic treatment options. A predictive test was developed using patient-derived spheroids to identify the most effective therapy for patients with HER2 negative breast cancer of all stages, for clinically relevant subgroups, as well as individual patients. METHODS: Tumor samples from 120 HER2 negative patients obtained through biopsy or surgical excision were tested in the breast cancer spheroid model using scaffold-free cell culture. Similarly, spheroids were also generated from established HER2 negative breast cancer cell lines T-47D, MCF7, HCC1143, and HCC1937 to compare treatment efficacy of heterogeneous cell populations from patient tumor tissue with homogeneous cell lines. Spheroids were treated in vitro with guideline-recommended compounds. Treatment mediated impact on cell survival was subsequently quantified using an ATP assay. RESULTS: Differences were observed in the metabolic activity of the untreated spheroids, whereby cell lines consistently achieved higher values compared to tissue spheroids (p < 0.001). A higher number of cells per spheroid correlated with a higher basal metabolic activity in tissue-derived spheroids (p < 0.01), while the opposite was observed for cell line spheroids (p < 0.01). Recurrent tumors showed a higher mean vitality (p < 0.01) compared to primary tumors. Except for taxanes, treatment efficacy for most tested compounds differed significantly between breast cancer tissue spheroids and breast cancer cell lines. Overall a high variability in treatment response in vitro was seen in the tissue spheroids regardless of the tested substances. A greater response to anthracycline/docetaxel was observed for hormone receptor negative samples (p < 0.01). A higher response to 5-FU (p < 0.01) and anthracycline (p < 0.05) was seen in high grade tumors. Smaller tumor size and negative lymph node status were both associated with a higher treatment efficacy to anthracycline treatment combined with 5-FU (cT1/2 vs cT3/4, p = 0.035, cN+ vs cN-, p < 0.05). CONCLUSIONS: The tissue spheroid model reflects current guideline treatment recommendations for HER2 negative breast cancer, whereas tested cell lines did not. This model represents a unique diagnostic method to select the most effective therapy out of several equivalent treatment options.
Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Receptor ErbB-2/metabolismo , Esferoides Celulares/patologia , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Estudos de Coortes , Feminino , Humanos , Pessoa de Meia-Idade , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Resultado do Tratamento , Células Tumorais CultivadasRESUMO
Three-dimensional (3D) spheroid cell cultures of fibroblast (L929) and tumor mammary mouse (4T1) were chosen as in vitro tissue models for tissue imaging of ternary AgInS/ZnS fraction quantum dots (QDs). We showed that the tissue-mimetic morphology of cell spheroids through well-developed cell-cell and cell-matrix interactions and distinct diffusion/transport characteristics makes it possible to predict the effect of ternary AgInS/ZnS fraction QDs on the vital activity of cells while simultaneously comparing with classical two-dimensional (2D) cell cultures. The AgInS/ZnS fractions, emitting in a wide spectral range from 635 to 535 nm with a mean size from â¼3.1 ± 0.8 to â¼1.8 ± 0.4 nm and a long photoluminescence lifetime, were separated from the initial QD ensemble by using antisolvent-induced precipitation. For ternary AgInS/ZnS fraction QDs, the absence of toxicity at different QD concentrations was demonstrated on 2D and 3D cell structures. QDs show a robust correlation between numerous factors: their sizes in biological fluids over time, penetration capabilities into 2D and 3D cell structures, and selectivity with respect to penetration into cancerous and healthy cell spheroids. A reproducible protocol for the preparation of QDs along with their unique biological properties allows us to consider ternary AgInS/ZnS fraction QDs as attractive fluorescent contrast agents for tissue imaging.
Assuntos
Pontos Quânticos , Esferoides Celulares , Sulfetos , Compostos de Zinco , Pontos Quânticos/química , Pontos Quânticos/toxicidade , Animais , Camundongos , Sulfetos/química , Compostos de Zinco/química , Esferoides Celulares/efeitos dos fármacos , Linhagem Celular Tumoral , Índio/química , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Prata/química , Tamanho da Partícula , Compostos de Prata/químicaRESUMO
Dermal papilla cells (DPCs) are an important element of the hair follicle (HF) niche, widely used as an in vitro model to study hair growth-related research. These cells are usually grown in 2D culture, but this system did not show efficient therapeutic effects on HF regeneration and growth, and key differences were observed between cell activity in vitro and in vivo. Recent studies have showed that DPCs grown in 3D hanging spheroids are more morphologically akin to an intact DP microenvironment. In this current study, global gene molecular analysis showed that the 3D model highly affected cell adhesion molecules and hair growth-related pathways. Furthermore, we compared the expression of signalling molecules and metabolism-associated proteins of DPCs treated with minoxidil (an FDA-approved drug for hair loss treatment) and 3,4,5-tri-O-caffeoylquinic acid (TCQA) (recently found to induce hair growth in vitro and in vivo) in 3D spheroid hanging drops and a 2D monolayer using DNA microarray analysis. Further validations by determining the gene and protein expressions of key signature molecules showed the suitability of this 3D system for enhancing the DPC activity of the hair growth-promoting agents minoxidil and TCQA.
Assuntos
Folículo Piloso , Minoxidil , Cabelo , Humanos , Minoxidil/metabolismo , Minoxidil/farmacologia , Proteômica , Ácido Quínico/análogos & derivadosRESUMO
Cardiovascular diseases are one of the leading causes of mortality in the western world. Myocardial infarction is among the most prevalent and results in significant cell loss within the myocardium. Similarly, numerous drugs have been identified as having cardiotoxic side effects. The adult human heart is however unable to instigate an effective repair mechanism and regenerate the myocardium in response to such damage. This is in large part due to the withdrawal of cardiomyocytes (CMs) from the cell cycle. Thus, identifying, screening, and developing agents that could enhance the proliferative capacity of CMs holds great potential in cardiac regeneration. Human induced pluripotent stem cells (hiPSCs) and their cardiovascular derivatives are excellent tools in the search for such agents. This chapter outlines state-of-the art techniques for the two-dimensional differentiation and attainment of hiPSC-derived CMs and endothelial cells (ECs). Bioreactor systems and three-dimensional spheroids derived from hiPSC-cardiovascular derivatives are explored as platforms for drug discovery before focusing on relevant assays that can be employed to assess cell proliferation and viability.
Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Células Endoteliais , Humanos , Miócitos Cardíacos , TecnologiaRESUMO
Photodynamic therapy (PDT) is a non-invasive treatment strategy that includes the combination of three components-a photosensitizer, a light source, and tissue oxygen. PDT can be used for the treatment of skin diseases such as squamous cell carcinoma. The photosensitizer used in this study is the naturally derived chlorophyll derivative chlorin e6 (Ce6), which was encapsulated in ultradeformable ethosomes. Singlet oxygen production by Ce6 upon laser light irradiation was not significantly affected by encapsulation into ethosomes. PDT of squamous cell carcinoma cells treated with Ce6 ethosomes triggered increased mitochondrial superoxide levels and increased caspase 3/7 activity, resulting in concentration- and light-dose-dependent cytotoxicity. Ce6 ethosomes showed good penetration into 3D squamous cell carcinoma spheroids, which upon laser light irradiation exhibited reduced size, proliferation, and viability. The PDT effect of Ce6 ethosomes was specific and showed higher cytotoxicity against squamous cell carcinoma spheroids compared to normal skin fibroblast spheroids. In addition, PDT treatment of squamous cell carcinoma xenografts grown on chorioallantoic membranes of chick eggs (CAM) exhibited reduced expression of Ki-67 proliferation marker and increased terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining, indicating reduced proliferation and activation of apoptosis, respectively. The results demonstrate that Ce6-loaded ethosomes represent a convenient formulation for photodynamic treatment of squamous cell carcinoma.
RESUMO
Non-small cell lung cancer is a major sub-type of lung cancer that is associated with a poor diagnosis resulting in poor therapy for the disorder. In order to achieve a better prognosis, innovative multi-functional systems need to be developed which will aide in diagnosis as well as therapy for the disorder. One such multi-functional delivery system fabricated is Quantum Dots (QDs). QDs are photo-luminescent inorganic nanoparticles utilized for tumor detection, preclinically. Erlotinib hydrochloride, a tyrosine kinase inhibitor, is a first-generation drug developed to treat NSCLC. Its active metabolite, Desmethyl Erlotinib (OSI-420), exhibits similar anticancer activity as erlotinib. OSI-420 was conjugated to QDs to fabricate a delivery system and was then characterized by FT-IR, H NMR, UV-VIS, particle size, zeta potential, fluorescence spectroscopy and TEM. Drug loading was estimated using UV-VIS spectroscopy (52.2⯱â¯7.5%). A concentration-dependent release of OSI-420 was achieved using esterase enzymes, which was further confirmed using LC-MS. A cellular uptake study revealed the internalization potential of QDs and QD-OSI 420. A cellular recovery study was performed to confirm the internalization potential. Cell viability studies revealed that QD-OSI 420 conjugates had significantly better efficacy than pure drugs in all tested cell lines. QD conjugated OSI-420 demonstrated an IC60 of 2.5⯵M in erlotinib-resistant A549 cell lines, where erlotinib or OSI-420 alone could not exhibit 60% inhibition when evaluated up to 20⯵M. Similar cytotoxic enhancement of erlotinib was seen with QD-OSI 420 in other NSCLC cell lines as well. These results were strengthened by 3D-SCC model of A549 which revealed that QD-OSI 420 was significantly better in reducing in-vitro 3D tumor volume, as compared to pure drugs. This study, being one of its kind, explores the feasibility of conjugating OSI-420 with QDs as an alternative to traditional anti-cancer therapy, by improving intracellular drug delivery.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Pontos Quânticos/administração & dosagem , Quinazolinas/administração & dosagem , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Esterases/química , Humanos , Lisossomos/metabolismo , Inibidores de Proteínas Quinases/química , Pontos Quânticos/química , Quinazolinas/químicaRESUMO
Conventional positive and negative selection-based circulating tumor cell (CTC) isolation methods might generally ignore metastasis-relevant CTCs that underwent epithelial-to- mesenchymal transition and suffer from a low CTC purity problem, respectively. To address these issues, we previously proposed a 2-step CTC isolation method integrating a negative selection CTC isolation and subsequent spheroid cell culture. In addition to its ability to isolate CTCs, more importantly, the spheroid cell culture used could serve as a cell culture model mimicking the process of new tumor tissue formation during cancer metastasis. Therefore, it is promising not only to selectively isolate metastasis-relevant CTCs but also to test the potential of cancer metastasis and thus the prognosis of disease. To explore these issues, experiments were performed. The key findings of this study demonstrated that the method was able to harvest both epithelial (E)- and mesenchymal (M)-type CTCs without selection bias. Moreover, both the M-type CTC count and the information obtained from the multidrug resistance-associated protein 2 (MRP2) and MRP5 gene expression analysis of the CTCs isolated via the 2-step CTC isolation method might be able to serve as prognostic factors for progression-free survival in head and neck squamous cell carcinoma.
RESUMO
Microfabricated systems equipped with 3D cell culture devices and in-situ cellular biosensing tools can be a powerful bionanotechnology platform to investigate a variety of biomedical applications. Various construction substrates such as plastics, glass, and paper are used for microstructures. When selecting a construction substrate, a key consideration is a porous microenvironment that allows for spheroid growth and mimics the extracellular matrix (ECM) of cell aggregates. Various bio-functionalized hydrogels are ideal candidates that mimic the natural ECM for 3D cell culture. When selecting an optimal and appropriate microfabrication method, both the intended use of the system and the characteristics and restrictions of the target cells should be carefully considered. For highly sensitive and near-cell surface detection of excreted cellular compounds, SERS-based microsystems capable of dual modal imaging have the potential to be powerful tools; however, the development of optical reporters and nanoprobes remains a key challenge. We expect that the microsystems capable of both 3D cell culture and cellular response monitoring would serve as excellent tools to provide fundamental cellular behavior information for various biomedical applications such as metastasis, wound healing, high throughput screening, tissue engineering, regenerative medicine, and drug discovery and development.
Assuntos
Técnicas de Cultura de Células/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Animais , Técnicas Biossensoriais , Biotecnologia , Linhagem Celular Tumoral , Humanos , Hidrogéis , CamundongosRESUMO
UNLABELLED: Lung diseases are devastating conditions and ranked as one of the top five causes of mortality worldwide according to the World Health Organization. Stem cell therapy is a promising strategy for lung regeneration. Previous animal and clinical studies have focused on the use of mesenchymal stem cells (from other parts of the body) for lung regenerative therapies. We report a rapid and robust method to generate therapeutic resident lung progenitors from adult lung tissues. Outgrowth cells from healthy lung tissue explants are self-aggregated into three-dimensional lung spheroids in a suspension culture. Without antigenic sorting, the lung spheroids recapitulate the stem cell niche and contain a natural mixture of lung stem cells and supporting cells. In vitro, lung spheroid cells can be expanded to a large quantity and can form alveoli-like structures and acquire mature lung epithelial phenotypes. In severe combined immunodeficiency mice with bleomycin-induced pulmonary fibrosis, intravenous injection of human lung spheroid cells inhibited apoptosis, fibrosis, and infiltration but promoted angiogenesis. In a syngeneic rat model of pulmonary fibrosis, lung spheroid cells outperformed adipose-derived mesenchymal stem cells in reducing fibrotic thickening and infiltration. Previously, lung spheroid cells (the spheroid model) had only been used to study lung cancer cells. Our data suggest that lung spheroids and lung spheroid cells from healthy lung tissues are excellent sources of regenerative lung cells for therapeutic lung regeneration. SIGNIFICANCE: The results from the present study will lead to future human clinical trials using lung stem cell therapies to treat various incurable lung diseases, including pulmonary fibrosis. The data presented here also provide fundamental knowledge regarding how injected stem cells mediate lung repair in pulmonary fibrosis.
Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Bleomicina/efeitos adversos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Fibrose Pulmonar/terapia , Regeneração , Esferoides Celulares/transplante , Adulto , Animais , Antibióticos Antineoplásicos/farmacologia , Bleomicina/farmacologia , Feminino , Xenoenxertos , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos SCID , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Esferoides Celulares/metabolismoRESUMO
The present work deals with development of modified gum arabic cross-linked gelatin scaffold for cell culture. A new biocompatible scaffold was developed by cross-linking gelatin (Gel) with gum arabic, a polysaccharide. Gum arabic was subjected to periodate oxidation to obtain gum arabic aldehyde (GAA). GAA was reacted with gelatin under appropriate pH to prepare the cross-linked hydrogel. Cross-linking occurred due to Schiff's base reaction between aldehyde groups of oxidized gum arabic and amino groups of gelatin. The scaffold prepared from the hydrogel was characterized by swelling properties, degree of cross-linking, in vitro degradation and scanning electron microscopy (SEM). Cytocompatibility evaluation using L-929 and HepG2 cells confirmed non-cytotoxic and non-adherent nature of the scaffold. These properties are essential for generating multicellular spheroids and hence the scaffold is proposed to be a suitable candidate for spheroid cell culture.